Phase damping channel
$$
\begin{multline}\shoveleft
\text{Kraus operators:}\space
K_{0}=\begin{bmatrix}
1 & 0\\
0 & \sqrt{1-p}
\end{bmatrix}
,\space
K_{1}=\begin{bmatrix}
0 & 0\\
0 & \sqrt{p}
\end{bmatrix}
,\space
\text{Bloch vector:}\space
\displaylines{
\begin{aligned}
& x = x\sqrt{1-p}\\
& y = y\sqrt{1-p}\\
& z = z\\
\end{aligned}
}
\end{multline}
$$
Depolarizing channel
$$
\begin{multline}\shoveleft
\text{Kraus operators:}\space
K_{0}=\sqrt{1-p}\hat{\mathbb{1}}
,\space
K_{1}=\sqrt{\frac{p}{3}}\hat{\sigma_{x}}
,\space
K_{2}=\sqrt{\frac{p}{3}}\hat{\sigma_{y}}
,\space
K_{3}=\sqrt{\frac{p}{3}}\hat{\sigma_{z}}
,\space
\text{Bloch vector:}\space
\displaylines{
\begin{aligned}
& x = (1-\frac{4}{3}p)x\\
& y = (1-\frac{4}{3}p)y\\
& z = (1-\frac{4}{3}p)z\\
\end{aligned}
}
\end{multline}
$$
Amplitude damping channel
$$
\begin{multline}\shoveleft
\text{Kraus operators:}\space
K_{0}=\sqrt{p}\begin{bmatrix}
1 & 0\\
0 & \sqrt{1-\gamma}
\end{bmatrix}
,\space
K_{1}=\sqrt{p}\begin{bmatrix}
0 & \sqrt{\gamma}\\
0 & 0
\end{bmatrix}
,\space
K_{2}=\sqrt{1-p}\begin{bmatrix}
\sqrt{1-\gamma} & 0\\
0 & 1
\end{bmatrix}
,\space
K_{3}=\sqrt{1-p}\begin{bmatrix}
0 & 0\\
\sqrt{\gamma} & 0
\end{bmatrix}
,\space
\text{Bloch vector:}\space
\displaylines{
\begin{aligned}
& x = x\sqrt{1-\gamma}\\
& y = y\sqrt{1-\gamma}\\
& z = \gamma(2p-1)+(1-\gamma)z\\
\end{aligned}
}
\end{multline}
$$