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PREFACE TO THE DOVER EDITION

Robert Anthony Robinson (1904-1979) was my physical chemistry
teacher in Auckland (New Zealand), and supervised my first
research work for the M.Sc. degree. We collaborated intermittently
there until 1946, when I left for Australia and he shortly afterwards
to the (then) University of Malaya in Singapore. The collaboration
continued by correspondence for many years, and he spent a year in
the Armidale department shortly after his retirement from
Singapore in 1959. He later held several research appointments in
England and the United States.

The first edition (1955) of Electrolyte Solutions was written while
I was in Perth (Western Australia), which had an excellent airmail
service to Singapore. We decided to confine ourselves mainly to top-
ics on which we had first-hand experience, and to include all the
numerical data we were continually looking up in the course of our
research work, as well as tabulations of reliable fundamental data on
electrolytes. This seems to have met a need, and the book in its sub-
sequent editions continues to be widely cited. It was the subject of a
Current Contents Citation Classic in 1988, when long out of print.

Why not produce a completely new version rather than the pres-
ent reprint of the 1970 revision? It would require several volumes to
do justice to the huge expansion of the field in recent decades, par-
ticularly in the area of solutions in non-aqueous solvents. Aqueous
solutions at high temperatures and pressures have also received
much attention, and there have been major theoretical advances. We
are content to have played a part in laying foundations and drawing
attention to gaps in knowledge.

It should be noted that all values quoted are in pre-SI units; see the
“Preface to Reprinted Edition” (p. v) and the “Table of Important
Constants” (p. xv) for details.

I thank Dover Publications for making our work available again
to students and research workers. There is still no substitute for
measured fact.

R. H. Stokes
Armidale
January 2002
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1
PROPERTIES OF IONIZING SOLVENTS

CrassicaL theories of solutions were built upon the analogy between
the solute particles and the molecules of an imperfect gas, the
solvent being regarded as a mere provider of the volume in which
the solute particles moved. The striking progress made by the
modern theory of liquids is based on a very different model: the
liquid is seen as a disordered solid in which short-range order
persists, though the long-range order characteristic of the solid state
has been lost in thermal agitation. Solute and solvent appear on an
equal footing and it is only in the limit of extreme dilution, when
the solvent molecules so outnumber those of the solute that we can
regard the solvent as virtually unchanged, that the classical view-
point remains acceptable. The most noteworthy successes of the
modern theory have, however, been in the theory of non-polar and
uncharged molecules; in the case of electrolyte solutions, the more
sensational properties are still too readily attributed only to the
nature of the solute. One should not forget that it is the solvent
which enables the electrolyte to display its peculiarities; that it
plays an active part in producing, from the electrically inert crystal,
liquid or gas, the mobile charged particles which force themselves
on our attention,

Since water is by far the most important of the ionizing solvents,
and all but a very small part of the immense body of factual know-
ledge about electrolytes refers to aqueous solutions, we shall begin
with an account of the structure of water and such of its properties
as are relevant to the behaviour of electrolyte solutions.

THE WATER MOLECULE

Spectroscopic studies of the isolated water molecule'!! in the gaseous
state have established that the H—O—H bond angle is 105°, and
the O—H internuclear distance 0-97 A (Figure 1.1). The isolated
molecule has a dipole moment of 1-87 x 10-8 e.s.u., acting along
the bisector of the H—O—H angle with the negative end towards
the oxygen nucleus. This dipole moment was treated by BERNAL
and FowLER'®, in their pioneer work on the structure of water and
ice, as due to an effective charge of —e (e = protonic charge)
situated 0-15 A from the oxygen nucleus, with -+ 0-5e at each

1



| PROPERTIES OF IONIZING SOLVENTS

hydrogen nucleus. A more elaborate model due to VERWEY'® re-
places the tripolar charge distribution of Bernal and Fowler
(Figure 1.2a) by the quadrupole arrangement shown in Figure 1.2b;

Figure 1.1. Internuclear distances and
bond angle of the water molecule

759k

this has led to a very satisfactory prediction of the lattice energy of
the ice crystal.

LIQUID WATER
In the liquid state water exhibits properties characteristic of an
associated liquid to an extent more marked than do the hydrides
of elements close to oxygen in the Periodic Table. To illustrate this

H H H
+05e r0-5€ +0-67¢
- +68 +6e e -73%¢
< <
+0:5¢ r0-5¢ +0-67¢
H H
)

) ()

Figure 1.2. Models of the charge distribution in the water molecule. In each madel C is
taken as the centre of the molecule. The distances OC are not drawn lo scale

(a) Bernal and Fowler OC =0-15A )
N

(6) Verwey Model I OC=10022A HCH = 107° 10/
N

(c) Verwey Model II OC = 0049 A  HCH = 109° ¢4’

we can quote some physical properties of ammonia, water, hydrogen
fluoride and hydrogen sulphide.

NH, H,0 HF H,S
Melting point - 78° 0° — 84° - 86°
Boiling point — 33° 100° 20° ~ 60°
Entroprv of vaporization 232 26-1 249 21-2
(cal deg~! mole-?)




LIQUID WATER

Thus liquid water has a comparatively high boiling point, suggesting
the presence of strong intermolecular forces in the liquid state,
which make it difficult for the molecule to escape into the vapour
phase. The high melting point suggests that there is a kind of
quasi-crystalline structure in the liquid so that the solid state can be
formed with ease in spite of the comparatively high thermal energy.

The densities in the solid and liquid state at 0° are 0-9168 and
0-99987 g/ml. respectively, so that water contracts by 8-3 per cent
on fusion. It contracts by a further 0-012 per cent on heating to 4°,
at which temperature the density has a maximum value. The
specific heat of ice at 0° is 0-5026 cal/g®* compared with 1-0081 cal/g
for liquid water at the same temperature; the specific heat has a
minimum value of 0-9986 cal/g3 at 34-5°.

Its dielectric constant (78-30 at 25°) is high compared with most
liquids; hydrogen cyanide has a dielectric constant of 1068, forma-
mide 109-5 and sulphuric acid 101 at 25°; the value for hydrogen
fluoride is 83-6 at 0°. Apart from these four liquids, however, even
the more polar of the common liquid solvents are characterized by
much lower dielectric constants; 59 for acetamide at 83°, 52 for
hydrazine at 25° and 22 for ammonia at its boiling point are
examples. Non-polar liquids have dielectric constants of the order
of 2.

Even after the most rigorous purification water has a small
electrical conductance; so-called ‘equilibrium’ water has a specific
conductivity of 0-75 x 10~% Q-! cm-! at 18° due mainly to dissolved
carbon dioxide in equilibrium with the carbon dioxide of the
atmosphere. KoHLrAaUscH and HEYDWEILLER® reported a specific
conductivity of ~ 0-:04 x 10-% Q-1 cm! at 18° for highly purified
water. This conductance is attributable to a slight dissociation of
the water molecules: H,O —H+ 4- OH- or 2H,0 -~ H;0+ + OH-,
and can be explained by assuming that the concentration of
hydrogen and hydroxyl ions is 0-8 X 10-? equivalents per litre at
18° and 1 x 10-7 equivalents per litre at 25°,

In liquid water, the volume per molecule at room temperature is
very nearly 30 AS. If water consisted of close-packed spherical
molecules, the diameter needed to give this volume would be
3-48 A. In fact, however, x-ray analysis of liquid water indicates!®
that the nearest-neighbour distance (expressed as the 0-0 inter-
nuclear distance) is 2-90 to 3-05 A in the temperature range 0-80°
(Figure 1.3). It follows that the molecules are far from close packed,
or the volume per molecule would be much smaller. Instead of the
twelve nearest neighbours characteristic of close packing, the x-ray
data show that the average number of nearest neighbours ranges

3



1 PROPERTIES OF IONIZING SOLVENTS

from 4-4 to 4-9 over this temperature interval. Morgan and Warren
have also found x-ray evidence for a set of second nearest neighbours
at the expected distance of about 4-5 A from the central molecule
considered, but this set becomes less clearly defined as the tempera-
ture rises, and fades out above 30°, indicating that the range of the
ordering effects is being reduced by thermal agitation.

Liquid water retains, in fact, over short ranges and for short
periods, the tetrahedrally coordinated structure of ice. This view,

a-o"
83°c
-~
2
o —_— ]
0
20F
1-5°C
[ 70 o
< T
1 i ] [] 1 (] [} L
0 f 2 3 ¢ 5 7 8 9
»A

Figure 1.3. Radial distribution functions for water at 1-5° and 83° from the data of Morgan

and Wasren. The function p(r) gives the probability of finding the centre of a water molecule

in a volume—tlement distant r from a chosen central molecule; its absolute value is adjusted

s0 as to become unily at large values of r, which is equivalent to taking the volume element
as the average molecular volume in the liquid

first put forward by Bernal and Fowler, is the modern and more
satisfactory alternative to older views in which the associated nature
of water was explained by assuming the presence of various poly-
merized forms such as ‘dihydrol’ (H;0), and ‘trihydrol’ (H,O);.
This ice-like structure is believed to be maintained by ‘hydrogen
bonds’, which are essentially electrostatic in nature and result from
the especially favourable charge distribution and geometry of the
water molecule. As Figures 1.1 and 1.2 show, the bond angle of
water is very close to the tetrahedral angle (109° 28’) and Verwey’s

4



LIQUID WATER

model II in particular is ideally adapted to a 4-coordinated struc-
ture. The fact that Verwey’s calculations lead to values within
1 kcal/mole of the experimental one (10-8 kcal/mole) for the energy
of vaporization of ice is strong evidence for the adequacy of a purely
electrostatic picture of the intermolecular forces.

Other evidence in favour of the tetrahedrally coordinated
structure of water is found in the Raman and infra-red spectrat®,
The main intermolecular Raman band occurs at a frequency-
displacement Ay = 152-225 cm~!; this has been shown to arise
from the ‘breathing’ mode of vibration (i.e., contraction and expan-
sion of the tetrahedron). A band in the infra-red at 160-175 cm™?
which disappears in dilute solutions of water in dioxane'® also
appears to be due to intermolecular vibrations. Other Raman bands
at 60, 500 and 700 cm~! are attributed to rotational oscillations
(librations) of the molecule which are not vigorous enough to break
the electrostatic bonds with its neighbours. It has been suggested
that only one mode of free rotation can occur to any substantial
extent in water at ordinary temperatures; this is about the axis
which lies in the plane of the three nuclei and bisects the H—O—H
angle. The variation of the Raman intensities with temperature
suggests that this free rotation becomes important rather suddenly
in the vicinity of 40°C.,

Liquid water, then, must be pictured as a rather loosely 4-co-
ordinated structure, held together by electrostatic forces arising from
the special charge distribution and shape of the water molecule.
The association between a molecule and its neighbours can be only
temporary, as the structure is continually being broken by thermal
agitation, but it must have sufficient permanence to persist over
small regions, for times long in comparison with the period of
x-rays or even of infra-red radiation. Such times, however, need be
only of the order of 10-!2 sec so that we need feel no surprise that
the viscosity of water, for example, is only moderately higher than
that of simpler liquids with small molecules. Many of the anomalous
properties of water find a natural explanation in terms of its
structure. The maximum density at 4° can be attributed to the
competition between two opposing effects, the gradual breaking
down of the rather open ice-like structure to a somewhat closer-
packed structure (as indicated by the increase of the average number
of nearest neighbours with temperature) and a simultaneous increase
with temperature of the average centre-to-centre distance. The
abnormally high dielectric constant is due to the mutual inter-
action of the electrostatic fields of the molecules which, because
of the favourable orientation of the molecular dipoles, leads to a

5



1 PROPERTIES OF IONIZING SOLVENTS

considerable increase in the effective polarization in the liquid
state as compared with the vapour.

THE DIELECTRIC CONSTANT AND DIPOLE MOMENT OF
POLAR LIQUIDS

If two parallel conducting plates have on their surfaces electric
charges of density + o, — o respectively, the field intensity between
them has in vacuo the value:

E, = 4no

With an insulating medium between the plates the field strength
drops to a value:
E = 4ng/e,

where ¢,, a constant for all reasonably low field intensities, is called
the ‘static dielectric constant’ of the medium, and is always greater
than unity. The molecular process responsible for this reduction
in the effective field strength is the displacement of electric charges
within the molecules; a negative charge appears at the surface of
the dielectric in contact with the positive plate, and a positive charge
of the same magnitude at the surface in contact with the negative
plate. These induced charges in the dielectric reduce the effective
charge-density on the plates from ¢ to o/¢,; they may therefore be
represented as a polarization, P, of the dielectric, given by:

1
P=a—a/e,=a(l —?')
The total field, E, inside the dielectric may be represented as the
sum of the original field (4mr¢) existing in vacuo and the polarization
field — 4nP. The former is called the electric displacement, D,
given by:

D = 4n¢
so that D =E + 4nP = E¢, (LD
4nP
and £,=]+—E‘

If the plates are separated by a distance 4, two opposite elements
of the surface of the dielectric, of area 04, will carry charges
+ P8A and — PdA, and will therefore constitute a dipole of
moment P84 .d and of volume 84 .d; P is therefore the dipole
moment per unit volume of the dielectric. The problem of calcu-
lating the dielectric constant, &,, from the molecular properties of
the medium is thus that of calculating the polarization P.

6



THE DIELECTRIC CONSTANT

This polarization is the sum of two types: (a) that due to the
distortion of electronic distributions within atoms and of atomic
configurations within molecules, which is called distortion polariza-
tion, and (b) that due to the partial lining up, under the field, of
already existing permanent molecular dipoles, which is called
orientation-polarization. The distortion-polarization occurs with
extreme rapidity, even in fields alternating with the frequency of
light-waves, and is independent of temperature; the orientation-
polarization, on the other hand, involves the rotation of molecules,
a slower process and one which is furthermore opposed by the
thermal agitation and is therefore temperature-dependent. The
polarization due to orientation of permanent dipoles is relatively
easily dealt with for the case where the dipoles are so far apart that
their mutual interaction can be neglected.

For dealing with the distortion-polarization, it is convenient to
introduce a quantity, «, the molecular polarizability, which is
defined as the time-average dipole moment induced in the molecule
by a field of unit intensity. If there are N, molecules/cm?®, the con-
tribution, P, of the distortion polarization to the total polarization
P will be:

P d= .Nan »

where F is the actual field acting on the molecule. This field F, the
internal field, is unfortunately not easily evaluated for liquids or
solids except in the case where permanent dipoles are absent
(P = P;) and the molecular interactions can be neglected. It is not
identical with either of the field-quantities £ or D. For gases or

such ideal liquids, however, a simple electrostatic calculation shows
that it is given by:

P
.
P
whence: Py= Ny (E+4%) e (12)
But since also D =E 4 4nP
by definition, P can be eliminated from (1.1) and (1.2) giving
D—E 42N,

Dy2E~ "3 “
Now the dielectric constant is defined by D = ¢,E, so that this
result becomes:

el D\
e+2 3

7
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1 PROPERTIES OF IONIZING SOLVENTS

This relation, which it must be emphasized holds only for non-polar
molecules in the absence of molecular interactions, is known as the
Clausius-Mosotti formula. In electromagnetic theory the dielectric.
constant is found to be related to the refractive index by Maxwell’s
relation &, = n%; this formal identification is legitimate as long as
it is made clear that ¢, must have the value which would be found
by measuring it in a field of optical frequency; that is, as long as
only electronic polarization is involved. In general, however, it is
convenient to define ¢, as that part of the static dielectric constant
which arises from the distortion polarization, and write ¢, = n? for
optical frequencies. The polarizability, «, is then given by:

nt—1 4mN,

nt 42 3
The first treatment of orientation-polarization, due to Debye, was
modelled on Langevin's theory of paramagnetism. DEeve'?
assumed that the internal field F = E + 4nP[3 (the Clausius-
Mosotti internal field) would also be adequate for this case, though
realizing its limitations due to the neglect of molecular interactions.
His formula is therefore applicable only to the polar gases or to
dilute solutions of polar substances. The average orientation
polarization is calculated on the assumption that the energy of the
oriented dipoles is distributed according to the Boltzmann distribu-
tion expression, neglecting molecular interactions. The average
moment per molecule, 7, is shown to be related to the actual
permanent dipole moment g, by the Langevin formula:

= pof _ kT
- ot - )
which for all ordinary field-strengths approximates closely to:
~ . mF
™= 5T

The total polarization per unit volume is therefore:
3
P = N,F (a + 3_k7')
Hence by an argument closely similar to that given above for the

case of distortion polarization alone, Debye’s equation:

o= 1 _4nN,  4nN, u
at2 3 *t 3 %t
8




THF. DIFLECTRIC CONSTANT

is obtained. This equation is experimentally verified for polar gases
and dilute solutions, and is indeed the basis for the evaluation of
dipole moments from dielectric constant measurements on such
systems. Its acknowledged failure for polar liquids was shown by
OnsAGER'® to be due to the inadequate nature of the Clausius-
Mosotti expression for the internal field. Onsager proposed that
only a part of this field should be active in orienting the dipoles;
this part he called the ‘cavity field’. The remaining part, the
‘reaction field’, should remain parallel to the dipole moment, and
thus enhance both the permanent and induced dipole moments.
Op this basis, he arrived at the equation:

(&g —n%)(2¢, + n%) _ 4mN, u}
g,(n® 4 2)2 T3 3T

which, for easier comparison with Debye’s equation, may be re-
written as:

g —1_4nN,  4nN, pi  3en*+2)
&a+2 3 *T 73 "3kT @, + nd)(e, + 2)

This clearly reduces to Debye’s formula if &, ~ n? which is the case
for dilute solutions or for gases, but gives very different, and better,
results for polar liquids, where &, differs considerably from n2. It
is still inadequate, however, for the so-called ‘associated liquids’
such as water and alcohols, and these are precisely the liquids of
most interest in connection with electrolytes.

Kirkwoobn!® has extended Onsager’s theory to deal with these
liquids by taking detailed account of the short-range interactions
which hinder the rotation of the molecular dipoles. His result is:

e, — 1)(2e, + 1) 4nN,  4mN, u?
( 2)(8 ) _ ot 3°3—':7.g ...(13)

In this formula the factor ¢ must be calculated from a suitable
model for the liquid in question. It is given by:

g=1+ zcosy

where z is the average number of nearest neighbours and 657 is
the averaged cosine of the angle between adjacent dipoles. (Using
x-ray data for water, a value of g &~ 2:5 is obtained at ordinary
temperatures.) It must also be recognized that the value of x in
Kirkwood’s formula is not quite the same as the dipole moment
po of the isolated molecule, owing to further polarization by its

9



1 PROPERTIES OF IONIZING SOLVENTS

neighbours. One approximation'!® used to allow for this effect
with spherical molecules is:
nt 42
B=—3—l

and with this approximation the only essential difference between
Kirkwood’s formula and Onsager’s lies in the factor g. OsTER and
Kirkwoop!1!) were able to calculate the dielectric constants of
water and alcohols within about 10 per cent by using equation (1.3).

Some of the difficulty of establishing a satisfactory theory of the
dielectric constant of polar liquids arises from uncertainty about the
correct value for the distortion-polarizability «, or in other words
the part s, of the static dielectric constant. The ‘optical’ value
€, = n? is usually taken, but measurements at high radio-frequen-
cies!! suggest a value of about ¢, = 5 for water as against n2 = 1-79.
HaRrris and ALDER? explain the high radio-frequency estimate as
due to the fact that nuclear vibrations are still present at these
frequencies. They also make some criticisms of the relevance of
Onsager’s cavity field to the calculation of the distortion polariza-
tion. They use a different field for this purpose and increase the
rigour of Kirkwood’s evaluation of g, obtaining the result:

g, —1 4N + 4N, u® 9e¢,
&, +2 3 3 "3kT (2e, + (e, +2) 2
which may also be written as:
3e, gyl g, +2
Te, +1°3%T T "3 ¢

3e, gu? g — 1
e, +1°3kr T (Bt 75

...(14)

e,-—l=4-rrJV,,[

oras ¢ —1=4nN,

(with ¢, = n?)

For water, they calculate g from a model due to PopLE!'¥, in
which each water molecule is bonded to four others, but bending
of the O—H—O bonds is permitted. The factor g ranges from
2:60 at 0° to 2-46 at 83°. The agreement with experimental values
of ¢, is within about 2 per cent over the temperature range 0°-80°,
which is extremely satisfactory for such a complicated liquid as
water. Good results are also obtained with alcohols, for which
Oster and Kirkwood’s model of chain-wise association through
‘hydrogen bonds’, giving g = 2:57, is used; the calculated values
are a few per cent higher than the observed. Harris and Alder have
also made the reverse calculation by computing g from the observed

10



THE DIELECTRIC CONSTANT

dielectric constants, refractive indices and dipole moments of a
number of liquids, using both Kirkwood’s formula and their own.
The two sets of values do not differ greatly, but those derived from
equation (1.4) are perhaps slightly more reasonable: acetone and
chloroform, believed to be unassociated liquids, give g = 1:0; the
strongly associated liquid hydrogen cyanide gives g = 3-6; nitro-
benzene and pyridine give g = 0-8 and 0-7 respectively, indicating
‘contra-association’ of the dipoles as opposed to the head-to-tail or
‘co-association’ in hydrogen cyanide.

The static dielectric constant ¢, includes a large contribution due
to orientation of the permanent dipoles in the applied field. The
orientation process requires a finite time, and consequently the
dielectric constant decreases as the frequency of the applied field
increases. The orientation of the molecules against the viscous
forces leads to an energy dissipation in alternating fields, which may
be formally dealt with by the use of a complex dielectric constant.
Provided that only one orientable dipolar species is involved, the
complex dielectric constant, e, for an angular frequency @ obeys

the equation:
80

£=€,+m ... (1.5)

where 7 is the relaxation time for the orientation process, i.c., the
time for the orientation polarization to fall to ¢~ of its value after
the removal of the applied field. Measurements of ¢ at various
frequencies (in the region of substantial change) can therefore
determine both ¢, and 7. Such measurements have been made on
water and heavy water by CoLrie, HasTep and RiTsonN}¢! using
radar techniques at wavelengths of 1-25, 3, and 10 cm over a
temperature range of 0° to 75°. Their work leads to conclusions
of great value in interpreting the nature of water.

First, equation (1.5) was found to hold with a single value of the
relaxation time 7 for each temperature. This implies that only one
orientable molecular species is involved; the presence of polymeric
forms such as ‘dihydrol’ would necessitate a range of relaxation
times at each temperature. Secondly, the relaxation times vary
with temperature very nearly in accordance with a theoretical
result due to Debye: pa—

=T ... (1.6)
where r is the radius of the orientable particle. Table 1.1 illustrates

the striking and, indeed, unexpectedly good agreement of the experi-
mental results with equation (1.6). The ‘molecular radius’ compares
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Table 1.1
Dielectric Relaxation Time and Viscosity of Water—A Test of the Debye Relation
T
©C r x 100 7 x 10 s 10? r(A)
sec poise sec deg poise-} by Eq. 1.6
0 17:7 1.787 2:71 1-44
10 12-6 1-306 2:73 1-44
20 95 1-002 2:78 1-45
30 7-4 0-798 2-81 1-45
40 59 0-653 2-83 1-46
50 48 0-547 2-84 1-46
60 40 0-467 2-85 1-46
75 32 0379 2-84 1-48

Data from Corrte, C. H., Hastep, J. B. and Ritson, D. M., Proc. phys. Soc.,
60 (1948) 145,

well with that obtained from x-ray measurements, ziz., 1:38 A.
These results too must be interpreted as showing that the only entity
undergoing dipole orientation in water is the simple H,O molecule.
If polymeric forms such as (H,0), or (H,O); were present to any
significant extent, their proportions would presumably change con-
siderably with temperature and lead to a marked temperature-
dependence of the molecular radius as calculated from Debye’s
relation. Further weight is given to this work by the comparison of
the dielectric relaxation times for water and heavy water: the
workers already quoted have shown that the ratio tpfrg,o is
equal to the viscosity ratio 9p,0/ng,0 (Within the experimental error
of 2 per cent) at 10°, 20°, 30° and 40°.

Another type of measurement which gives some insight into the
nature of the kinetic entities in water is the study of the self-diffusion
coefficient (see Chapter 10). We quote in Table 1.2 some results
due to WanG!® from which a ‘molecular radius’ of the diffusing
particle can be computed by means of the Einstein-Stokes relation:

D* = kT{(6myr) (17

where D* is the (self) diffusion coefficient and the other quantities
have the same meanings as before.

It will be seen that the values of D* obtained by using heavy
water as tracer are appreciably different from those using H,O®
tracer; but each series shows the constancy of D*#/T. The question
of which series best represents the actual self-diffusion coefficient is
not yet settled; experimental errors in work of this kind are larger
than in other diffusion measurements.

12
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Although the molecular radius so calculated (0-8-1-1 A) is too
small, its constancy leaves little doubt that we are dealing with the

Table 1.2
Self-diffusion Coefficient of Waler Using Heavy Waier as Tracer
-
°C D* x 10¢ n X 108 QT—" x 101 r (A)
R .
cm? sec poise dyn deg (Eq. 1.7)

0 1-00 1-787 6-54 112
5 1:20 1-516 6-55 113
15 1-61 1-138 6-36 1-15
25 2-13 0-890 6-36 115
35 2-76 0-719 6-44 1-13
45 3.45 0-596 6-46 1-13
55 4-16 0-504 6-39 1-14

Self-diffusion Cocfficient of Water Using HyO as Tracer

-
. D* x 108 9-7.—" x 10t r (A)
cm? sec dyn degt (Eq. 1.7)

0 1-33 8:70 0-84

5 1-58 861 0-85

15 2-14 8-45 087

25 2-83 845 0-86

35 3-55 828 0-88

45 4-41 8-26 0-88

55 5-41 8-31 0-88

Data from Wang, J. H., 7. Amer. chem. Soc., 73 (1951) 510; Wang, J. H,,
Rosmison, C. V. and Epewman, L. S., ibid., 75 (1953) 466.

motion of the same molecular species at each temperature. The
low value as compared with the known radius of 1:38 A is probably
due to the inadequacy of Stokes’ law for the motion of particles of
molecular dimensions.

We conclude this section by drawing attention to Appendix 1.1
in which we have tabulated those properties of water which a
considerable experience of calculations on electrolyte solutions has
shown us to be most often needed. These are the density, dielectric
constant, vapour pressure and viscosity, at intervals between 0°
and 100°C.

Appendix 1.2 gives the densities, dielectric constants and visco-
sities of a number of non-aqueous solvents, most of them at 25°.

13
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THE EFFECT OF IONS ON THE STRUCTURE AND
PROPERTIES OF WATER

It has been shown in the preceding section that the distinctive
properties of water can be largely explained in terms of electro-
static forces arising from the charge distribution of the water
molecule, combined with the fact that its bond angle is close to the
tetrahedral angle. Since the simple ions have dimensions, and bear
charges, comparable to those of the water molecule, it is only to be
expected that the structure of water will be considerably modified
in ionic solutions. It is perhaps less obvious that the presence of
any solute should alter the character of water, yet there is good
reason to suppose that this is the case. The most important evidence
in this direction comes from the study of the solubility and tempera-
ture coefficient of solubility of simple non-polar gas molecules, and
has been ably summarized by Frank and Evans®®), Their paper
should be studied very carefully by those who want a full account
of the argument; we present here only some of the more important
features. From the solubility data, it is possible to compute the
entropy lost in the process of solution of a gas in a liquid. For simple
non-polar gases in non-polar solvents, this entropy loss is in the
range 10-15 cal degree-! mole—! (adjusted to refer to standard
states of one atmosphere for the gas and a hypothetical mole fraction
of unity for the solution). For solutions of such gases in water,
however, the entropy loss is much larger, being in the range
25-40 cal degree~! mole—!. Furthermore, while the entropy lost on
solution of these gases in non-polar solvents varies but litde with
temperature, that for their aqueous solutions decreases rapidly as
the temperature is raised. Now the entropy of a system may be
regarded as a measure of the degree of disorder prevailing; the
extra entropy lost in the formation of aqueous solutions of non-polar
gases, as compared with simpler solutions, means that the water
structure becomes more ordered through the influence of the
dissolved molecules. In the picturesque words of Frank and Evans,
‘the water builds a microscopic iceberg round the non-polar
molecule’. At the higher temperatures, this effect is naturally less
marked, for then the forces responsible for the regular structure can
no longer compete with the thermal agitation.

It must be admitted that this conclusion is unexpected, but the
thermodynamic evidence is too strong to dismiss. Comparison with
the case of an impurity atom introduced into a perfect crystal lattice
is a reminder that we should beware of interpreting the quasi-
crystalline picture of water too literally, for in this case the foreign
atom, by producing lattice dislocations, tends to destroy the existing

14
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long-range regularity. In water, as the x-ray evidence quoted in
an earlier section shows, regularity extends only over a few molecular
diameters, and it is at least not difficult to imagine an increase of
regularity. The effect might indeed be pictured as an increase in
the average life of the short-range tetrahedral configurations, due
to the reluctance of the solute particle to get out of the way. This
speculation (which is the present authors’) is consistent with the
fact that at room temperatures the extra entropy loss is greatest
for the heaviest and largest solute molecules, such as radon and
chloroform.

In view of the existence of this ‘iceberg effect’ even for non-polar
solutes in water, it is clear that we must be prepared for considerable
complications when we turn our attention to aqueous ionic solutions.
Here an intense electrical field due to the ionic charge is super-
imposed on the normal interaction between solvent and solute. At
the small distances involved, the field intensity is of the order of
a million volts per centimetre; Coulomb’s law, even if we insert
the bulk dielectric constant of water (~ 80), gives a field of 0-5 X
108 V/em at a distance 6 A from the centre of a univalent ion.
Furthermore, under the conditions of dielectric saturation obtaining
among water molecules in contact with the ion, the bulk dielectric
constant is certainly too large, so the field intensity acting on the
first layer of water molecules is probably an order of magnitude
greater than that given by the above expression.

In very dilute solutions it is permissible to think of the effects
produced by a single ion on successive layers of water molecules,
but in more concentrated solutions one meets the difficulty that ‘the
further off from England the nearer is to France’. It is instructive
to estimate the average separation of the ions in a solution, assuming
as a rough guide that the ions are arranged on a cubic lattice, at
least as a time-average. One finds that for a 1 : 1 electrolyte at a
concentration ¢ moles per litre, the average interionic distance is

Table 1.3
Average Separation of lons in a Solution of a | : 1 Electrolyte

¢ (mole/l.): , 0-001 0-01 01 |
Separation (4): 94 44 20 9

0 10-0
-4 44

9-4¢-'3 A, giving the results shown in Table 1.3 for various concen-
trations. These figures show that in a one molar solution there can
be few water molecules distant by more than two or three molecular
diameters from some ion; it is reasonable to talk of successive layers
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of water molecules round one particular ion only below about
0-1 molar.

Bearing this in mind, we may examine in more detail the effect
of ions on the structure of water, again making reference to the
admirable analysis given by FRaNK and Evanst®, They present
entropies of solution for a number of ions; part of their data is
reproduced in Table 1.4.

Table 1.4
Entropy of Solution of Monatomic Ions in Water
(after FRANK and Evans!®)
Ton as Ase
cal deg~? mole~! | cal deg-? mole~?

F- — 409 - 35
Cl- — 266 + 102
Br- - 227 -+ 139
I- - 185 + 179
H+ — 386

Li+ - 396 - 141
Na+ - 339 + 40
K+ — 253 + 1240
Rb+ - 231 + 141
Cs* - 218 + 157
Mg++ — 842

Cat+ ~ 655

Sr++ - 637

Bat+ — 556

Al+++ - 133

Fet+++ - 120

AS = entropy increase in passing from the hypothetical gas state at 1 atm. to
a h)l)othetica.l mole fraction of unity in solution. This is a different
tandard state from that employed in Chapter 3.

AS* = calculated contribution to AS due to the effect of ions on the structure
of water.

The significance of these entropy data may be illustrated by
taking the case of potassium chloride as typical. The standard
entropy loss per mole is 25-3 + 26-6 = 51-9 cal deg~?, whereas the
corresponding figure for two gram-atoms of argon (the fairest com-
parison, since both ions have the argon structure) is2 x 30-2 = 60-4
cal deg—1. The net effect of the ionic charges is evidently to reduce
the entropy loss; that is, to promote increased disorder in the water.
This effect appears in spite of the fact that in the immediate vicinity
of the ion there must surely be a layer of rather firmly oriented water
molecules, probably four in number for most of the monatomic
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and monovalent jons, This firmly-held layer can be regarded as
being in a ‘frozen’ condition, and Frank and Evans estimate that
its formation would result in an entropy loss of about 12 cal deg™*!
mole-!. To this figure must be added two other sources of entropy
loss: first, an amount due to the reduction of free volume when the
(gas) ion enters the solution, conservatively estimated at 20 cal
deg-! mole-!; and secondly, a contribution due to the partial
orientation of water molecules in layers beyond the first, which may
be computed by an equation due to LATIMERU?:
Entropy loss per mole (due to dielectric orientation)

2252
rJ(A) + 28

where 7, is the radius of the bare ion, to which 28 A is added to
allow for the first rigidly-held layer of water molecules. In other
words, a boundary is drawn round the ion outside the first layer of
water molecules; within this boundary, the entropy loss is computed
by assuming that the water molecules are rigidly held as in ice,
while outside it the medium is treated as a classical dielectric con-
tinuum with the ordinary dielectric constant. This picture is sub-
stantially consistent with recent treatments of the dielectric constant
near an ion (see p. 20). These three approximately calculable en-
tropy losses can be combined and subtracted from the experimental
values in the second column of Table 1.4, giving a remainder (column
3) called by Frank and Evans the ‘structure-breaking entropy’,
AS*. It is seen that for all the alkali and halide ions except the
smallest (Li* and F-) this structural entropy term corresponds to
a considerable increase of disorder, which is greatest for the largest
ions. It appears therefore that beyond the first layer of water mole-
cules there is a region where the water structure is broken down; it
is pointed out that this could arise from the manner in which the
first layer of water molecules is arranged. Round a positive ion, the
water molecules would be oriented with all the hydrogens outwards;
they could not, therefore, all participate in the normal tetrahedral
water arrangement (even if the dimensions of the central ion were
close to those of a water molecule) for this arrangement would
require two of the water molecules to be oriented with the hydrogens
inwards. Frank and Evans support their argument for this struc-
ture-breaking effect by a number of other considerations, notably
of viscosity and heat capacity data. For polyvalent monatomic ions
such as Al+++, the entropy loss is much greater; part of this increase
is ascribed to an extension of the ‘frozen’ region to layers beyond
the first.

— ASp/(cal deg™!) =
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THE EFFECT OF IONS ON THE DIELECTRIC
CONSTANT OF WATER

Quantitative knowledge of the effect of ions on the dielectric
constant of water has for many years been recognized as vitally
important to the understanding of the forces operating in electrolyte
solutions. This information was, however, until recently extremely
difficult to obtain; it was not, in fact, known for certain whether
the dielectric constant was increased or decreased. This is due to
the experimental difficulty of measuring the dielectric constant of a
conducting medium. Fortunately, the development of wave guide
techniques for measurements at frequencies of the order of 1010
c/sec has at last made it possible to determine the dielectric constant
of even such highly conducting liquids as electrolytes two molar in
concentration with an accuracy of a few per cent. HasteD, RiTson
and CoLLe'®, whose important work on the dielectric properties
of water and heavy water has been discussed in a previous section,
have also made very valuable studies of the dielectric properties of
aqueous electrolyte solutions. They find that for all the electrolytes
studied (fourteen in number, and including 1 : 1,2 :1, 1 : 2 and
3 :1 valency types) the dielectric constant falls linearly as the
electrolyte concentration is increased. This linear drop holds in
most cases up to about 2 N, after which, in the case of sodium
chloride (the only case studied above 2 N), the drop is less than that
demanded by the linear relation. The dielectric relaxation time is
also decreased in an approximately linear manner with increasing
concentration. The latter effect appears to be consistent with the
views of Frank and Evans on the structure-breaking effects of ions,
which would have the result that re-orientation of the water
molecules could take place more readily. The dielectric relaxation
time of water is, however, increased by the addition of polar organic
molecules?®. The explanation of this observation may be con-
nected with the ‘iceberg effect’ proposed by Frank and Evans to
account for the entropy of aqueous solutions of non-polar gases; it
appears to be difficult to measure the change in dielectric relaxation
time for the latter solutions owing to the low solubility and the
consequent smallness of the change. Table 1.5 summarizes_the
results of Hasted, Ritson and Collie in the form of a constant § for
each solute at 25°: this quantity is half the molar depression of the
dielectric constant and is defined by:

£ =&, + 28¢

where ¢, is the static dielectric constant of water (78-30 at 25°),
¢ is that of the solution and ¢ the concentration in moles per litre.
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Table 1.5
Molar Depression of Dielectric Constant of Water by Electrolytes at 25°
& =g, + 23¢

3 3

(l/mole) (l/mole)

- 10 Nal - 75
N = 55 MeCl, 19
a - 5 - 15
KGO - 5 BaCl, - 14
RbCl - 5 LaCl, —22

NaF - 6 NaOH - 105
KF — 65 Na SO, —11

Data from Hastep, J. B., Rrrson, D. M. and CoLrie, C. H., 7. chem. Phys.,
16 (1948) 1.

The quantity § is approximately additive for the separate ions and
may therefore be represented by:

2§ =8, + 5; foral :1 electrolyte

28 = §, + 24, for a 2 : 1 electrolyte

28 = §, + 36, for a 3 : 1 electrolyte
elc., but any such subdivision of the observed § values is of course

subject to the arbitrary fixing of §, and §; for one solute. Hasted,
Ritson and Collie suggested:

S§e+ = — 81/mole, Jc;- = — 3 1/mole

on the reasonable ground that a positive ion would bind the water
molecules in such a way as to leave them less free to rotate than
would a negative ion.

Dielectric saturation

In the derivation of Debye’s relation between the dipole moment
and the dielectric constant of polar liquids, the Langevin formula:

kT
m=p, (coth%— ,—‘7;.)
is involved. At ordinary field strengths u,F <€ kT and the approxi-

pof

mate expansion of this function to the first power of BT

is adequate,
giving:
2
7= LoF
"= 3T
At very high field strengths, however, the Langevin function ap-
proaches unity asymptotically, giving ultimately m = u, when all the
dipoles are completely oriented by the field. The Langevin function
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also enters into the more elaborate calculations by Onsager and
others discussed on pp. 9-11; in all models, therefore, this dielectric
saturation effect is to be expected. Now the electrical field near an
ion is quite intense enough to cause a marked dielectric saturation
in surrounding water molecules, with a consequent reduction in the
dielectric constant as measured by an external applied field. As a
result, the dielectric constant of an electrolyte solution falls as the
concentration is increased.

The theoretical importance of a knowledge of the variation of
dielectric constant with electrolyte concentration lies in its relevance
to the calculation of interionic forces which are discussed in detail
in Chapter 9. We shall, however, deal here with the question of
how the microscopic dielectric constant varies with the distance
from an ion. This question was discussed by Sack®® and by
DesBYE!?, but as they employed the Clausius-Mosotti expression for
the ‘cavity field’, which is now discredited for polar liquids, it is
better to consider only a more modern treatment due to Rrrson
and Hastep®", They have calculated the dielectric constant of
water as a function of distance from a point electronic charge, using
two different models, one based on Onsager’s expression for the
dielectric constant, and the other on an empirical modification of
Kirkwood’s expression. Both models lead to very similar values for
the loca!l dielectric constant. There is a region of complete dielectric
saturation up to about 2 A from the point charge, where the
dielectric constant has the value of four or five arising from electron
and atom polarization only. This is followed by a region of rapid
rise ending at about 4 A from the point charge, and thereafter the
dielectric constant is practically stationary at its ordinary bulk value.
Since most simple ions have radii in the range 0-5-2 A, and the
water molecule has a diameter of 2-8 A, it is clear that for mono-
valent ions the region of appreciable dielectric saturation is confined
to the first layer of water molecules round the ion. Ritson and
Hasted, however, treat this first-layer saturation as complete only
round positive ions; the first shell round negative ions is given the
bulk dielectric constant. This admittedly somewhat exaggerated
distinction is based on their contention that the molecules in the
first layer round a negative ion have greater freedom of rotation
than those round a positive ion. It seems equally likely that the
difference in dielectric saturation round positive and negative ions
is merely a matter of ionic size, for the monovalent negative ions
they consider are in fact the halide ions which have radii 1-3-2-2 A,
whereas the positive ions are those of the alkali-metals of radii 0-6-
16 A. The important conclusion to which they come is, however,
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that for monovalent ions the observed lowering of the bulk dielectric
constant arises almost entirely in the first layer of water molecules.
Polyvalent cations are frequently small and monatomic, and for
these this saturation effect certainly extends beyond the first layer
of water molecules; but polyvalent anions of any stability are poly-
atomic and hence large, and for these the position is far from clear.

Schellman?? has calculated the dielectric saturation effect near an
ion in water, using a detailed molecular model of the region near the
ion combined with a classical dielectric model at greater distances.
He finds that the dielectric saturation effect should be very much
smaller than the classical model alone would give, e.g., at 5 A from
a monovalent ion the dielectric constant is only 0-4 per cent less
than its ordinary value, and even at 2 A it is only reduced by about
17 per cent. These conclusions give strong support to the practice
of using the ordinary dielectric constant of water in calculating
ionic interactions, even in comparatively concentrated solutions,

When considering the significance of the values of the dielectric
constant depression given in Table 1.5, it should be noted that in
most cases the concentration range studied was 0-5-2 N; a few
solutions (hydrochloric acid, sodium hydroxide, potassium iodide,
potassium fluoride) were examined at 0-2 or 0-25 N. At these
concentrations most of the water molecules would be no more than
three molecular diameters away from an ion. One need therefore
feel no surprise that the linear relation begins to fail about 2 N,

Haccs, Hastep and BucHANAN!® consider that the dielectric
decrement owes its origin primarily to the prevention of the rotation
of water molecules. From a more detailed theoretical consideration
they estimate the average number (n,,) of water molecules thus
‘irrotationally bound’ by the solute particles; this number is close
to zero for uncharged solute molecules, and ranges from four to six
for the alkali-metal halides, e.g., 7y, = four for rubidium chloride
and ammonium chloride, five for potassium chloride and six for
sodium chloride and lithium chloride. These numbers need not
necessarily be the same as the number of molecules moving with the
ions as a single kinetic entity, which we regard as ‘true’ hydration
numbers,

Further information about the effect of ions on the solvent has
resulted from measurements of nuclear magnetic resonance in elec-
trolyte solutions. The protons of the water molecule are shielded
magnetically by the electron cloud and any influence that displaces
this electron cloud will change the nuclear magnetic resonance.
Shoolery and Alder®? express this shift as:

=107 (Hn,o - Hnmple)/ HB,O
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where H is the applied magnetic field necessary to produce resonance
in a constant radio-frequency field. These shifts are proportional
to the concentration (except at high concentrations) and & can be
expressed as the sum of cationic and anionic effects in the form:

é = (10, + v30;,)m

Some of these shifts, based on 8,(C10;) = — 0-85 kg/mole and
expressed as d,/]z,| or d,f|2z,|, are shown in Figure 1.4.
An ion may affect the electron density in a water molecule in

2 -
&
~ Ir
“©
0 -
[] 1
0 1 2
r (B)
Figure 1.4. Nuclear magnetic resonance shift due to cations and anions versus
ionic radius

two ways. A water molecule solvated to a positive ion should on
the average be oriented with the oxygen atom towards the ion
because the water dipole acts towards the oxygen atom. The posi-
tive ion increases the electron drift towards the oxygen atom leaving
the protons less shielded. A water molecule solvated to a negative
ion should be oriented in the opposite direction with the oxygen
away from the ion; the charge on the ion will however increase the
electron density in the vicinity of the oxygen atom, again leaving
the protons less shielded. In both cases, therefore, the polarization
due to solvation should result in a positive shift of the nuclear
magnetic resonance. The other effect enters because on solvation
a water molecule must break at least one hydrogen bond to another
water molecule; in this process the mutually induced dipoles dis-
appear and the electron density around the protons increases.
Structure breaking of the solvent therefore results in a negative
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shift. These ideas are in accord with the experimental findings.
Positive shifts are found with the smaller ions which can approach
the solvating molecule sufficiently close for the polarization effect
to be marked; as would be expected, the positive shift is emphasized
for divalent ions and even more so for trivalent ions whether they
be positively or negatively charged. A negative shift occurs when
the structure breaking effect takes charge; this is found with the
larger ions. The silver ion, however, has a higher value than might
be expected and the halide ions are in marked contrast to the alkali
metals; thus K+ shows a shift of — 0-71 kg/mole whilst F-, with
almost the same radius, gives 1-20 kg/mole. These experiments
bring to light a remarkable power of halide ions in modifying the
structure of water.
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2
BASIC CONCEPTS AND DEFINITIONS

ACTIVITY COEFFICIENTS, STANDARD STATES AND
CONCENTRATION SCALES FOR ELECTROLYTE SOLUTIONS

THE total Gibbs free energy, G, of a fixed quantity of electrolyte
solution of given compeosition is dependent only on the temperature
and pressure no matter what conventions we adopt for expressing
partial molal quantities such as the activities of the components.
If this fact is kept in mind, much of the confusion which frequently
besets the worker in this field with regard to the various types of
activity coefficient can be avoided.

We shall denote the solvent and solute by subscripts 4 and B
respectively. The ‘solute’ will be taken to mean the anhydrous
solute, following the usual convention. The partial molal Gibbs free
energies, or chemical potentials, of the solvent and solute are then:

oG
GA = (a—n;)n,, T,P

oG
Gp = (sa),l.

where n4, ng denote the number of moles of solvent and solute in
the system. It will sometimes be convenient to use the subscript w
to refer to the solvent if we are dealing with an aqueous solution.
Since we are more interested in the variation of chemical potential
with composition than in its absolute value, it is usual to express
these quantities as a difference between the absolute value and that
which holds in some specified standard state. The standard state
is indicated by a superscript zero, 3%, @§. The choice of standard
state is entirely at our discretion: it may be a pure component, a
saturated solution or some entirely hypothetical solution. In the
case of mixed liquids which are non-electrolytes, for example, the
standard state for each component is usually taken to be that
component in the pure state; this choice preserves symmetry
between the two components, which is useful in the study of these
systems.

For electrolyte solutions, the standard state to which the free
energy of the solvent is referred is invariably the pure solvent at the
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same temperature and pressure. The activity of the solvent, a,, is
then defined by:

Gy —G4=RTlna, ....(2.2)
Since the pure solvent can exist in equilibrium with its vapour at
pressure %, and the solution with the solvent vapour at partial
pressure p 4, we have also, assuming the vapour to be ideal:

GY = G4(v) + RTInp%
and Gy = GY(v) + RTIDPA}

where G4 (v) is the molal free energy of the vapour in the standard
state of one atmosphere pressure at the temperature 7.
It follows from (2.2) and (2.3) that:

ay = palph

Strictly, the ratio p,/p% should be replaced by the ratio of fugacities,
p%/p5°. However, the vapour pressures of most commonly used
electrolyte solutions are small enough for this to make a negligible
difference. (The position is not that the vapour is so ideal that
£ = p* but rather that the vapour pressures of solution and solvent
are always of similar magnitude so that the correction factor is
pracucally the same for the solution and the pure solvent.)

For electrolytes, however, the pure solute is not a very practical
choice as a standard state, since it is frequently a solid or liquid
with properties very different from those of solutions. Instead, it is
the practice to use as standard states certain hypothetical solutions.
The position resembles that which we adopt in discussing the free
energy of gases, where the standard state is taken as that of an
‘ideal’ gas (which is of course a hypothetical concept) at one
atmosphere pressure or other unit pressure. For electrolytes, the
standard state is, in much the same way, a hypothetical solution
(having certain properties which we shall state later) at unit con-
centration on some chosen scale and at the temperature and pressure
of the solution. The chemical potential ascribed to this standard
state naturally depends on which concentration-scale we adopt.
The scales in common use are:

. .(2.3)

(a) The molal scale (m = moles of solute per kilogram of solvent).

(b) The molar scale (¢ = moles of solute per litre of solution).

(c) The mole fraction scale (N = moles of solute divided by the
total number of moles in the system).

On each of these scales we can define an activity for the solute,
using parenthesized letters to emphasize that the activity of the
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solute, and the free energy in the standard state, depend on the
scale chosen:

Gy = G¥(m) + RT In ag(m)
= @%(c) + RT Inag(c) ....(2.4)

= GY(N) + RT In ag(N)

It should be noted that (provided we always calculate the number
of moles of solute on the basis of the anhydrous substance) the
quantity G5 is unique for a given solution, pressure and temperature.
Equations (2.4) are so far no more than definitions; we have not
yet stated the properties by which the various standard states are
characterized. Before doing this it is convenient to separate the
activities ap into factors referring to the separate ions and the
concentrations on the appropriate scales. It is clearly desirable that
the chemical potential of the solute treated as a whole should be
equal to the sum of the values for the separate jonic constituents.
It should be remembered, however, that the concept of the chemical
potential of one species of ion is something of a mathematical
fiction. This quantity can be defined by the equation:

oG
Gi = (52:')»‘. n, T, P

where i refers to one kind of ion, and 4 and j to the solvent and the
other ions respectively. Physically, however, the operation implied
by equation (2.5) cannot be performed, for it means adding to the
solution a quantity of one kind of ion only. Even if this could be
done, it would result in an enormous increase in energy of the
solution due to the self-energy of the electric charge involved !, an
effect which we do not wish to be concerned with, since it depends
on the shape of the portion of solution considered. This self-energy
change could of course be exactly cancelled by the subsequent
addition of the equivalent amount of the oppositely charged ion,
when the resultant total free energy change would be that due to
the addition of a quantity of the electrically neutral electrolyte as
implied by equation (2.1). We may thus agree to discuss the free
energy change due to the addition of one species of ion only,
neglecting the self-energy effect, provided that we end with formulae
involving only electrically equivalent amounts of cations and anions.
We can then write for each ionic species 3,

G=8+RTlng ....(2.6)
Let one mole of electrolyte give in the ionized state ¥, moles of
26
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cations of valency z, and », moles of anions of valency z,. From
the condition of electrical neutrality:

N2y = velzy| = — a2,
a]so GB = 71(—;1 + Vzéa e (2.7)
G} = n@® + »&
so that by using (2.4), (2.6) and (2.7) we obtain:
ap = ayay ....(2.8)
Formulae of the type of (2.8) will hold, with different values of the
activities, for each different concentration scale.

Now for each ionic species we define an ‘activity coefficient’
obtained by dividing the ionic activity a, or 2, by the concentration
of the ion on the appropriate scale, ¢.g.,

molal scale: a,(m) = yym,y
molar scale: ay(c) = 346, ....(2.9)
mole fraction scale: a,(N) = f;N;

where y, y and fare called respectively the molal, molar and rational
activity coefficients. The activity on the mole fraction scale, and
consequently f, are dimensionless quantities. It is usual to regard y
and y also as dimensionless quantities which implies that ¢(m) and
a(c) have the dimensions of molality and molarity respectively. It
follows that the arbitrary constants G%(m) and G°(c) contain con-
cealed terms in R7 In (mole kg-1) and RT In (mole litre-1); these
do not in practice cause any difficulty. The ionic concentrations
are simply related to those of the electrolyte as a whole by the
equations:

ml = Vlm
€ = vy oo .(2.10)
M = »Np*

with similar relations for the anion.
Equation (2.8) therefore gives, using (2.9) and (2.10):
ag(m) = (RPImVyvy coe(@01)
with exactly similar results for other concentration scales. The
symbol »(= v, + v;) denotes the total number of moles of ions
given by one mole of electrolyte.
The individual ionic activity coefficients in (2.11) occur as a
product, each raised to powers which satisfv the condition of
* But see p. 31. '
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electrical equivalence. In order to simplify the appearance of (2.11)
we now introduce a ‘mean ionic activity coefficient’ defined by:

V= iy e (212)

so that (2.11) becomes:
ag(m) = W) (my,)” = (Qmy,y  ....(2.13)

where @ is a convenient abbreviation for (»»})”. A mean
activity a, can also be defined by @, = ap and a mean ionic
molality m, by:

mly = (vpvpym' ... (2.14)

These formulae look rather clumsy, but take quite simple forms
when the numerical values corresponding to various valency types
are substituted as shown in Appendix 2.1. Though the molality
scale is chosen here, similar formulae with the same numerical
quantities apply to the other scales.

The various mean ionic activity coefficients y, y, and f,, are
of great use in the study of solutions, and occur so often that they
are frequently abbreviated to y, y and f without subscripts when
there is no danger of confusion.

We are now ready to assign to the hypothetical standard states
for electrolyte solutions the properties which will make them most
useful.

The standard state for each concentration scale is so chosen that the mean
tonic activity coefficient on that scale approaches unily when the concentration
is reduced to zero. This applies to every temperature and pressure.

In the standard state, Gz = G§ by definition; hence from
equation (2.4), ag = 1, i.e., the standard state is a state in which
the solute is at unit activity. However, it is not the state in which, in
the actual solution, the solute has unit activity. For example, at 25° a
1:734 M solution of potassium chloride has a mean molal activity
coefficient of 0-577 so that its activity is:

ag = (1-734 x 0-577)% = 1-000

This is not the standard state for potassium chloride on the molality
scale, but is merely a numerical accident. At another temperature,
a solution of this composition would have an activity different from
unity. We may compare with the case of a gas which at some
temperature and pressure happens to conform exactly with the
equation PV = RT; this does not make it an ideal gas. The state
used as the standard state for gases is that of a hypothetical (ideal)
gas at a pressure of one atmosphere. Similarly the standard state
for electrolyte solutions is that of a hypothetical solution at a ‘mean
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molality’ (or molarity or mole fraction if these scales are used) of
unity. This hypothetical solution also has the ‘ideal’ quality that
the mean activity coefficient of the ions is unity at all temperatures
and pressures. It is often referred to as the ‘hypothetical molal
solution’, though as just indicated, a more correct term would be
‘hypothetical mean molal solution’. The expressions ‘hypothetical
mean molar solution’ and ‘solution with hypothetical mean mole
fraction of unity’ are likewise applicable to the standard states for
the molar and mole fraction scales respectively.

Another misconception which must be avoided is that of regarding
the standard state as one of infinite dilution. Certainly, at infinite
dilution the activity coefficient is unity, as it is in the standard state;
but the partial molal free energy, which involves a term in the
logarithm of the concentration, is negatively infinite at infinite
dilution. It will be shown later that the partial molal heat content,
heat capacity and volume of the solute are the same in the hypo-
thetical standard state as they are at infinite dilution of the actual
solution.

OSMOTIC COEFFICIENTS

At 25° a 2 M solution of potassium chloride has a water activity of
0-9364; since the mole fraction of water is 0-9328, the rational
activity coefficient of the water is £, = 1-004, a figure which fails
to emphasize the departure from ideality indicated by the activity
coefficient of the solute, f, = 0-614. Splitting the activity of the
solvent into concentration and activity coefficient factors seldom
proves informative. Instead we define the osmotic coefficient which
may be:
(a) the ‘rational’ coefficient, g, defined by:

wmW
Ina,=glnNy,= —gln (l + —160—6‘) ....(2.15)
where W is the molecular weight of the solvent. Expanding in a

series, we get:
mW, 1 (vmWA 2
1000 2\ 1000 T

(b) the molal osmotic coefficient, ¢, defined by:

Ina, = —g

mW ,
1000 ¢

Thus, for 2 M potassium chloride g = 0-944 and ¢ = 0-912.
Should the solution contain more than one solute species, equation
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(2.16) is still valid provided the term vm in this definition of ¢ is
replaced by a summation over all the solutes present.

The osmotic pressure, I, of a solution can be expressed to a good
approximation by the formula:

wmW q$

—lna4=—‘4=—gln.NA— ... (2.17)

RT

where P, is the partial molal volume of the solvent. For a dilute
solution (2.17) approximates to:

mW
10007 ~ vgRTc

The osmotic coefficient is, therefore, related to the Van’t Hoff
factor, 1, of classical solution theory, by g a~ i. The molal osmotic
coeflicient is more exactly related to the osmotic pressure, by
vyRTW,

10007, "

IT =

RELATION BETWEEN ACTIVITY COEFFICIENTS ON
DIFFERENT SCALES

It is often necessary to convert activity coefficients from one scale
to another. The required relations are readily established from the
various definitions, remembering that the quantity Gy is the same
whatever scale is used. As an example, the relation between activity
coefficients on the molal and molar scales is derived below. The
other relations, which may be obtained in a similar way, are then
given without proof. We have:

Gg = G%(m) + RT In ag(m)
= G%(c) + RT In ag(c)

ap(m) = Q@ (my,)"
ap(c) = @ (cr,)" ... {(2.13)

where @ is the numerical factor given for the various valency types
in Appendix 2.1. Hence:

G¥(m) + yRTInm + yRTIn y,
= G%(c) + YRTInc +»RTIny,

G%(c) — @
and Iny,=In-+Iny, + -i(f);ﬁ—?—_&(i") ....(2.18)

..(24)
Also:
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The last term on the right is a constant for a given temperature
and pressure and may be evaluated by making use of the property
defining the standard states, viz., ¢ >0, m >0, y, - 1,5, - 1.
In addition it follows from the definitions of molality and molarity

that as ¢ - 0, i — d,, dy being the density of the pure solvent.

Hence as ¢ - 0, equation (2.18) gives:

@) — Ghm) _

Ind, + RT

so that (2.18) may be written:

c
lnyt=ln;l+ln_y:,:—lnd0

or
... (2.19)

&

Ve =

. . . . .. €.
which is the required relation. In case the quantity o, Is not

directly available, it may be computed from the density, d, of the
solution by either of the relations:

md ¢

‘=T Fo0001mwy °F ™ T d=0001cW,

....(2.20)

where Wy is the molecular weight of the solute.

When we are considering the electrolyte solute as a whole, though
the concepts of molality and molarity are quite unambiguous, there
is a logical difficulty in defining the idea of the mole fraction of the
solute as a whole. Either we take it as the ratio of the total number
of solute particles (ions) to the total number of ions plus molecules
of solvent, or else we take it as the ratio of formula weights of solute
to the total number of formula weights of solute ions plus solvent,
i.e., if m is the molality of the solute, and W, the molecular weight
of solvent, are we to say that the ‘mole fraction of solute’ is:

ym

No =y 4 1000/W,
or
m
N3=m ....(2.21)

Fortunately, it does not matter much, as the relation between the
rational activity coefficient and the others is unaffected by the
choice. Here we shall choose the definition (2.21), which has the
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advantage of preserving the close similarity of form of equations
(2.10) to (2.14) for the different scales, and ensures that the
numerical factors of Appendix 2.1 will apply to the mole fraction
scale as well as to the molar and molal scales. However, it is
(V4 + »Np) and not (N4 + Np) which equals unity if equation
(2.21) is chosen. The concept of the mole fraction of each ionic
species, and hence of the ionic mean mole fraction, is unambiguous
and consistent with this choice.

The relations between the three kinds of activity coefficients are
summarized below:

fo = y,(1 + 0001 v m) :
d + 0:001 W, — Wy)
ft =)'i do 4 B.

_d—000lcWp ¢ - ... (2.22)
Ve = do I = mdo'yt

d md,
7, = (1 + 0:001 mWp) 7" Yy = 7",,:

(» = number of moles of ions formed by the ionization of one
mole of solute;

W, = molecular weight of solvent; Wp that of solute;
d = density of solution; d, that of pure solvent;

m = moles of solute per kilogram of solvent; ¢ = moles of solute
per litre of solution;

S4» Y4 ¥, = mean rational, molal and molar activity coefficients
respectively.)

For a solution containing more than one electrolyte (or other
solute), it can be shown that for each solute:
Se = v (1 + 0001 W, Zym) )
d + 0-001(W Zvc — ZcWpg)
S £ =V do——

d — 0-001ZcWpg ¢ .-+ (2.23)

i Y= r.n_do'y*

0
d md,
3o = (1 +0001ZmWp) 2y, ==y,

Y=

J

The summations are to be made over all the solute species. For a
mixed solvent containing weight fractions, * and (1 — x), of
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solvents of molecular weight, W, and W,- respectively, the
quantity W, in these equations must be replaced by

( x + 1 — x)-l

Wy Wy

The relation between the two osmotic coefficients is:

wmW ,

1000 ¢

which for most purposes can be written as the approximation:
mW ,

At 2 M potassium chloride (¢ = 0-912 at 25°) this approximation
gives g = 0-946, instead of the correct value of 0-944, and 1-08]
instead of 1-071 at 4-8 M(¢ = 0-988).

glnNy,=—

THE GIBBS-DUHEM EQUATION

Since the chemical potential is the partial molal derivative of the
Gibbs free energy, the Gibbs-Duhem equation applies:

SdT — VdP + ZndG, =0

where 7, indicates the number of moles of the ith species, the
summation covering both solvent and solute species. For the
restricted case of a system maintained at constant temperature and
pressure:

nAd(_;A + ﬂBdéB + nch—T‘c +...= 0

and for a solution containing only one solute,

nAdéA = — an(_va .. .(2.24’)
Multiplying each side of equation (2.24) by (1000/W ) we get:
(1000/W )dG, = — mdGy ....(2.25)

In addition, _ _

These very important results are true not only for the chemical
potential but for all partial molal quantities like partial molal
volumes, entropies, heat contents, etc.

If the partial molal free energy of the solvent has been measured
over a concentration range (and we shall demonstrate later that
many methods are available). equation (2.25) enables us to obtain
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information about the free energy of the solute, although there may
be difficulties of computation in the integration of the equation, to
which we shall refer in subsequent chapters. The converse operation
is also possible. For an aqueous electrolyte solution equations (2.2),
(2.4), (2.13) and (2.25) give:

— 55-51d In ap, = mdGg/(RT)
= vmd In (y m) ....(2.26)

a form of the Gibbs-Duhem equation of which much use will be
made in later chapters. As, by definition,

ymp = — 55-51 In ay, ....{2.16)
equation (2.26) may casily be transformed into:

d
-1 +dp=diny
which on integration gives:
Iny=($—1) +J‘ @ --Ddlnm  ....(2.27)
o

if it is remembered that the limiting value of ¢ at infinite dilution
is unity. Alternatively,

n
vmp = — 55-51 In ay, =J‘ vmd In (ym)
0
l m
whence =1+ ;I mdIny ....(2.28)
o

If the activity coefficient can be expressed in the form (see
Chapter 9):

L aVm
TV I Bm
then 1 —¢ = “‘3/’" a(BVm)

where  o(x) = % [(1 +x) —2In(1 + x) — 1J)(1 + x)]
The function g(x) is tabulated in Appendix 2.2.

THE RELATION OF THE PARTIAL MOLAL HEAT CONTENT,
HEAT GAPACITY AND VOLUME TO THE ACTIVITY
GOEFFICIENT
The partial molal heat content of a solute in solution is given by

the equation:

HB=_T2§-((-;TB) ....(2.29)
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the differentiation being carried out at constant pressure and
composition. From the definition of the activity coefficient of an
electrolyte on the molality scale:
Gg=G% 4+ RTInag
=G4 +vRTInQ +vRTInm + yRT Iny,
where @ is the numerical coefficient of Appendix 2.1,

ENC AN alny)
Hence ar(ﬁomp‘ar(7)p+”k( T )
3
so that Ay =A% —vRT? —M*) ....(2.30)
3T Jur

where A% is the partial molal heat content in the standard state.
Now at infinite dilution, y, = 1 at all temperatures, so that
Ap =A%
that is to say, the partial molal heat contents have the same value
in the standard state and at infinite dilution. Partial molal heat
contents are usually expressed relative to infinite dilution, when
they are called relative partial molal heat contents and are denoted
by the symbol, Lp:
Iy = Ay —AY

- dlny,
LB = —yRT? (—a.r—)m’ P

The mole fraction scale may also be used to express the activity
coefficient in this formula; but the molar scale is unsuitable since
the composition of a solution of fixed molarity varies with the
temperature.

It will be noted that if we were to use, as the standard state, an
‘actual’ state of unit activity having a mean molality m, and mean
activity coefficient y_, such that m_y = 1, the differentiation with
respect to a temperature at constant composition could not be
carried out in a meaningful way, as the composition of this actual
standard solution would have to change with temperature, inversely
to the change in y .

The partial molal heat capacity, C(p)p is naturally defined by:

or:

aH 32 ll’l -+ a ln
Com=(52), = Cton — & (g2 42725 22)

....(2.31)
Aga.in C(p)B = C?p)B _
and a relative partial molal heat capacity, J5, can be used in a
similar way to Lp- 3
Jg =Cpimy —C's) . --(2.32)
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The relation between the partial molal volume of the solute and
the activity coefficient is of minor importance, since pressures are
seldom different from atmospheric. It is:

26,
s = (52), .
aG% aln
(aP) t RT( 3P ),,..
%+VRT(?%-:) . ....(2.33)

where P4 is the partial molal volume in the standard state, which
once more can be shown to equal that at infinite dilution P,
because we have imposed on the standard state the requirement
that it results in y, — 1 as m — 0 for all pressures as well as all
temperatures.

The result (2.33) is not used for the determination of Vg, which
can be much more simply obtained from density measurements, but
(2.30) and (2.31) are often used in the estimation of heat contents
and heat capacities from electromotive force measurements, or
conversely, in converting activity coefficients from one temperature
to another.

The corresponding relations for the solvent are usually expressed
in terms of its activity a:

dlna
— go _ 4
7, =m RT’( =7 )M’ .. ..(2.34)
lna dlna
Cira =Clpa — R [T’W,—A + QTTA ..(2.35)
v,="PY + Rr(a—'“—“é) ... .(2.36%)
oP Jm 1

and here, in virtue of the choice of the pure solvent as the standard
state, the meanings of 8%, Cfp), and VY are obvious.
Since Gz = G% + RTIn (@m)* + vyRTIny,,

3_(72 _ [9G% dln 71)
(aT)m,P_ (.ﬁ:)}’-'— *Rin (met) + l,RT.( oT m, P

thc-partial molal entropy is given by:
dlny,
=8% —vRIn (Qmy,) — vRT( 3T )m'P ... (2.37)

* The formula: P, = W, / (d - c%d) is useful for calculating the partal
molal volume of the solvent from density data.
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This is important in showing that the partial molal entropy of the
solute approaches infinity as the concentration decreases, so that
S% is not equal to §§. Thus neither the chemical potential nor the
partial molal entropy at infinite dilution is equal to that in the
standard state; the former becomes negatively infinite like the
chemical potential of a perfect gas, (3 = G® 4 RT In P) whilst the
entropy becomes positively infinite. But from each can be split a
term which has equal values at infinite dilution and in the standard
state: thus the term RT In y, is in a way the non-ideal contribution
to the chemical potential and is zero both at infinite dilution and
in the hypothetical standard state of unit molality.

A question that may raise some difficulty concerns the activity
coefficient of an electrolyte which can be treated as completely
dissociated by one school of thought and as only partially dissociated
from another point of view. How are the activity coefficients
calculated on these different assumptions related to one another?
Consider a system consisting of a kilogram of solvent and m moles
of solute completely dissociated into m, = »,m cations and m, = v,m
anions. The total free energy of the system is:

000 ~
G= 17,:  + »mG, + vomG,
We might, however, regard the solute as forming an ‘aggregate’,
(intermediate ion, neutral molecule or complex ion) from its simple
ions. If the solute has the formula, M, X, , let the formula of the
aggregate be M, X, ; furthermore, let a fraction (1 — a) of the
cations form the aggregate. Then we have the following concen-
trations:

cations: m; = av,;m
. na¥y
anions: my = [v, —(1 —a) .
1
. o1
aggregate: my = (1l — a) —m

1
the primes drawing attention to the fact that some quantities have
different meanings according as we adopt the idea of complete as
against partial dissociation.
Then:

1000 _ =
G=7A- GA+owlm@1'+ vy — (1 _a)n:—:l mG,

+ (1 — o) 2 mi;,
n
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The total free energy is independent of any views of the nature of the
dissociation and so is the chemical potential of the solvent, so that:

1@, + .G, = 0, &) + [vz - —a) i l] G+ - a) Gn
...(2.38)

But since the ions are in equilibrium with the aggregate:
Gjs = mGy + n,G; ....(2.39)
and it follows that: _ _
1, G, + 1,6, = »,G) + »,G;

Now expressing the chemical potentials in terms of the molal
activity coefficients:

7@ + 08 + RT(v, In pymy + v In yymy)
=9GP + %G + RT(v, In yim; + v, In yyms)

But G¢ and G}® are identical since both refer to the same hypo-
thetical molal solution of the ions, so that:

(yamy)"(yeme)™ = (yimy)™(yame)™

or  (ypym)"(yg¥em)™ = (pravym)™ [}’é {”z —(1 —a n_:? m] "

or Ve = an 1-(1-&)"’”l vy

In this general case the problem would require very careful hand-
ling, but it becomes simpler if the aggregate is electrically neutral,
i.e., if ngy, = nyys. (An even simpler case occurs when n, =,
ny = ¥, i.c., the aggregate M, X, is identical with the molecule
M, X,.) Under these conditions:

Y =GPy ... (2.40)

This relation will find considerable use in later sections; we may
have measured the stoichiometric activity coefficient y_, of a binary
electrolyte, the calculation from the experimental data having been
made on the assumption that the electrolyte is fully dissociated. If
we have reason to believe that the electrolyte is actually dissociated
only to the extent a, then the mean ionic activity coefficient, y 4, is
a better measure and it is related to the determined quantity, y,,
by the simple relation (2.40). Furthermore, if n, = », and ny = »,,
equations (2.38) and (2.39) give:

G, + 9,0, = »G] + v,G; = G,
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FREE ENERGY AND THE CELL POTENTIAL

Introducing the molal activity coefficients and the definition of
K., the dissociation constant on the molal scale:

G —n G —n,G»=RTn K,
we can derive the equation:

(Pamy) = (Yemy) = Knylami
Similar relations are valid for other concentration scales:

(feNa) = (2 NL) = EnfisN

(262) = (Vect)” = Kensere
but it should be noted that the three dissociation constants are not
identical; instead, we have:

Ky = K,(0-001 W '} ....(2.41)

and K, = K,d,~! ... (2.42)

The distinction is important when discussing the dissociation
constant of a weak acid: for example, the dissociation constant of
acetic acid at 25° is 1749 x 10~% on the molarity scale, but
1:754 x 10-% on the molality scale. In solvents other than water,
K, may differ substantially from X,,.

THE RELATION BETWEEN THE FREE ENERGY CHANGE AND
THE POTENTIAL OF A GALVANIC CELL

Consider a galvanic cell operating under reversible conditions at
constant temperature and pressure. An example is the cell:

H, (1 atm.) | HCl | AgCl, Ag,

by which we mean a cell with hydrochloric acid at a given concen-
tration as electrolyte and two electrodes, one of which is a hydrogen
electrode (i.e., hydrogen bubbling round platinized platinum) and
the other is a layer of silver chloride deposited on silver (an effective
substitute for the less manageable chlorine electrode). The natural
or spontaneous cell reaction is:

3H, + AgCl - Ag + HCI

and if this cell is used as a battery to generate current, hydrogen
gas dissolves as hydrogen ions at the left-hand electrode and silver
chloride decomposes to give chloride ions at the right-hand elec-
trode. Hydrogen ions travel from left to right through the cell and
chloride ions in the opposite direction, ‘positive current’ passes
through the external circuit from the right-hand to the left-hand
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electrode and the right-hand electrode has a higher potential than
the left-hand electrode. With aqueous 0-1 M hydrochloric acid as
electrolyte, the potential of this cell at 25° is 0-3524 V.

For the reversible operation of such a cell, the electromotive force
of the cell must be balanced by an opposing electromotive force
from an external source such as a potentiometer; now consider an
infinitesimal departure from balance, such that the spontaneous cell
reaction proceeds to an infinitesimal extent and an infinitesimal
quantity, 8¢, of electricity (measured in coulombs) passes. Let AG
be the increase in free energy of the cell constituents on the passage
of n faradays of electricity. In the example cited above,

AG = &Y, + Gug — 10%, — Ghear

if n = 1. The reacton being a spontaneous one, AG must be
numerically negative, i.e., there must be a decrease in free energy.

It is the quantity (— AG) ;f—%. which appears as electrical work, Edg,

when an infinitesimal quantity of electricity passes through the
circuit under reversible conditions. Hence:

— AG = nEF,

which is the fundamental equation for the potential of a reversible
cell.

It is desirable, whenever possible, to write the cell in such a way
that, when the spontaneous cell reaction proceeds, positive current
goes from left to right through the cell and in the opposite direction
in the external circuit. The numerical value of the potential will
then be positive. In some cases it may not be known in which
direction the spontaneous cell reaction does go: we can write the
cell in either one of two ways and there may be little to decide in
favour of either, but whichever way the cell is written, E, the potential of the
cell, must be used to mean the excess potential of the right-hand electrode over
that of the lefl-hand electrode. If experiment reveals that the right-hand
electrode is at a lower potential than the left-hand one, then we
assign a numerically negative value to E. For example, we would
say E = — 0-3524 V for the cell:

Ag, AgCl| 0-1 M HCI | H, (at 25°).
But a great deal of trouble can be avoided if E is always taken as
the excess potential of the right-hand with respect to the left-hand

electrode, recognizing that an excess potential may be numerically
a negative quantity

40
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Standard Cell Potentials

The standard cell potential is the potential of a cell in which all
substances involved in the cell reaction are in the standard states.
The standard cell potential is a function of the temperature and
pressure, and it depends on the nature of the solvent and on
the scale we use to define the standard state, i.e., the molal,
molar or mole fraction scale. The standard potential of the
H, | HC1 | AgCl, Ag cell on the molal scale is 0-2224 V at 25° and
one atmosphere pressure with water as the solvent.

It is conventional to regard the standard potential of the hydrogen
electrode as zero. The standard potential of the silver-silver chloride
electrode is then 0-2224 V. It should be written Cl- | AgCl, Ag,
E° = 0-2224 V.

UNITS AND DIMENSIONS FOR CONDUCTANCE

The accepted unit of electrical resistance is the absolute ohm, which
is 10° electromagnetic units of resistance. (The volt is 108 e.m.u.
of potential and the ampere 10-! e.m.u. of current.) In the electro-
magnetic system the dimensions of resistance are [LT-!]. The
resistance R of a uniform conductor is directly proportional to its
length, /, and inversely to its cross-sectional area 4. This may be
expressed by:

R = pl/4
where the constant of proportionality p is called the specific resist-
ance of the material for the temperature in question. Clearly p has
the dimensions of resistance multiplied by length, i.c., its units are
ohm-centimetres. Its basic dimensions in the electromagnetic
system are [L37T-1]. The reciprocal of the specific resistance is the
specific conductance, denoted by K,,:

and has dimensions [L-27] in the electromagnetic system.
In electrolyte solutions, another variable, the concentration, has
a dominating effect on the conductivity. It is convenient therefore
to divide the specific conductivity by the concentration thus arriving
at a quantity:
' A = Kc

If ¢ is a concentration in moles per unit volume (usually per c.c.)
A is a molar conductivity but if ¢ is expressed in equivalents per
unit volume (and again the c.c. is usually adopted as the unit of
volume) a more usefil quantity, the equivalent conductivity, ensues.
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2 BASIC CONCEPTS AND DEFINITIONS

A will be taken to mean equivalent conductivity unless it is stated
be a molar conductivity. The resulting dimensions for A in the
electromagnetic system are [equiv.~! LT], the conventional units
being cm? Q-1 equiv.~%.
Since the current results from the motion in opposite directions
of oppositely charged ions, the equivalent conductivity can be
considered as the sum of two ionic conductivities:

A=A+ 4 ....(2.43)
At infinite dilution:
A= A + 23 ....(244)

and Kohlrausch’s law of the Independent Migration of Ions states
that when each ion is moving in a medium where the ions are so
far apart that they are without influence on one another, then 12
depends only on the nature of the cation and properties of the
medium such as temperature and viscosity. It does not depend on
the value of A3. Similarly 43 does not depend on the nature of the
cation.

THE RELATION BETWEEN THE EQUIVALENT CONDUCTIVITY
AND THE ABSOLUTE MOBILITY OF AN ION

The motion of an isolated body is governed by Newton’s law that
force = mass X acceleration, but in dealing with the motion of
ions it is not usually necessary to consider the acceleration unless
electrical fields of very high intensity or frequency are involved.
Under normal conditions, the ions are almost instantaneously
accelerated to the point where their motion is limited by the viscous
drag of the solvent, and all the energy supplied by the electric field
is dissipated by the viscous forces. The ions thus move with a
constant limiting or terminal velocity, which for all reasonably
small fields is directly proportional to the applied field. This is of
course the reason for the validity of Ohm’s law for clectrolytes
subjected to ordinary fields, and for the fact that the conductivities
of ions have no simple relation to their masses. There s, for example,
little difference between the ionic conductivities of chloride and
iodide ions, though the latter has nearly four times the mass of the
former.

In discussing motion against viscous forces it is convenient to
define the mobility, u, of a body as the limiting velocity attained
under unit force, i.c.,

u = ofF

The absolute mobility in the c.g.s. system is thus the velocity in
cm per sec attained under a force of 1 dyn. It is, however, a
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common practice when dealing with ions to take as the unit of force
a unit potential gradient acting on the ionic charge. Here we shall
use u for the absolute mobility and u’ for ‘electrical mobility’ defined
as the velocity attained by the ion under unit potential gradient.
Since 1 V (abs.) = 1/299-8 e.s.u. of potential and the protonic
charge ¢ = 4802 X 10~ e.s.u. of charge, a field of 1 V/cm exerts
on an ion of valency |z| a force of 1602 x 10-12 |z| dyn.

The equivalent ionic conductivity, 4, is simply related to the
mobility. From the definition of specific conductivity, it follows
that X, is the current flowing in a conductor of unit cross-section
under unit potential gradient. The total ionic charge in unit
volume is F¢ if ¢ is measured in equivalents per unit volume, and
this charge moving with velocity «’ constitutes the current X;:

K,, = Feu’
or A= K,lc = Fu’ ... (2.45)
The absolute mobility is therefore:
u = u'[(|z] €) = Nu'[(|z| F) = NA/(|z|] F?) ....(2.46)

Because of these relations, one frequently finds the ionic equivalent

conductivity A referred to as the ionic mobility. In applying equa-

tion (2.46) some care is needed with the units; the usual ones give:
u/(cm sec~! dyn-1) = 6-469 x 10¢ 2/(]z| cm? Q-! equiv.~?)

= 6-466 x 108 i/(|z|] cm?®int. Q! equiv.-?)

THE RELATION BETWEEN THE SIZE AND MOBILITY OF JONS

For a particle of macroscopic dimensions moving in an ideal
hydrodynamic continuum, it is possible to calculate the frictional
resistance in terms of the dimensions of the particle and the viscosity
(n) of the medium. For a spherical particle, the result was obtained
by G. G. StTokes(? as:

v = F/(6myr) ... (247)

where r is the radius of the sphere. If an ion can be considered to
satisfy the conditions for Stokes’ law motion, its radius is given by:

r = 1/(6mnu) ....(2.48)

and since 4 is given in terms of the limiting equivalent conductivity
by equation (2.46), we have:

r = |2} F*/(6xNnpa9) ... (249)
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If for convenience we express 7 in A and 5 and 1 in their usual units,
this becomes:

" 0-820 |2|

= 2f(cm? Q- equiv.-1) . 5/(poise)

....(2.492)

For small ions the conditions for the validity of Stokes’ law are not
fulfilled; nevertheless equation (2.49) provides a useful starting
point for discussing the dimensions of ions, and we shall refer to
radii so calculated as ‘Stokes’ law radii’. For uncharged particles,
the mobility can be calculated from the diffusion coefficient, D
(see p. 46) as:

u = D|(kT) ....(2.50)
where k& is Boltzmann’s constant; this leads to the result:
r = kT[(6anD) ....(2.51)

which is known as the Einstein-Stokes formula. Its validity is
subject to the same kind of restrictions as equation (2.49).

TRANSPORT NUMBERS

The passage of electric current through an electrolyte solution is
effected by the motion of ions of opposite charge moving in opposite
directions under the applied potential.

Consider a tube of electrolyte solution 1 cm? in cross-section
along which a potential gradient of 1 V/cm is set up, ¢ being the
concentration in equiv./l. All the positive ions at a distance ; on
one side of an imaginary plane perpendicular to the gradient will
cross that plane in one second. This number will be Newy/(1000z;)
and the current will be Necu;[/1000. The current set up by the
motion of negative ions in the opposite direction will be N(— e)au;f
1000 and the total current Nec(ui + u;)/1000. The fraction of
the current carried by the positive ions is called the transport (or
transference) number of the positive ion:

ho=uif(u] + u3) = 4,/(4 + 4y)

Similarly ....(2.52)
ty = ugf(u] + uz) = Af(4; + Ay)

and tl + tz = l

. We do not define the transport number in terms of absolute
mobilities, #; and u,, because in practice the oppositely charged ions
are subjected not to the same force of one dyne but to the same
potential gradient in terms of volts per centimetre, a gradient
exerting on the ions a force which depends on their valency.
Considerable care has to be exercised in dealing with transport
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numbers of solutions of weak electrolytes or of electrolytes which
form autocomplexes. These cases have been discussed by Spiro?
and further reference will be made to them in Chapter 7.

DIFFUSION IN ELECTROLYTE SOLUTIONS

One of the most fundamental of irreversible processes is that of
diffusion, by which a difference of concentration is reduced by the
spontaneous flow of matter. In a solution containing a single solute,
the solute moves from the region of higher to that of lower concen-
tration, while the solvent moves in the opposite sense. From the
point of view of molecular kinetics, no individual solute particle
shows a preference for motion in any particular direction, but a
definite fraction of the particles in an elementary unit volume may
be considered to be moving in, say, the positive x-direction. In an
adjacent volume-element, the same fraction may be considered as
moving in the negative x-direction; now if the concentration in the
first volume-element is greater than that in the second, this means
that more particles will be leaving the first element for the second
than will be re-entering from the second to the first, so there will
be a resultant flow of solute in the direction of lower concentration.
Further, one would naturally expect on the basis of this picture that
the rate of flow would be at least approximately proportional to
the concentration-difference existing between the two volume-
elements.

While diffusion in everyday practical applications is often a two-
or three-dimensional process, nothing essential to its understand-
ing is lost by confining attention to the one-dimensional case,
especially since most of the methods by which it is studied and
measured involve a deliberate restriction to one-dimensional
flow. In this case the following concepts and definitions are
applicable:

The flux of matter, denoted by J, is defined as the amount (in
moles, grams, ¢ic.) of material crossing unit area of a plane perpen-
dicular to the direction of flow in unit time.

The concentration gradient g?‘: is the rate of increase of concen-
tration with distance measured in the direction of the flow, It is
usual to take the direction of flow as the positive direction of the
distance , to express the concentration ¢ in the same units of moles,
grams, efc,, as are used in defining the flux, and to take as the
volume unit for the concentration ¢ the cube of the unit of distance x.
Thus if J is expressed in moles cm—2 sec™?, and x in cm, ¢ will be
expressed in moles cm—3.
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The diffusion coefficient D is now defined by the equation:

J=-—D ....(2.53)

%
the partial differential being necessary because ¢ is, in general,
dependent on time as well as on distance. The negative sign in
equation (2.53) is introduced in order to make D a positive quantity,
since 3~ is negative in virtue of our choice of sign for x, which
increases as the concentration decreases. It will be seen that the
diffusion coefficient D has dimensions [L*T-1] and is independent

x+6x

Figwre 2.1

of the mass-units used provided that the same units are used in
defining both J and ¢. With the c.g.s. units mentioned above, D
will be in units of cm®sec~. Although in practice experimental
conditions are often chosen so that D is nearly constant, it is not
defined as a constant, and the common practice of calling D
the ‘diffusion constant’ is to be deplored, especially as it is fre-
quently the variation of D with concentration in which we are
interested.

Equation (2.53) is of importance in the study of diffusion by

. . . . <
steady-state methods in which the concentration-gradient 3 does

not change with time. In many of the methods currently in use,
however, the variation of ¢ with both time and distance is of
interest; for these cases (2.53) can be converted into a second-order
partial differential equation connecting ¢, ¥ and the time, ¢, as
follows: consider (Figure 2.1) a tube of uniform unit cross-section
intersected by two planes of unit area, normal to the x-axis, situated
at x and x + Ox respectively. The amount of matter entering the
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volume-element between these planes through the plane at x in a
time-interval ¢ is:

p.%
Jét = — (D 3’-‘) ot

while the amount leaving through the plane at (x -+ dx) is:

J ot = — (DE) ot
ox

ox
d
(D a—i) at the plane x may be expressed as:

¢ 3 o
é (Dgt) =% (D-a;) ox
Hence the net amount of material accumulating in the volume-
element considered in time &¢ is:

The difference between (D _a_c) at the plane at (x + dx) and

, 3 ( %
(J—J)&l:X(DX)éxét

This accumulation, since it occurs in an element of volume 4x,
gives rise to a concentration increase d¢ given by:

P:] o
o = — (D Et) ot

ox
On proceeding to the limit, one obtains:
d 9 o
5—,=5;(D-a;) ....(2.54)

which can be regarded as an alternative definition of the diffusion
coefficient D. For diffusion in three dimensions, equations (2.53)
and (2.54) take the forms:

J= —Dgrade¢
d
and -a—‘; = div (D grad ¢)

These two equations (2.53) and (2.54) are often loosely referred
to as Fick’s first and second laws of diffusion't). We have preferred
here to develop them purely as equations defining the diffusion
coefficient D; Fick’s laws of diffusion may then be summed up by
the statement that D, as defined by these equations, is a constant
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for a given system and temperature. This constancy is, however,
only approximate, and the main importance of diffusion studies for
electrolyte theory lies in the variation of the quantity D with
concentration.

We have not yet stated how the distance x is to be determined.
The obvious way is to measure from some arbitrary plane fixed
with respect to the apparatus containing the diffusing system, and,
indeed, when one is dealing with liquids it is difficult to see how
any other experimental means of fixing the reference-plane could
be found. In some cases, however, as when a liquid diffuses into a
solid which swells as a result of the diffusion, it may be convenient
to measure from the moving surface of the solid. Likewise, in
discussing the theoretical aspects of liquid diffusion, it may be
desirable to refer the measurement of distance to a plane so chosen
that the amount of one component on one side of it remains
constant; such a plane will, in general, move with respect to the
apparatus. As long as equations (2.53) and (2.54) are regarded
only as definitions of D, such procedures are quite legitimate; it
must, however, be remembered that the value of D for a given
system will depend on the method used to fix the reference-plane.
HarTLEY and CraNk®® have given a detailed account of the rela-
tions between diffusion coefficients defined with respect to various
reference-planes.
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THE STATE OF THE SOLUTE IN
ELECTROLYTE SOLUTIONS

CLASSIFICATION OF ELECTROLYTES

IN oUR attempts to understand the complicated problems set by the
study of electrolyte solutions, there is a key question which we must
try to answer before embarking on detailed mathematical treat-
ments: what are the actual kinetic entities in the solution? We
have seen in the first chapter that in pure water, in spite of the
existence of some considerable degree of short-range order, the only
kinetically identifiable form of solvent particle is the single water
molecule in equilibrium with minute amounts of hydrogen and
hydroxyl ions. The introduction of a dissolved electrolyte compli-
cates the position considerably. We may now have to cope with
many kinds of solute entities: ions—solvated or unsolvated, electro-
statically associated groups of ions, covalently bound molecules and
complex ions.

In the face of this complexity, we are obliged to classify electrolyte
solutions into several groups. The familiar division into ‘strong’ and
‘weak’ electrolytes, though convenient for elementary purposes, is
not an entirely suitable basis for theoretical discussion. Instead we
shall recognize two main classes, ‘associated’ and ‘non-associated’
electrolytes, which we shall define as follows.

Non-associated Electrolytes

A solute of this kind is believed to exist only in the form of the
simple cation and anion, possibly solvated; there is no evidence for
the presence of covalent molecules of the solute, or of any lasting
association between oppositely charged ions. This class, although
small in number, is of great importance in providing information
with which we can make straightforward tests of the theory of
electrolyte solutions. The archetype of this group is aqueous
sodium chloride: with water as solvent the class comprises the alkali
halides, the alkaline-earth halides and perchlorates, and some
transition-metal halides and perchlorates. The chief criterion for
placing an electrolyte in this class is the absence of valid evidence
for any form of association. Since the validity of such evidence can
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be a matter of personal opinion (and this is particularly true of the
evidence for ion association) there can be no general agreement;
but our own inclination is to include also lithium nitrate, magnesium
nitrate and possibly the rare-earth-metal halides. It is convenient
to add to this class some electrolytes which show association only at
extreme concentrations, in particular the halogen acids and
perchloric acid. There is no well authenticated evidence that any
electrolyte of this class can exist in non-aqueous solvents, with the
possible exceptions of liquid hydrogen cyanide and some amides.
It may be convenient sometimes to refer to these electrolytes by
the briefer title of ‘strong electrolytes’ but their essential character-
istic is the absence of evidence of any lasting union between the ions.

Associated Electrolytes

The much more numerous associated electrolytes can conveni-
ently be subdivided as follows:

1. We shall use the term ‘weak electrolytes’ to describe cases in
which the solute can exist as undissociated (covalent) molecules as
well as ions. All acids belong to this class; even the ‘strong” halogen
acids and perchloric acid are, strictly speaking, weak in terms of
this definition, since there is no doubt that at high enough concen-
trations the molecular form does exist. In other solvents ‘strong’
acids are incompletely dissociated even at moderate concentrations:
thus values of pK, = 1-229 have been found for hydrochloric acid
in methanol! and 2-085 in ethanol? at 25°.

Bases are usually weak electrolytes, except for the alkali metal
and the quaternary ammonium hydroxides. The class, however,
contains very few aqueous salts, mercuric chloride being the chief
example.

2. We shall use the term ‘ion-pairing’ in discussing a class of
electrolytes in which association occurs as a result of purely electro-
static attraction between oppositely charged ions: this concept was
introduced by Bjerrum shortly after the appearance of the Debye-
Hiickel theory, and has proved extremely useful in interpreting the
behaviour of a large class of electrolyte solutions of which the
bivalent metal sulphates in aqueous solution form an outstanding
example. Almost all salts in non-aqueous solvents show evidence of
this effect.

It must be emphasized that we adopt this classification of electro-
lytes on grounds of convenience rather than of logical rigour; there
will be cases where a particular electrolyte cannot be clearly
assigned to one of the above classes. Zinc iodide, for example,
would be treated as a non-associated electrolyte only if the
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experiments were confined to a range of concentration below about
0-3M. In more concentrated solution, however, there is good
reason to believe that it forms Znlz;— ions, which may well be
subject to ion-pair formation with Znt++ ions.

CHARACTERISTICS OF WEAK ELECTROLYTES

Since nearly all weak electrolytes are acids or bases, it is generally
possible to recognize their weakness by conductivity or pH measure-
ments or by potentiometric or conductimetric titration. Only in
cases where the dissociation constant is of the order of 0-1 or greater
is there any difficulty about determining whether the observed
behaviour is due to the substance being a weak clectrolyte or to
interionic attraction effects. In these cases it may be necessary to
use other methods for the detection of covalent molecules. If the
solute exerts a detectable vapour pressure above the solution, we
have strong reason to believe that covalent molecules of solute are
present in the solution. The vapour form of the solute is certainly
a true molecule and, however non-ideal the solution, at least some
of the solute must also exist as molecules; ammonia solutions
provide an obvious example. This criterion will, in some cases,
force us to classify an electrolyte as strong in dilute solutions, but
weak in concentrated solutions: such restrictions on the concentra-
tion-range are essential, for example, in discussing the cases of
hydrochloric and sulphuric acids. The fact that hydrochloric acid
solutions exert indetectable partial pressures of hydrogen chloride
below about 3 N was indeed one of the classical anomalies that led
to the development of the modern concept of strong electrolytes.
At 10 N, however, the partial pressure of hydrogen chloride is of
the order of 20 mm, in contrast with a value of about 7-6 atm.
which would be estimated from the vapour pressure of pure liquid
hydrogen chloride at 20° (41 atm.) on the basis of Raoult’s law if
the hydrochloric acid were completely undissociated and an ideal
solute. While this figure is very rough, it indicates that an appreci-
able amount (of the order of 0-3 per cent) of the hydrochloric
acid in a 10 N solution (the ordinary ‘concentrated’ acid) is in the
form of covalent molecules; the acid at this concentration must
therefore be regarded as a weak electrolyte, and an approximate
value of its ionization constant can be calculated'®, of the order
of 10°.

In using such terms as ‘indetectable vapour pressure’ we are, in
effect, admitting that no sharp boundary can be drawn between a
strong and a weak electrolyte in these cases, since improvement in
technique may result in the indetectable quantity of today becoming
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measurable within 0-1 per cent tomorrow. Certainly for solutes
such as the halide acids, which can exist as liquids in their own right,
it is only on grounds of experimental convenience that we can claim
that they are in any circumstances true strong electrolytes. In
practice we regard them as fully ionized when we believe that less
than about 0-1 per cent of the solute is in molecular form, Had we
any method of detecting covalent molecules in the presence of
a large excess of ions as readily as we detect a few ions among a
large excess of molecules (by the electrical conductance) we should
no doubt hold different views on where the line should be drawn.

The vapour pressure criterion for the presence of undissociated
solute molecules, valuable though it is, is applicable only where the
solute is appreciably volatile in the pure state at the temperature of
interest—generally room temperature; it can thus tell us nothing,
for example, about sulphuric acid solutions. A criterion of much
wider usefulness is the Raman spectrum. RebLicH® has empha-
sized the importance of this method, and remarks that ‘there can
be no doubt that the question of dissociation can be solved in any
case in which complete knowledge of the vibration spectrum is
available’. This method is based on the fact that the undissociated
molecule necessarily has different symmetry properties from its ions,
For simple molecules the general pattern, and in particular the
number of lines, is predictable, though the frequencies and band
widths may be modified by environmental factors such as concen-
tration. Whenever the Raman spectrum of the molecule is detect-
able, we have clear evidence that the substance is not a strong
electrolyte, but as Redlich points out, the absence of Raman lines
cannot always be taken as final evidence that the substance is a
strong electrolyte.

The scheme of classification proposed above will permit us to
develop the fundamental theory and to test it for non-associated
electrolytes; we then proceed to the discussion of weak electrolytes
and ion-pair electrolytes, using the theoretical formulae for dealing
with the free ions in these cases, and handling the associated part
of the solute by suitable specific devices such as the introduction of
finite dissociation constants. Some special cases such as the ‘strong’
acids and the transition metal halides will be discussed separately.

ION-SOLVENT INTERACTIONS

The reason for the ready solubility of so many electrolytes in water
is the high dielectric constant of this solvent, which in turn is due
to the polar nature of the water molecule and to the fact that its
dimensions favour a tetrahedrally coordinated structure.
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In a ‘uniform’ field a dipole experiences only a turning moment,
but the field near an ion is highly divergent and therefore non-
uniform, and a dipole near an ion is subject, in general, to both
orienting and attractive forces. The mutual potential energy of a
point charge e and a dipole of moment y, in vacuo is:

pecos 6
)

where 0 is the angle between the axis of the dipole and the radius
vector passing through the ion (Figure 3.1). For anion and a water

e
Figure 3.1

molecule, isolated in vacuo, the interaction energy could be calcu-
lated from this formula with confidence: putting g = 1-8 x 10-18
esu. and e = 48 X 10-%¢s.u. and with r in Angstroms, we
obtain 124 cos 8/r? kcal/mole. In the completely oriented position,
this energy would be greater than RT (~ 0-6 kcal/mole) up to
about 14 A. For an ion in liquid water, however, no such simple
calculation is possible. For water molecules remote from the ion, a
fair approximation could no doubt be made by inserting the
dielectric constant (& ~v 80) for the intervening water in the
denominator of the energy expression: this immediately reduces the
energy to the order of 1-5 cos 6/r2 kcal/mole, a value which is much
smaller than RT (even for favourably oriented molecules) for all r
which could conceivably be regarded as ‘remote’. For the first layer
of molecules round an ion, however, the bulk dielectric constant of
the medium is simply not relevant. It is not clear whether we
should calculate the energy in this region with ¢ = 1, as for the
charges in vacuo, or with ¢ = 4 or 5, the value estimated (see p. 20)
from the atom and electron polarization of water; nor is it possible
to calculate with any certainty the effect of other molecules in the
first layer, unless simplifying assumptions are made about their
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number and orientation. However, it seems likely that all the water
molecules in the first layer round all monatomic ions should have
energies of interaction with it which are large compared with the
thermal energy. Few ions, according to crystallographic measure-
ments, are smaller than 0-8 A in radius; and the radius of a water
molecule may be taken as 14 A, so that the least possible value of
72 is about 5 A2, Water molecules in the second layer must be at
least 2-8 A further out, giving a minimum value of 72 = 25 A2,
Since they will also be less strongly oriented, the average value of
cos 6 will be smaller also, and the effective dielectric constant must
rise as we go out from the ion. For all these reasons it is clear that
the second layer of water molecules will be much less strongly
bound to the ion than the first. Indeed, it is probably only with
polyvalent monatomic ions of small size that water molecules in the
second layer have energies of interaction with the ion comparable
to their thermal energy.

It is obviously of the utmost importance to our understanding
of electrolyte solutions that we should know what the kinetic entity
which we call an ion is, whether it is the bare ion, or whether it
carries with it water molecules sufficiently firmly bound to be
regarded as part of the ion, and if so, how many such molecules. It
must be admitted that we do not know with any great certainty,
though the importance of the problem has been realized for 50 years
or more. One difficulty is that it is not possible to state quite
unambiguously what we mean by a water molecule being ‘bound
to the ion’.

There are a few cases where the inner sheath of water molecules
is permanent in a long-term sense and the water molecules are
firmly attached, possibly by coordinate links. Hunt and Tavuse®®
have shown in a series of ingenious experiments using 08 as tracer
that the ion [Cr(H,O),]**+ exchanges its water with the solvent
quite slowly, the half-life being about 40 h, whilst the single water
molecule of the [Co{NH,);H,O]**+* ion has a half-life of 24-5 h'®,
For other trivalent ions, however, the exchange is too rapid to
detect, indicating a half-life of less than 3 min. The fact that the
innermost layer of water molecules of the hydrated chromium ion
is exceptionally firmly bound does not appear to have any particular
effect on the electrolytic behaviour of the ion, which is quite similar
in regard to both conductance and thermodynamic properties to
other trivalent ions, probably because for all such ions there is a
substantial second layer of water molecules which are also firmly
enough held to form a part of the kinetic unit.

Chromium and cobalt are transition elements with a marked
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tendency to form coordinate links. In the case of noble-gas type
ions, and for any water molecules not in immediate contact with the
ion, the forces involved are entirely electrostatic and no specific
formula can be assigned to the aqueous ion. One may nevertheless
hope to obtain an average value for the number of water molecules
moving with the ion; such a value need not, of course, be integral,
since the actual number per ion may vary from one ion to another
and for the same ion from time to time. The hydration may be far
from permanent in the everyday sense of the word; the permanence
implied is, rather, relative to the time-scale of the Brownian motion.

We have already seen that the data for the entropy of solution of
ions in water can be explained by assuming a layer of firmly bound
water molecules around an ion, outside this layer the ion-solvent
interaction being much weaker. The behaviour of the dielectric
constant in the neighbourhood of an ion also fits into this picture.
A somewhat similar conclusion was reached from some experiments
on the vapour pressure of concentrated calcium nitrate solutions!?,
Although the solution of this electrolyte is saturated at 8-4 M at 25°,
it readily supersaturates and on isothermal evaporation it passes
into a transparent semi-solid gel without any discontinuity in the
concentration-vapour pressure curve. It is only at about 21 M that
the clear homogencous gel breaks down into a striated form.
Between about 9 M and 21 M it was found that the system could
be treated as an adsorbent {calcium nitrate) and an adsorbate
(water) and the BRUNAUER, EmMeETT and TELLER adsorption
isotherm'® was applicable. This is a curious and perhaps unjustifi-
able extension of the original theory which was devised for gas
adsorption on solid surfaces, but it has been used by PauLing® to
explain the adsorption of water vapour, not only on fibrous proteins,
but also on globular proteins. To carry it a stage further and apply
it to the adsorption of water molecules from the liquid (or gel) phase
on to single ions may be open to criticism, but it does lead to some
interesting results. Calcium nitrate (probably, the CaNOy ion) is
found to have 3-86 sites available for occupation by water molecules
in the inner layer, each being held with an energy some 1300 cal/
mole greater than the latent heat of evaporation of water, which is
10,480 cal/mole at 25°. Further adsorption can occur by building
up outer layers, although the probability of such adsorption is less
and also the energy of binding is less. Similar results are obtained
for concentrated electrolyte solutions where no gel formation can be
observed; the vapour pressures of very concentrated solutions of
lithium chloride and bromide, hydrochloric and perchloric acid,
zinc chloride and bromide and calcium chloride and bromide, can
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all be interpreted by assuming a reasonable value, between 3-5 and
7-1, for the number of water molecules which can be accommodated
in the inner shell and a reasonable value, between 1000 and 3000
cal/mole over and above the latent heat of vaporization, for the
energy of attachment in the solvation shell. In the theory of
Brunauer, Emmett and Teller, it is assumed that any molecule in
a layer other than the first is held with an energy equal to the heat
of vaporization; if this assumption is made, a straightforward
deduction of a comparatively simple isotherm ensues. ANDERSON®®
has produced a modification of this isotherm which permits layers
beyond the first to have an energy not quite the same as the energy
of vaporization of the adsorbate in bulk. This isotherm was devel-
oped for quite different purposes but it gives very plausible results
with concentrated electrolyte solutions. The simpler Brunauer-
Emmett-Teller isotherm gave the number of sites available for first
layer adsorption round an jon: the number was close to cither four
or eight, depending on the valency of the cation. The number of
sites should be integral, and assuming that this number is either
four or eight, Anderson’s theory enables us to calculate the energy
of adsorption in the first layer and the somewhat smaller energy in
subsequent layers. Table 3.1 contains the results of some calculations
made on this basis.

Table 3.1
Energy of ‘Adsorption’ of Water Molecules on Ions
Energy of adsorption

Electrolyte No. of sites in first layer

kcal/mole
Lithium chloride 4 12-1
Lithium bromide 4 12-7
Hydrochloric acid 4 12-1
Perchloric acid 4 12-9
Calcium nitrate 4 11-8
Rinc chloride 4 12-3
Linc bromide 4 12-3
Calcium chloride 8 11-8
Calcium bromide 8 12:6

Calculations made from Anderson’s equation:
ma,, _ exp(d/RT) + C-1 ‘
55:51[1 — agexp(— d/RT)] Cr Ccr "

where r = number of sites available for occupation and C »s exp (E — E;)/RT;

where (E — E;) = excess of energy of adsorption in the first layer over the latent
heat of vaporization of water;

and (E; — d) = energy of adsorption in outer layers.
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The energy of adsorption in layers beyond the first is not listed
in this table: calculation shows that it is about 100 cal/mole less
than the latent heat of vaporization, whereas in the first layer the
energy is between 1300 and 2400 cal higher. Evidently the attach-
ment is much firmer in the first layer. The first four electrolytes
with univalent cations require four molecules of water to complete
the first layer; the last two electrolytes with bivalent cations require
eight water molecules. Calcium nitrate, zinc chloride and zinc
bromide may seem anomalous but there is evidence that the zinc
salts in concentrated solution are more correctly represented by the
formula Zn*+ [ZnX,]-~ and only half the zinc ions are available
for hydration; calcium nitrate is subject to ion-pair formation and
it is likely that in concentrated solution the predominant ion is the
univalent [CaNO,]*+. It is therefore reasonable to find that these
three electrolytes require only four molecules of water in the inner
shell. Hydrochloric acid solutions have also proved!! amenable to
this treatment over the temperature range 0° to 120°.

Until recently the principal way of estimating ionic hydration
was Washburn’s modification of the Hittorf method for measuring
transport numbers. A supposedly inert non-electrolyte such as a
carbohydrate is added to the electrolyte solution, and the concen-
tration changes in the anode and cathode compartments are
computed, (a) relative to the amount of water present and (b)
relative to the concentration of non-electrolyte, which is assumed
not to move in the electric field. From the difference between the
transport numbers calculated on these two bases, it is possible to
compute the difference between the numbers of molecules of water
moving with the cation and with the anion. Hence, from a series
of measurements with various electrolytes, hydration numbers can
be allotted to each ion provided that that of one ion, say the
chloride ion, is assumed. A great deal of work was done on this
principle; a detailed account is given in a review by Bockris!!2),
The method always leads to an unequivocal order of hydration
values for the monovalent cations: Li+ > Na+ > K+ > Cs* > H+
but there is considerable disagreement over the actual values, which
is due in part to different assumptions about the hydration of the
chloride ion.

The basic assumption of this method is that the added non-electro-
lyte is inert. That it does not migrate in the electric field in the
absence of the electrolyte can be demonstrated by measurements of
the conductance. Recent very careful measurements by Lones-
WORTHY), using a modification of the Tiselius electrophoresis
apparatus, have, however, shown that when an electrolyte is present
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the non-electrolyte does migrate; as a result the calculated water
transport per faraday of electricity passed depends on the particular
non-electrolyte used. HALE and DE VRiEs™ have reached the
same conclusion from a study of the transport numbers of tetra-
alkylammonium iodides in the presence of various added non-
electrolytes. The fact would seem to be that any non-electrolyte
which is soluble enough in water to be useful in this method owes
its solubility to the presence of polar groups, which are also respon-
sible for interactions between the ions and the non-electrolyte
molecules, so that in Gordon’s words'* ‘added non-electrolytes are
no more inert than the water molecules themselves’.

Another method is based on the principle that if the size of the
solvated ion could be determined, it should be possible to calculate
the number of water molecules involved in it. The most direct
method available for determining the size of the kinetic unit would
appear to be the measurement of its rate of motion under a known
force, against the viscous drag of the solvent. Unfortunately for
this method, we do not know with any great certainty the laws
governing the motion of small molecules through a viscous
medium. For large spherical molecules, the expression (2-47) derived
by G. G. Stokes from classical hydrodynamics is known to be
adequate.

This expression is used with success in the interpretation of diffu-
sion and ultracentrifuge data for colloid molecules of approximately
spherical shape, being used to derive the well-known Einstein-
Stokes formula for the diffusion coefficient, D = kT [(6mnr). Clearly,
if Stokes’ law were valid for the motion of smaller molecules and
ions, we should have a direct method for determining the sizes of
ions. Unfortunately it is not valid, but a method of estimating the
appropriate corrections to Stokes’ law for small ions in water is pro-
posed in Chapter 6.

There are many other methods by which the hydration of ions
can be estimated; an account of these has been given by Bockris®,
He suggests that the term ‘primary solvation’ should refer to the
comparatively firm attachment of solvent molecules to ions in such
a way that an ion and its solvent molecules move as an entity in an
electrolytic transport process, the solvent molecules having lost their
own separate translational degrees of freedom. ‘Secondary solva-
tion’ would designate all other ion-solvent interactions. It is,
however, doubtful if any method has yet been devised to measure
the primary solvation unequivocally. For example, even if the
hydrodynamical theory of the flow of particles through a liquid
medium could be developed so as to extend Stokes’ law to particles
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of atomic dimensions, only a part of the difficulties would have been
resolved. We could apply such a theory to the hypothetical case of
an jon rigidly bound to a finite number of water molecules moving
through a medium consisting of another set of water molecules
whose only function would be to provide a medium through which
the hydrated ion moved. This would not be the problem we are
trying to solve; our problem is to set up and solve the equations of
motion of an ion firmly bound to one set of water molecules,
moving through a medium consisting of another set of water
molecules, from which it is separated by a third set of water mole-
cules which have neither the property of the first set of being
‘permanently’ (on the Brownian motion time-scale) bound to the
ion nor the property of the far distant solvent molecules of being
practically out of range of the ionic forces: instead they are sub-
jected to a comparatively mild ion-solvent interaction. It is not
surprising, therefore, that there is little concordance between the
results of the many ingenious experimental methods which have
been devised to measure the ‘hydration number’ of an ion; each
method measures an average of the primary and secondary hydra-
tion but there are many ways of weighting an average. Some
methods will tend to emphasize the secondary hydration and will
therefore be more likely to give the upper limit to the hydration
number. One such method consists in the distribution of a ‘refer-
ence’ substance between, first water and another immiscible solvent,
and secondly an electrolyte solution and the other solvent. In
general it is found that the addition of electrolyte to the aqueous
layer drives the reference substance into the other layer and this is
taken to mean that, by hydration, the electrolyte has withdrawn a
certain amount of water from the state in which it can exert its
solvent properties for the reference substance.

An extensive set of measurements was made by SucpeN®) who
distributed acetic acid between aqueous salt solutions and amyl
alcohol. He derived the following set of hydration numbers:

LiCl 105 NaCl 79 KCl 34
LiBr 90 NaBr 64 KBr 19
LINO, 44  NaNO, 18 KNO, — 27
LiCIO; 63 NaClO, 3-7 KCIO;, —08
LiBrO; 92 NaBrO, 66 KBrO, 211
LilO, 77 NalO, 51 KIO, 06

These figures are of reasonable magnitude except for the negative
59



- 3 THE STATE OF THE SOLUTE IN ELECTROLYTE SOLUTIONS

hydration numbers of potassium nitrate and potassium chlorate—a
strange result which Sugden explained by postulating a depolymer-
izing effect of these anions on the water structure. Otherwise, the
results suggest that the method is giving hydration numbers of the
right order.

Another method which probably also gives an estimate of the
upper limit of the hydration number is described in Chapter 9. We
are not now concerned with the details of the theory, but it is
worthwhile anticipating some of the more important conclusions,
In brief, the Debye-Hiickel equation for the activity coefficient of
an electrolyte, whose ions have finite size, is taken to apply to the
solvated ions, since the ion sizes required by the theory are larger
than those of the bare ions obtained from crystallographic data. It
is found that these calculated activity coefficients do not agree with
the experimentally determined coefficients which refer to the
unhydrated solute, and the difference is ascribed to the formal
thermodynamic effects of hydration. It is demonstrable that any
allowance for hydration must result in a discrepancy between
experiment and theory, but it is also known that there are a number
of other effects operating, which should be included in the calcula-
tion of the activity coefficient. Unfortunately, whilst we know that
these effects are important, theory has not advanced to the stage
where we can calculate them; for want of a complete theory, all
the difference between the experimental and the calculated activity
coefficients is ascribed to hydration. It is true that the resulting
equation is remarkably useful in describing observed results, but
this should not obscure the fact that, whilst hydration is a very
important factor, it is not the only one which determines the com-
plicated equilibria in an electrolyte solution. To put it briefly, the
secondary hydration has been stretched to cover a number of effects
the quantitative nature of which requires a great deal of in-
vestigation.

In another part of this book (Chapter 11) there will be described
a method of deriving hydration numbers, which depends on
diffusion coefficient measurements. We think this method is
weighted in favour of the firmly bound water molecules, i.c., it
should give a good approximation to the lower limit of the hydration
number and measure the primary hydration. Unfortunately it
requires diffusion measurements in a concentration range where
theory cannot fully predict the influence of the viscosity factor.
Again, there is a promising method which makes use of the com-
pressibility of an electrolyte solution: it is assumed that the mole-
cules of the solvent which are hydration molecules are compressed
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to their maximum extent by the intense electrical forces round the
ion and that, on increasing the pressure, it is the remainder of the
solvent which is compressed. This method"” has been stimulated
by improvements in technique for measuring the velocity of ultra-
sonic waves. A solution of volume ¥, containing a total number,
n, moles of water, of which n, are attached to ions as hydrate
molecules and do not contribute to the compressibility, would have
a volume-pressure differential,

(g—}‘,f)r = S [PUng - mlg

where P4 is the molal volume of pure water, and the measured
compressibility can be equated to:

where g is the compressibility of pure water. Thus if n is the num-
ber of moles of electrolyte in the solution, the hydration number is:

M4 (1 __ﬂ_V__)
ng nB ﬂ&nAVOA

which can be simplified to:

for dilute solutions. Hydration numbers of several salts have been
measured in this way, and they can be compared with the numbers
obtained from activity coefficient data and also with those calculated
from diffusion data given in Table 3.2.

The compressibility method gives some unexpected results; those
for the lithium salts are in good agreement with figures obtained
by other methods, but the sodium salts give higher hydration
numbers, whilst the potassium salts are shown as hydrated to a
surprisingly high extent. The 2 : 1 salts have hydration numbers of
the expected magnitude, except for barium chloride, whilst the 3 : 1
salts can be compared with lanthanum chloride for which a hydration
number of 18:2 has been calculated from activity coefficient data.

The entropy change corresponding to the transfer of an ion from
the gaseous state into solution has been attributed*® to the entropy
change of water molecules entering the hydration shell, a change
which is assumed equal to that occurring when water molecules

6l



3 THE STATE OF THE SOLUTE IN ELECTROLYTE SOLUTIONS

enter the solid state on freezing. All these methods determine an
average—a weighted average for the strongly bound ionic hydration
shell and those solvent molecules more distant but still under the
attractive influence of the ion.

DEeBYEU® has proposed a theory which requires that an alternat-
ing potential, of the order of 10-¢ V, should be set up between two
electrodes in an electrolyte solution subjected to ultrasonic waves.

Table 3.2
Hydration numbers
Salt From From From
compressibility activity diffusion

LiBr 5-6 7-6 56
LiCl 6 7-1 6-3
KI 6-7 2-5 0-3
Nal 6-7 55 30
NaBr 6-7 42 2-8
KBr 6-7 2:1 03
Kl 7 1-9 0-6
NaCl 7 35 35
KF, NaF, BeCl, 8-9 — —
Ca(ClO,), 11 17 —
CdSO, 12 — -
Sr(ClO,), 13 15 —
Pb(NO;), 13 — —
BaCl, 16-17 7-7 -
MgCl, 16-17 13-7 —
PrCl, 24 — -
LaCl, — | 182 —
AlCly 31-32 - —_

Data from Barnarrtr, S., Quart. Rev., 7 (1953) 84; Passynski, A., Acta phys.-chim.,
U.S.S.R., 8 (1938) 385; Giacoming, A. and Pesce, B., Ric. Sd., 11 (1940) 605;
Chem. Abstr., 33 (1939) 4494; ibid., 35 (1941) 1292.

The potential should depend on the relative masses of the cations
and the anions and should, therefore, measure the ionic hydration.
Whilst the Debye effect has been detected®®, it is clear that there
are many experimental difficulties to be overcome before quantita-
tive results will emerge.

When we turn to other solvents than water, the problem of
solvation becomes even more difficult to investigate. The hydro-
dynamic approach is frustrated at the outset by an almost total
absence of measured transport numbers: ionic mobilities in most
such solvents are at present known only in the form of sums for
pairs of oppositely charged ions. Thermodynamic methods are
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complicated by the effects of the (usually) lower dielectric constants
as compared with water, and by the relatively low accuracy of the
experimental data. In the case of acids, it is reasonable to suppose
that the proton is never a free entity, but is associated with at least
one solvent molecule; the ‘acid’ ion NH{ in liquid ammonia
solutions is a familiar example. The striking fact that silver per-
chlorate forms an electrolytic solution in benzene is, similarly,
attributable to the existence of a silver ion-benzene complex of an
acid-base nature, which can be considered a form of solvated ion.
It is regrettable that while electrolyte solutions owe their very
existence to ion-solvent interactions, we have so far been able to find
out little of a quantitative nature about these interactions; the
problem of ion-ion interactions has proved much more tractable.

THE FREE ENERGY AND ENTROPY OF IONS IN SOLUTION

Measurements of the vapour pressure, freezing and boiling points
and osmotic pressure of solutions, which are essentially determina-
tions of the chemical potential of the solvent, can be used to
determine via the Gibbs-Duhem equation the change in chemical
potential of the solute with concentration (see Chapter 8). These
methods, alone, yield no information on the energy relations
between the pure solute and the solution. The same is true of
electromotive force measurements on concentration cells with
transport. Electromotive force measurements on cells without
transport, however, can be made to yield a little more: besides the
change in chemical potential with concentration, they give the
standard potential of the cell reaction. The details of the experi-
mental methods and their numerical handling need not concern us
here; they are discussed in Chapter 8. The point of interest here
is the relation of the standard potential to the free energy change in
the cell reaction. Consider the cell:

Zn|ZnCly(m)|AgCl, Ag

containing as electrolyte a zinc chloride solution of molality m, in
which the solute has the activity agye,. The cell reaction is:

Zn (s) 4+ 2 AgCl (s) = 2 Ag (5) 4+ ZnCl, (solution of activity az,cy,)
and the free energy change per two faradays is:

AG = Ghucr, + RT In agyey, — G — 2651 + 2644
where G‘g,,c,, is the chemical potential of zinc chloride in the
hypothetical mean molal solution which is the appropriate standard

A
state. The potential is E = — 5F and can be split up into two
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parts, a standard potential E°® independent of the composition of
the solution, and a composition-dependent term:
RT

E=E — S5 Inagq,

Thus the standard potential E? is given by:
E® = — (Guci, — Gzo — 20sq01 + 2G,g)[2F

so that in determining it we are finding a free energy difference
between the ions in a standard state in solution, and certain related
pure substances (here, the solids: silver chloride, zinc and silver).
By differentiation of standard potentials with respect to tempera-
ture, it is likewise possible to obtain the partial molal entropy of an
electrolyte in the standard state in solution, relative to those of the
pure substances forming the electrodes; again the values obtained
refer to the electrolyte as a whole, and are the sums of those for the
constituent ions,

An alternative method of determining the same quantities in-
volves the use of solubility data. Consider the process:

KCl (s) - K+ 4+ Cl- (in saturated solution)

The free energy change of potassium chloride is zero, since the solid
and saturated solution are in equilibrium; hence

Gy = Gk + RT In agq (sat.)

where ag, (sat.) is the activity of potassium chloride in the saturated
solution (a quantity which can be determined by measurements of
vapour pressure, ¢fc., extending up to the concentration of saturation)
and G refers to the standard state on the appropriate scale.
This constitutes a relation between the free energy of the solute as
a solid and in its standard state in solution. The corresponding
entropy change can be obtained by measurements of the heat of
solution of the solid and employment of the relation G = H — T8S.
The heat content change of the solute for the process: solid —
solution in the standard state, is the same as that for the process:
solid — infinitely dilute solution, since the standard state is so
defined that it has the same partial molal heat content as the
infinitely dilute solution (see p. 35).

The third law of thermodynamics provides a basis for the calcu-
lation of absolute entropies of pure substances from heat capacity
data extending down to low temperatures:

T
S=f Codln T
(1]
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Allowance can also be made for any phase transitions occurring
below the temperature of interest, so that the absolute entropies of
the pure substances composing the electrodes of the cell discussed
above, or of the solid potassium chloride are determinable. Their
free energies are likewise obtainable, subject to the fixing of an
energy zero for the pure substances. Entropy and free energy sums
for anions and cations in solution in the standard state are therefore
essentially determinable quantities. Considerable theoretical interest
attaches to the question of how these sums should be divided between
anions and cations, but before considering this a digression on the
standard states is necessary.

We have considered above two specific solutes, potassium
chloride and zinc chloride. For potassium chloride, we may choose
the standard state of a hypothetical solution of unit mean molality
and unit activity coefficient. This has the required property
agcy = m®y% = 1. The molality of each ionic species, K+ and Cl-,
is also unity, so that we need the additional assumption that not
merely the mean activity coefficient, but that of each separate ion,
is also unity, before we can write:

%o = Ok + G-
In the case of zinc chloride, the relation
Gzac, = Gacr, + RT In gz,
requires that in the standard state
azacy, = 1 = 4m®y%

The standard state is therefore again one of mean molality unity,
and unit mean activity coefficient. The molality of zinc chloride in
the standard state is, however, 4-1/3, that of the zinc ion is 413,
and that of the chloride ion 2 x 4-%3, It thus appears that the
molality of the chloride ion is different for the standard states of
potassium chloride and of zinc chloride; this is undesirable as we
obviously need a unique standard state for each ion (on a given
concentration scale). This difficulty can be overcome as follows.

Imagine one mole of zinc ion to be concentrated from the hypo-
thetical solution of molality 4-1/* to a new one of molality 1, while
two moles of chloride ion are diluted from a hypothetical molality
2 X 4-V3 to one of molality 1, the new solutions retaining the ‘ideal’
quality that yz,++ = yg- = 1. The free energy gained by the zinc
ion will be:

RTIn472 =1/3RTIn 4
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while that gained by the chloride ion will be:

—2RTIn(2 x4V = —RTIn4+ §RTIn4

The net free energy change for the whole process is therefore zero,
and we can write:

Ghucr, = Glper + 2GY-

where G%,.. and G} refer to standard states for the separate ions,
which are hypothetical states of unit molality and unit activity
coefficient. This logical difficulty which arises with salts of un-
symmetrical valence type serves to emphasize the importance of
choosing a hypothetical standard state; the corresponding steps
could not be taken were we using an actual state of the solution as
standard state.

Exactly similar considerations apply to the entropy in the
standard state. For any electrolyte, therefore, we can write the free
energy, entropy, el., in the standard state as the sum of values for
the separate ions in their standard states, with the appropriate
numerical weightings as indicated by the chemical formula of the
electrolyte; and there is no inconsistency in defining the standard
states as being hypothetical ones of mean molality unity for the
electrolyte, and of molality unity for the separate ions. (This point
is also of importance in defining the standard electrode potential
for a half-reaction.)

If we arbitrarily assign to some particular ion in its standard state
in solution a given partial molal entropy, the partial molal entropies
of all other ions in the standard state can be calculated from the
measurable entropy sums for anions and cations. The usual con-
vention is to write $§. = 0, which has the advantage of consistency
with the usual definition of standard potentials relative to that of
hydrogen; so that, to take a familiar example, the conventional
lonic entropy of zinc ion may be readily computed from the tem-
perature coefficient of the standard potential of zinc and the known
entropies of zinc and hydrogen by considering the reaction:

Zn + 2H* - Zn*+ + H,

A recent summary by PoweLL and LATIMER'®) (Table 3.3) gives
values of the ionic entropies of a number of simple ions computed
from the best available data; a more extensive list is given by
LATIMER, PiTzER and SmrTH(22), Some obvious generalizations can
be made about the ionic entropies in Table 3.3. First, for a given
charge, the entropy increases with atomic weight; secondly, for
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approximately constant atomic weight, as in the ions Na+, Mg++
Al+++, the entropy decreases rapidly as the charge increases. Powell
and Latimer point out that the values can be represented with very
fair accuracy by the equation:

S$°=3RIn W+ 37 — 270 |z|/r?

Table 3.3
Conuventional Ionic Entropies at 25°C (298-16°K), computed relative to 8%, = 0 in the
kypothetical standard state of one gram-ton per kg of water.

S° §° s
fon cal deg-? fon cal deg—? Ton cal deg-?

mole-? mole-! mole~t
H+ (0-00) Mg++ - 282 Al+++ - 749
Li+ 34 Cat+ — 132 Crt++ -~ 735
Na+ 14-4 Sr++ - 94 Fet++ - 701
K+ 24-5 Ba++ 30 Gatt+ — 83
Rb* 29-7 Mnt+ -20 Int++ -~ 62
Cs+ 318 Fet+ — 271 Gd+++ ~ 43
Ti+ 304 Cut+ ~ 236 Utts - 36
Agt 1767 Zn*+ — 2545 Put++ -39
F- -23 Cd++ - 146 Uttt ~ 78
Ci- 13-17 Sn++ - 59 Putt++ — 87
Br- 1925 Hg++ — 54
I- 2614 Pb++ 51
OH- - 25 $-- - 64
SH- 14-9 |

Data from PoweLt, R. E. and LaTiMER, W. M., J. chem. Phys., 19 (1951) 1139,

where W is the atomic weight, |z| the valency treated as positive
regardless of sign, and r, an effective radius of the ion in solution,
which is taken as 1-0 A more than the crystal radius for anions and
2:0 A more for cations.

In discussing the entropy and energy changes involved in the
process of solution of ions it is desirable to eliminate any contribu-
tions due to the physical state of the pure solute. Thus, a com-
parison of the free energy changes when various substances dissolve
from the solid state into the standard state in solution would involve
the varying stability of the various crystals considered: to avoid
this difficulty it is useful to compute the energies and entropies of
hydration of ions, not from the solid state, but from a hypothetical
gaseous state having the properties of an ideal gas.

The entropy of such an ideal gas can be computed by the methods
of statistical mechanics. For monoatomic gases, the Sackur-
Tetrode equation may be written!2®:

Sy = 2:303R(2 log W + 3 log T — log P + log Q, — 0-5055)
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(W = atomic weight, P = pressure in atm., Q, = the multiplicity
of the ground state.) For atoms or ions of the inert-gas structure,
@, = 1, and this expression reduces at 25°C and for one atmosphere
pressure to:

S = (6-864 log W + 26-00) cal deg=! mole~!

The standard entropy of hydration of a given electrolyte, S,
may thus be computed as the sum of its standard ionic entropies in
solution, less the corresponding sum calculated for the ideal gas at
some specified pressure:

82 = Sow. —

The gas pressure may be taken as one atmosphere, though a
pressure corresponding to a concentration of one mole per litre has
something to recommend it since in this state the actual concentra-
tion of ions in the gas is close to that in the standard state in solution.
Inter-conversion between these different standard states is a trivial

22.
matter, the entropy term being R In (-2—;31—)

The heat content change in passing from the hypothetical gas
state to the standard state in solution can be obtained as follows:

The crystal lattice energy AH,. is defined as the energy
required to separate the ions of the crystal to infinite distance.
Methods for its computation from thermal data are given by
PauLing®®. The heat of solution of the crystal to infinite dilution
AH,,,. is obtainable by calorimetric measurements; since the heat
content of the solute in the standard state is the same as at infinite
dilution, AH,1,. also represents the heat of solution into the standard
state. For a crystal MX we therefore have:

MX(s) = M+ 4 X~ (in solution of infinite dilution) AH = Af,,
MX(s) - M+(g) + X-(g) (infinite separation) AH = ARy,
Hence for the process:
M+(g) + X-(g) - M+ + X- (solution, standard state)
we have the heat of hydration
ARy = ARy, — Al gy,

Since we are assuming the gaseous ions to have ideal properties,
which include the heat contents being independent of pressure, the
quantity AH, so calculated is equal to the heat of hydration
ARY, between the chosen standard states. From the heat and
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entropy of hydration, we can then obtain the standard free energy
of hydration AG}, by the relation AG), = ARY, — TASY,. Free
energies and entropies of hydration so calculated refer to sums for
anions and cations. It is of great interest to attempt their separation
into contributions for the separate ions. This involves, in the case
of the entropy, the fixing of the absolute entropy of some one
aqueous ion; the absolute entropies of other ions can then be
obtained from their standard entropies (usually based on $§. = 0)
and those of the gaseous ions can be obtained from the Sackur-
Tetrode equation, giving the required individual AS}, as a differ-
ence. In the case of the free energy, AGY, for one ion must be fixed.
LATIMER, PrTzER and Sransky‘®® and independently VERWEY(26),
have considered this problem, and arrived at nearly identical con-
clusions. Both use effectively the same standard states (the former
one mole per litre in the gas state, and the hypothetical molal
solution; the latter equal low concentrations in the gas and the
liquid) and both make use of Born’s equation:

2
_AG=(1_l)e_
€

for the energy of a sphere of charge e and radius r immersed in a
medium of dielectric constant ¢; Latimer et al. conclude that
AGY, for the chloride ion is — 842 kcal/mole and Verwey that it
is — 86; for the other alkali and halide ions the agreement is
similarly good. Latimer et al. have also made calculations of the
absolute entropies of separate ions, again making use of the Born
expression; they conclude that the absolute entropy of the chloride
ion in the hypothetical molal standard state is about 15 cal deg-!
mole-!. Its standard entropy relative to hydrogen ion (Table 3.3)
being 13 cal deg~? mole-?, it follows that the absolute entropy of
the aqueous hydrogen ion is about 2 cal deg~? mole~!, Earlier,
EastMAN and Younc!®" estimated 18-1 cal deg—! mole—! for the
absolute entropy of the chloride ion; thus it seems probable at
least, that the absolute entropy of the aqueous hydrogen ion in the
hypothetical molal solution is not far from zero and that, since most
ionic entropies are in the range 10-100 cal deg~! mole-?, there will
be only a small error involved in treating the standard entropies of
Table 3.3 as absolute entropies for the separate ions. The free
energies and entropies of hydration computed by Latimer and his
co-workers for the separate ions are given in Table 3.4.
VERWEY® emphasizes the fact that the hydration energies of
the halide ions are substantially larger than those of cations of the

69



3 THE STATE OF THE SOLUTE IN ELECTROLYTE SOLUTIONS

same size. Fluoride ion, for example, has nearly the same crystal
radius as potassium ion, yet the free energies of hydration are
— 114 and — 73 kcal/mole respectively (see Table 3.4). This is
consistent with the observed limiting mobilities A}. = 55-4¢ and
A%+ = 73-5 at 25°, which suggest a much stronger interaction
between the fluoride ion and water molecules than between the
potassium ion and water molecules; that, in fact, the fluoride ion
is more ‘hydrated’ than the potassium ion. No other pair of ions
in Table 3.4 has such nearly equal radii as K+ and F~; the nearest
approach to equality among the others being with Cs+(r, = 1-69 A)
and Cl-(r, = 1-81 A). In spite of its larger size and therefore
weaker surface field, chloride ion has a substantially higher hydra-
tion energy than caesium ion. In this case, however, the ionic
mobilities are practically equal (4%;- = 76-35, A¢,» = 77-26 at 25°).
It seems likely that these ions are too large to be ‘hydrated’ in the
sense of having a permanent hydration sheath, since they all

Table 3.4

Free Energies and Entropies of Hydration of Monovalent Ions at 25°C. Standard states of
one mole per litre for gaseous ions and hypothetical molal solution for aqueous ions.

- Acm —AH], — ASh Teryst. A

kcal mole-? kcal mole-! | cal deg—! mole—? (Pauling)
Li+ 114-6 121-2 22 0-60
Na+ 89-7 94-6 17 0-95
K+ 735 75-8 8 133
Rb* 67-5 69-2 6 1-48
Cs+ 60-8 62-0 4 1-69
F- 1139 122-6 29 1-36
Cl- 84-2 88-7 15 1-81
Br- 78-0 814 12 1-95
I- 70-0 72-1 7 2:16

Data from LaTiMEr, W. M., PrT2ER, K. S. and Sransky, C. M., J. chem. Phys.,
7 (1939) 108,

Note: The entropies of hydration given here differ from those in Table 1.4
because of the adoption of different standard states and a different value of the
absolute entropy of chloride ion. Frank and Evans used a standard state of one
atmosphere for the gaseous ions, Ny = 1 for the solution, and 18-1 cal deg~! mole-?
for the absolute entropy of chloride ion where Latimer ¢t al. take 15.

These differences lead to Frank and Evans’ values for the entropy of hydration
of monovalent cations being less than Latimer's by Rln (224 x e x 55-51)
4+ 3-1 = 17-4 cal deg~? mole~?, and for monovalent anions by

Rin (22-4 x g—g-g x 55-51) — 3.1 = 11-2 cal deg~! mole-!

The values of reryet. are taken from Pauvring, L., ‘The Nature of the Chemical
Bond’, Cornell University Press (1940); see Appendix 3.1,
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exhibit much the same rather high mobility (4¢ ~ 77 at 25°). If
negative ions comparable in size with lithium (r = 0-6 A) or
sodium (r = 0-95 A) existed, it seems highly probable that they
would be more strongly hydrated and possess lower mobilities than
these cations.

Verwey has considered in detail the interaction of both positive
and negative ions with water molecules and has succeeded in
accounting rather well for the dependence of the hydration energy
on the sign of the ionic charge. Thus for an ion of 1:36 A radius he
calculates 75-79 kcal/mole for a cation and 102-122 kcal/mole for
an anion, which is clearly consistent with Table 3.4. The lower and
upper limits quoted were obtained by the use of Verwey’s models
I and II for the charge distribution in the water molecule (see
Chapter 1).

PoweLL and LATiMER 2! have recently pointed out the curious fact
that the electrostatic contribution to the entropy of aqueous ions is
apparently proportional to the first power of the valency of the ion,
rather than to its square as would be expected from Born’s equation,
and have suggested that such a result could arise from the inability
of the water dipoles in the region close to the ion to rotate freely.

One must at present conclude that although the study of the
energy and entropy of ions in solution gives some useful insight into
the nature of ion-solvent interactions, it does not provide anything
approaching a definite answer to the problem of identifying the
kinetic entities in the solution. A good deal of the difficulty lies in
the arbitrary nature of the division of free energy and entropy
changes, measurable only for the electrolyte as a whole, into
separate ionic values. This arises from the nature of thermo-
dynamic arguments, which are essentially independent of the detailed
molecular picture of the system. In electrical conductance, on the
other hand, we encounter properties which are in principle and in
practice determinable for the separate ions, viz., the limiting ionic
mobilities; and it is by the fuller understanding of the hydro-
dynamics of small particles that progress towards a better picture
of ionic solutions is likely to be made.
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4

IONIC DISTRIBUTION FUNCTIONS
AND THE POTENTIAL

THE modern quantitative theory of electrolyte solutions is based on
the concept of the interaction between the thermal motions of the
ions and their electrical attractions and repulsions, and also involves
in its higher refinements considerations of the physical dimensions
of the ions and of their interactions with solvent molecules.

A fundamental idea in the theory of liquids in general is that of
the ‘distribution function’ which gives the probability of finding a
particle (molecule or ion) in a given position relative to another
particle. In simple pure liquids the distribution-function has radial
symmetry, i.¢., it depends only on the distance between the particles,
and not on their mutual orientation. It shows a marked peak at
the distance corresponding to the nearest neighbours, i.c., to the
first layer of molecules surrounding the central molecule; this is
followed by one or two subsidiary peaks, and thereafter the distri-
bution function flattens out to an effectively constant value, meaning
that there are no preferred positions for molecules more than a few
diameters distant from the central molecule considered. Such a
radial distribution function is illustrated for the case of pure water
in Figure 1.3. This situation is described as showing ‘short-range
order’ and results from the fact that the intermolecular forces
involved are of short range, e.g., ‘van der Waals’ forces, dipole-
dipole interactions, et., so that only at very small distances can they
overcome the tendency of thermal motions to produce a purely
random distribution.

The opposite extreme is found in the case of ionic crystals, where
(except for minor lattice defects) the distribution function is charac-
terized by a series of equal peaks at equal intervals of distance, and
is, furthermore, strongly dependent on the direction chosen. In
passing, it is interesting to note that very concentrated electrolyte
solutions show definite traces of ‘crystalline’ structure, so that the
long-range order characteristic of crystals can persist to some extent
in such solutions'?,

In dilute non-electrolyte solutions, the distribution of solute is
entirely random, subject only to the restriction that two particles
cannot approach within a certain distance given by mutual contact,
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4 IONIC DISTRIBUTION FUNCTIONS AND THE POTENTIAL

Beyond this distance the distribution function is independent of
both distance and direction. In an electrolyte solution, the distribu-
tion of ions results from competition between coulomb electrical
forces, which are long-range forces in the statistical sense, and the
thermal motions; this distribution is not random even at consider-
able distances.

If the distribution of ions is known, it is possible to calculate the
electrical potential arising from this distribution; but the calcula-
tion of the distribution requires the use of the electrical potential.
The first attempt to solve this problem was made by MILNER®® in
1912 by a laborious method of numerical summation of interaction
energies for all configurations of the system; this treatment is
historically interesting, but has been superseded. The modern
theory was founded by DesvE and Hicker® in 1923; refinements
of their treatment of both equilibrium and transport properties have
been made by numerous workers, chief among whom have been
BjerrRUM (1926), OnsaGER® (1929) and FALKENHAGEN'® (1952).
Here we shall make no attempt to follow the historical development
of the theory, but shall aim throughout at obtaining the modified
forms which have proved most useful in treating the properties of
electrolyte solutions at reasonable concentrations.

THE FUNDAMENTAL EQUATION FOR THE POTENTIAL

The essential feature of the Debye-Hiickel theory is the calculation
of the electrical potential y at a point in the solution in terms of the
concentrations and charges of the ions and the properties of the
solvent. This is achieved by the device of combining the Poisson
equation of electrostatic theory with a statistical-mechanical
distribution formula.

Poisson’s equation is the most general expression of Coulomb’s
law of force between charged bodies and is written:

4
Vztp=-—-—8-p .40

where ¥ is the potential at a point where the charge density is p,
¢ being the dielectric constant of the medium in which the charges
are immersed. The differential operator V2, which may also be
written (div grad), is given in Cartesian coordinates by
a2 132 P 1]

(5 + 3+ 53)

In the special case of a distribution of charges possessing spherical
symmetry about the origin, y depends only on the distance r of the
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point considered from the origin, and in this case the partial
differential operator V2 reduces to a total differential operator:

d .
Ve = A3 (r2 d_r) (for spherical symmetry)

so that equation (4.1) becomes:

L), g
rtdr dr £

If a particular ion is chosen as the origin of coordinates and no
external forces are acting on the ions, the time-average distribution
of charge about that ion will obviously have spherical symmetry.
Equation (4.2) is therefore taken to apply to the time-average values
of the potential and the charge density p at distance r from the ion.
Strictly speaking, Poisson’s equation is valid for a system of charges
at rest, but it is assumed that the time-averaging process will take
care of any difficulties in this respect.

The average charge-density p at a point depends on the prob-
abilities of an element of volume at that point being occupied by
various kinds of ions. We denote the various ionic species by sub-
scripts 1, 2 . . . s and their algebraic valencies by z;, so that the
ionic charge ze is positive for a cation and negative for an anion.
Since the solution as a whole is electrically neutral,

éniz,. =0 ceee(4.3)
i=1

where n; denotes the average number of i-ions per unit volume, i.c.,
the bulk concentration. Now we select one particular ion, say a
Jj-ion, as the centre of the coordinate system. The condition of elec-
trical neutrality tells us that the net charge in the whole solution
outside this ion is — z;e. Furthermore, the average charge density
at any point outside the central ion must be of opposite sign to the
charge on the central ion. For example, if a cation is chosen as the
centre of coordinates, in any spherical shell at distance r from it
there will, on an average, be more anions than cations; the shell
will therefore carry a net negative charge, and the totality of such
shells, forming the whole solution outside the central ion, will carry
a total negative charge equal to the positive charge of the cation.
This may be expressed by the equation:

-]
f 4mr,dr = — z,e ceeo(49)
a
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The distance a represents the limit within which no other ion can
approach the central ion. Here the subscript j has been attached
to p as a reminder thatp is a quantity defined only in the coordinate
system based on the j-ion as centre. It would be useless to talk
about the time-average charge density at a fixed point in space
(fixed, say, relative to the containing vessel), for such an average
would obviously be zero everywhere.

The probability of an ion of species i being found in a volume-
element dV at distance r will clearly be greatest when its electrical
potential energy at that distance is lowest; it must also be propor-
tional to the bulk concentration n, of the i-ions, and to the volume
dV of the element considered. At great distances from the central
ion the electrical forces due to the central ion must be negligible,
and the probability must approach n,dV simply. Beyond these
restrictions there is no absolute means of knowing what the distribu-
tion-function is. Debye and Hiickel assumed the Boltzmann
distribution law, according to which, since the electrical potential
energy of an i-ion is z,eyp,, the average local concentration n; of
i-ions at the point in question is:

€

n; = n; exp (—-%) ... (4.5)
Once more the subscript j attached to y reminds us that, likep, ¥ is
only meaningful in the (moving) coordinate system based on the
J-ion as centre. Before discussing alternative distribution laws we
shall proceed to evaluate p; from (4.5), the better to see what effect
the alternatives may have. Since each i-ion carries a charge ze,
the net charge density at the point considered is, summing for all
ionic species,

Z.€
ps = 2 nze exp (— k—;.,’) ce..(4.6)

According to equation (4.6), the Boltzmann distribution thus leads
to an exponential relation between the charge density p and the
potential y. However, a theorem of electrostatics, known as the
principle of the linear superposition of fields, states that the potential
due to two systems of charges in specified positions is the sum of the
potentials due to each system separately. Thus, if all the ionic
charges and therefore the charge density were doubled, the potential
at any chosen point would according to this principle be doubled
also. Yet according to equation (4.6) the potential would not be
doubled, since (4.6) is an exponential and not a linear relation.
This dilemma is of fundamental importance in electrolyte theory.
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Its significance becomes clearer if the exponc.ntials in (4.6) are
expanded in the form:

a2 A
e"‘=l—x+a—§-!'+...

when we obtain:

§ n;zee (zep\?
P = En‘zie - znizie (z w’) + z z" (zzj?’) — e s .
) e (47)
The first term on the right of (4.7) vanishes by the condition of

electrical neutrality (4.3), and if z.ep; € kT, only the term linear
in y is appreciable, giving the result:

-3 .z"e’w,

t=1

..(4.8)

The result in this approximate form is consistent with the super-
position principle, since it states that y is directly proportional to p.
The approximation is, however, valid only when the potential
energy z;ey, of the i-ion is small compared to its thermal energy
kT; and though this may well be true for the majority of the i-ions
in a dilute solution, which are at relatively great distances from the
central j-ion, it is not true for those which are close to the j-ion.
Furthermore, it is well known that even fairly dilute solutions of
electrolytes show large deviations from ideal behaviour, and the
reason for this is that the energy of the electrical interactions
between ions is, in fact, not small compared to their thermal energy.
Nevertheless, we shall use the Debye-Hiickel expression (4.8) for the
charge density, but must recognize that in so doing we are in fact
rejecting the Boltzmann distribution (4.5) and replacing it by the

linear relation:
, Zey
ni = n, (1 — ——;T’) ... .(4.9)

There is one special case where this approximation is less drastic:
when we are dealing with a solution of a single electrolyte of sym-
metrical valency type. Putting 7z, = — z, and 2, = n, equation
(4.7) for the charge density becomes:

218Y; 2,€
p;=0 —2n,z1e(;ﬂ?’) +0 —}nlzle( 1 w’) +0—

(4 10)

all the terms in even powers of y vanishing. In this spccial case,
therefore, the approximation (4.8) involves no error of order
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2

(%})’) as it does in the general case. This approximation is
forced upon us by the nature of the coulomb forces, although it
means abandoning the Boltzmann distribution, a well-established
principle of statistical mechanics; therefore the resulting theory
should work best in cases where the formula (4.8) for p; involves the
least departure from the Boltzmann distribution. Equation (4.10)
shows that this applies for solutions of uni-univalent electrolytes,
and we shall find in practice that the theory has its most pronounced
quantitative success for these.

We therefore proceed with the derivation of the theory, using
expression (4.8) corresponding to the distribution law (4.9), for the
charge density p;. Substituting this in the Poisson equation (4.2)
for the case of radial symmetry, we have:

1d dy;, 47e?
e By — . = sy
2ar (r lr) £IT§.- n23P: = Koy, e (411)

where « is defined by:
4me? 3 n,23
i
kT

K=

cee . (4.12)
and is a function of concentration, ionic charge, temperature and
the dielectric constant of the solvent, having the dimensions of a
reciprocal length. Equation (4.11) is a linear second-order differ-
ential equation between y and r. It will be noted that had we
retained the exact Boltzmann distribution in calculating p, (equation
4.5), we should have obtained a much more difficult non-linear
differential equation for y; this difficulty applies equally to the
Eigen-Wicke distribution function discussed below.

The substitution 2 = gy reduces equation (4.11) to the standard
form:

—_— = a2
drz—Ku,

which has the general solution:
u = Ae™ + Be
e-—Kf e‘ﬂ'
A -4+ B
or v, =4 . + B
where 4 and B are constants of integration to be determined from

the physical conditions of the problem. Since the potential must
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remain finite at great values of r it is necessary that B = 0. The
—KT

evaluation of 4 may be made by putting y; = AT into the

expression (4.8) for the charge density obtaining:

,z,e K% T

ATZ =-4A4

r

Using this value for p, in equation (4.4), which equation is in effect
a statement that the solution as a whole is electrically neutral, we
have:

-]
Ax’af re~ dr = zje,
a

from which on integrating by parts we obtain:
z2;e Ul

g€ | 4 ka
so that the potential y is given by:

b

a —KT
.,,,___‘_’e.l—“— L o (413)
£ +xka r

Equation (4.13) is Debye and Hiickel’s fundamental expression for
the time-average potential at a point at distance r from an ion of
valency z; in the absence of external forces; from it all the various
manifestations of the interionic forces may be calculated. The
quantity 2 has been introduced as the ‘distance of closest approach’
of the ions, i.e., the sum of their effective radii in solution. However,
it is implicitly assumed that g is the same for all pairs of ions, which
means that they are all taken as spheres of diameter a. This is a
rather drastic approximation in the case of electrolytes such as
lanthanum chloride where there is strong reason to believe (e.g.,
from a consideration of the ionic mobilities) that the sizes of the ions
actually differ considerably. It must also be remembered that
equation (4.13) has been derived on the basis of the linear distribu-
tion function (4.9), except in the case of symmetrical valency-types
where it is consistent with a closer approximation to the Boltzmann
distribution, viz.,

. ziey;) | 1 (zey;)?
ni—n,-[l (kT)+2(kT)] .o..(419)

ALTERNATIVE DISTRIBUTION FUNCTIONS
The first essential modification to the Debye-Hiickel evaluation of the
potential given above was made by MULLER? and by GroNwaLL,
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LAMER and Sanpvep'®, This consisted of accepting higher terms
in the expansion of the exponential Boltzmann distribution func-
tion, resulting in a series expansion for the potential, the leading
term of which was identical with that of Debye and Hiickel. We
shall not deal further with this approach, details of which may be
found in the original papers.

EiGeN and Wicke® have attacked the problem of the distri-
bution function for ions, on a somewhat different basis. If one
considers the Boltzmann distribution used by Debye and Hiickel,

n; = n, exp (— zk;@;f,)

one sees that for the case where the i-ion is of opposite sign to the
central j-ion, the argument of the exponential is positive, so that n;
is greater than n,; i.c., the concentration of anions around a given
cation is greater than the average concentration of anions in the
bulk. There is, however, a physical upper limit to the concentration
of anions; this is reached when, because of the size of the anions,
no more can be packed into a given volume-element. Eigen and
Wicke therefore introduce a quantity, N, the ‘besetzungszahl’ or
number of sites available to i-ions in unit volume; this is the
reciprocal of the effective volume v; occupied by a single (hydrated)
t-ion. They then modify the distribution function in such a way
that it is impossible for n; to exceed N;. This is done by writing:

i/ (Ns — nd) 2i€Y;

n (N — ) —exp( kT) «...(4.15)
t.e., by replacing the actual concentrations n; and n, in equation
(4.5) by the ratios of these to the numbers of empty sites available
per cubic centimetre for ions of the kind i. However, just as in the
Debye-Hiickel treatment the exponential Boltzmann function has
to be approximated to a linear expression, so with this equation the

approximation:
n zey, (. m
Y (l .N;) ee..(4.16)

is ultimately necessary, and it is on this distribution function that
the theory of Eigen and Wicke is actually based. This should be
compared with equation (4.9). The approximation by which
equation (4.16) is obtained from equation (4.15) is, however, not
altogether convincing.
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From this distribution function there follows for the charge-

density the result:
n z,e’zp ng
--3(5) (1 -%)

The calculation of the potential y, then follows the same lines as
those given on pp. 78-79 and leads to the result:
ze e g

l+xa r

€
n \ 12
where K = [ T an,(l —E)]

¥, =

T 1
' ¢
* a L

Figure 4.1
Defining an average number Nof sites per‘molecule’ ofelectrolyte by:
1 2hE
F 9 2,

and denoting the number of ‘molecules’ of electrolyte per cubic
centimetre by n, one may write:

K'2=Kz(l —%)

where « is the ordinary quantity of the Debye-Hiickel treatment.
Eigen and Wicke further propose that the mean effective volume

of an ion should be calculated in terms of the parameter a, the
distance of closest approach of the ions, by the relation,

d oty

3 2
This is, however, palpably inconsistent with the potential derivation
since if a is the distance of closest approach it is the sum of the
effective ionic radii, not their mean (Figure 4.1). If the ions have

radii a/2 one has:
4 [(a\d
U =V = :;’ k3 E

v + vy) = §md®
81
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It would thus appear that the calculations of Eigen and Wicke are
based on the use of effective volumes which are some eight times
too large. Their justification for this course is that the value of a
which affects the potential is the distance of closest approach of
oppositely charged ions for which mutual partial penetration of the
hydration shells may occur, while the value limiting the local con-
centrations of ions of the same sign (and thus giving W) is larger
since such penetration will not occur.

In point of fact, it is easily shown that the simpler Boltzmann
distribution adopted by Debye and Hiickel can never lead to
physically impossible high values of the local concentration of ions
of one kind, when account is taken of the dimensions of the ions.
The argument runs as follows:

It is clear that the maximum physically possible value of n/ will
occur when the i-ion is of opposite charge to the ‘central’ j-ion,
when the concentration of the solution is as high as possible, and
when the ions are as small as possible. For a fully dissociated 1 : |
1 e
2 kT’
ions smaller than this, Bjerrum has shown that ion-pair formation
will occur so that the electrolyte can no longer be regarded as fully
dissociated (see Chapter 14). Now the maximum theoretically
possible concentration of spheres of diameter a will occur when they
are in contact, with close-packing, and is given by:

electrolyte, the minimum diameter of the ions is a = for

max) = 3 spheres per cubic centimetre

Since these spheres must be half anions and half cations, we have
as the maximum bulk concentrations attainable:

V2

7 (max) = Ra(max) = 948

The maximum value of « is therefore given by:
4mer V2
men) = T

and the maximum value of («xa) by:

tmet V3

(Kza2)(max) = 6‘7271- 2
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. 1 e
Now putting a = 2 T Ve have,
(x%0%) (max) = 87V'2 = 35:54, or (ka)maxy = 596

This is the highest theoretically attainable value of («a) for a fully
ionized 1 : 1 electrolyte: in aqueous solutions at 25° it demands a
concentration of 26 mole/litre, which is never obtained in practice
owing to limitations of solubility.

The Debye-Hiickel expression for the potential at distance r from
a cation in a 1 : 1 electrolyte:

e o0 o
Y=z

1 4 ka T
reaches a maximum, as far as neighbouring ions are concerned, at
.. . . 1 e?
the minimum physically possible value of r,r = a = 3 SET where:

_e_ 1
Pmax) = 7 a(l + ka)

At this distance, i.c., in contact with the central ion, which we will’
take to be a cation for the present illustration, the concentration of
anions is at its maximum given by:

, et 1
Ma(max) = Ma(max) CXP [m' ;(fT.a;]

. . 1 et
In this expression, we now put a = 3T and «a ~ 6, when the

result becomes:
N3 (max) = Mg(max) &l = 1-33n3(maxy = 0-67nmax,)

If instead of the exact Boltzmann distribution we assume the
approximate distribution law (4.9), the corresponding result is
N3 (max) = 1288 (may).

The important conclusion to be drawn from these figures is that
even when the most extreme conditions of concentration and small
ion size are assumed, the Debye-Hiickel formulae do not lead to
impossibly high values for the local concentration of ions: for the
figures show that at the worst only two-thirds of the available
‘sites’ near the central ion need be filled by ions of one kind in order
to satisfy the equations of the Debye-Hiickel theory. At lower
concentrations than the extreme one considered here, t; will be
greater and ny/n, will therefore be greater than 1:33; but this does
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not involve any difficulty since n; will be much smaller and =} is
therefore unable to exceed the physically possible limit.
It is also of some interest to estimate the maximum value of the
e

quantity (.%p_;) which measures the ratio of the electrical energy

of an i-ion to its thermal energy. According to the Debye-Hiickel

equation for . this quantity is given by:
ziey; _ Zizet &0 e~
BT = ekT | +xa r

and is greatest when the i-ion is as close as is physically possible to

the central j-ion, i.c., at r = a. If we take as the minimum a value
of interest the Bjerrum critical distance (cf. eq. 14.1):

o (417)

o |2122]€®
== kT
this gives:
eyl _ 2
kT (max) 1 + Ka

Thus the electrical energy of the i-ion does not exceed 2k T, and
diminishes as the concentration increases. The maximum value is
of course only attained by ions in actual contact with the central

. Z€Y; . . .
ion. To evaluate ;ﬂ'l_’: for greater distances, we may consider dis-

tances, a, 2a, 3a, eic.: at the distance r = pa we have by equation
(4.17):

Z,-eipi) _ z;2ie* e<(1-pla
KT )oopa ckT  pa(l F #)

This quantity is shown in graphical form for several values of («a)
in Figure 4.2. It will be seen that the ratio of the electrical to the
thermal energy cannot be regarded as small compared to unity in
dilute solutions until considerable distances from the central ion are
reached; but that, rather unexpectedly, this ratio is smaller and
more rapidly decreasing with increasing distance in more concen-
trated solutions. At distances up to a few ionic diameters, however,
the approximation:

28y 4 _ ey
exp (‘ kT ) ~ kT

made in the Debye-Hiickel treatment cannot be justified on the
ground that z;eyp, is small compared to kT as is usually claimed:
instead it must be justified on grounds of mathematical expediency
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in order to obtain a distribution function consistent with the
principle of the linear superposition of fields. Unfortunately, we
now see that this linear approximation can lead to absurd results in

20

st

Iz,;orj/ﬁfl
<
3
H

-2
Pz

Figure 4.2. Variation of the quantity \zeyp,/(RT )| with concentration and with distance
JSrom the central j-ion. The unit of distance is taken as the Bjerrum critical distance for

1
JSon-pair formation, a = 3 Iz_.ﬁl_e_

T For 1: 1 electrolytes in water at 25°, a = 3-57 A,

and the curves for xa = 0-1, 0-3 and 1-0 thus correspond to concentrations of 0-0073 N,
0:0653 N and 0-726 N respectively.

certain cases; for the local concentration of ions of the same species
as the central ion is given by:

—— (1 - ——zfq'.”’)

and if, as it now appears, there are regions of distance and concen-
tration where z;,eyp, > kT, the local concentration of j-ions becomes
negative! This absurdity is, however, remedied if we consider the
next term of the expansion of the Boltzmann exponential expression

and write: 1 .
’ Zsey Zsey
nj=n, [1 ;T’ 5 ( ;T’) ] ... (4.18)

a course which, as we have shown above, is justified for symmetrical
valency-type electrolytes where it does not violate the requirement
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of linear superposition. For since outside the Bjerrum region
zsey; < 2kT, nj cannot by equation (4.18) fall below zero. Thus
once more we reach the conclusion that the theory is only really
adequate for symmetrical electrolytes. The use of the modified
distribution function proposed by Eigen and Wicke offers no solu-
tion of this particular difficulty, for as Figure 4.2 shows, the greatest
Zi€Y;
kT
where the extra factors introduced by Eigen and Wicke make no
material difference. We may, however, conclude from a study of
Figure 4.2 that, since the Debye-Hiickel treatment of the potential
problem is known from experiment to be successful for dilute solu-
tions of fully dissociated symmetrical electrolytes, it should, if any-
thing, be more so in more concentrated solutions; and for 1 : 1
electrolytes, at least, it does not lead to any physically absurd
distributions such as negative concentrations of ions, or concentra-
tions too high to be consistent with the known sizes of the ions. We
therefore intend to use the Debye-Hiickel expression (4.13) for the
potential as a basis for all our theoretical calculations, along with
the distribution function (4.14) for symmetrical electrolytes and
with the less adequate (4.9) for unsymmetrical ones.

The alternative distribution functions which we have discussed
offer no improvement in respect of the self-consistency of the
resulting theory, but have the disadvantage of adding considerably
to the complexity of the formulae.

values of the vital quantity are attained in dilute solutions,
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THE MEASUREMENT OF
CONDUCTIVITIES AND TRANSPORT
NUMBERS

METHODS OF MEASURING ELECTROLYTIC CONDUCTIVITY

THE requirements for precise measurement of electrolytic conduc-
tivity may be summed up as (a) accurate temperature control, ()
avoidance of polarization at the electrodes, and (¢) accuracy in the
electrical measurements themselves.

As regards temperature control, the majority of aqueous electro-
lytic solutions have a temperature coefficient of conductivity close
to 2 per cent per degree at 25°. That of the hydrogen ion is appreci-
ably lower, about 1-4 per cent per degree at 25°. If an accuracy of
0-01 per cent is sought, the thermostat should therefore be capable
of controlling the temperature to + 0-005° or better throughout
the measurements. When, as is frequently the case, the solution
studied has a temperature coefficient similar to that of the standard
potassium chloride solution used for the cell calibration, it is less
important to know the exact temperature with the same accuracy
provided that it is constant, for a constant error of a few hundredths
of a degree will largely be compensated by a corresponding change
in the conductivity of the standard. This, of course, does not apply
when the temperature coefficients differ appreciably or when the
measurements and the cell calibration are made at different
temperatures; in such cases sensitive and recently-calibrated
thermometers, or preferably a platinum resistance thermometer, are
desirable. The use of water as a thermostat liquid should be avoided
owing to undesirable capacity effects across the cell walls in a.c.
measurements and to the risk of electrical leakage currents in d.c.
measurements. A light paraffin such as kerosene is a satisfactory
thermostat medium at ordinary temperatures. The errors caused
by the use of water as a thermostat liquid were thoroughly investi-
gated by Jones and Josepus'V, who found differences of up to 0-5
per cent between the resistance in an oil- and a water-filled thermo-
stat. The errors varied in a complicated manner with the cell
design, the conductivity of the thermostat water, and the resistance
of the cell being measured; they were greater at higher frequencies
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and with high cell resistances, indicating that they arose mainly
from capacitance by-paths through the cell walls and the thermostat
water, Earthing the thermostat tank changed the sign of the errors,
and reduced their magnitude, but by no means eliminated them.
Rather surprisingly, they were smaller when the conductivity of the
thermostat water was increased by the addition of potassium
chloride.

Polarization errors are usually minimized by the use of audio
frequency alternating current for the measurements and by coating
the electrodes with a heavy deposit of platinum black, a system
initiated by Konrrauscu!®, While this procedure correctly applied
is undoubtedly effective, the use of alternating current enormously
complicates the electrical technique required for high-accuracy
measurements, owing to the need for compensation of capacitative
and inductive effects in the circuit. The only alternative is, however,
the use of electrodes which are truly reversible to one of the ions in
the solution; this permits the use of the simpler direct current
measuring techniques. Though the d.c. method has received
increasing attention in recent years the conventional a.c. method
seems likely to remain the standard one for general applications.

ALTERNATING CURRENT CONDUCTANCE MEASUREMENTS

In the simple Wheatstone bridge (Figure 5.1) used for d.c. resistance
measurements, the galvanometer shows no deflection at balance;
the potentials at 4 and B are therefore equal, whence R,/R, = Ry/R,.
In the a.c. bridge (Figure 5.2) the battery is replaced by a sinusoidal
alternating potential from an oscillator, and the galvanometer by
a suitable detector. The condition for balance (i.c., no signal in
the detector) is that the alternating potentials at 4 and B are of
equal amplitude and exactly in phase, which leads to the relation
Z4/Rs: = <islZs where the impedance £ is the a.c. analogue of
resistance.

Impedance is conveniently represented as a complex quantity
having the following properties: (i) impedances combine like resis-
tances, i.e., impedances in series add, while if in parallel their
reciprocals (admittances) add; (i) a pure resistance R has an impe-
dance & = R which is entirely a real quantity; (iif) a perfect con-
denser of capacity C has impedance £ = 1/(jwC) where w is angular
frequency and j is an operator having the mathematical properties
of v — 1, which represents a phase displacement of 90° between
current and potential; (iz) a pure inductance L has impedance
Z = jwL. This representation of impedances by complex numbers
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Figure 5.1

Oscillator

~

G =

Figure 5.2. Basic circuit of a.c. bridge for measurement of electrolytic conductance
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has considerable utility since equality of two impedances demands
equality of both real and imaginary parts, so that amplitudes and
phases in any part of an a.c. network can in principle be calculated
by methods formally similar to those used in d.c. work.

The design and construction of high-precision conductance
bridges was studied intensively by GRINNELL JonEs®-® and his col-
leagues and also by SHepLOVskY!1® and the principles they laid
down are the basis of today’s designs. Referring to Figure 5.2, the
ratio-arms Ry and R, are made equal (usually 1000 ohms) and of
identical construction so that the residual capacities between turns
and between the coils and nearby objects are exactly equal. The
usual device of winding with doubled wire ensures that the induc-
tances of all resistance coils in the bridge are negligible at audio-
frequencies. The measuring-arm R, may be a separate resistance-
box but is usually built into the same box as R; and R,. In parallel
with R, is a variable capacitor C, of maximum capacity 0-001 micro-
farad; this is necessary to obtain a sharp balance-point since the
cell will in general have an impedance {; which is not purely resis-
tive. A further valuable aid to a sharp balance-point is the ‘Wagner
earth’ comprising R; and Cy; the object of these components, which
are used in conjunction with the earthing-switch S, is to ensure that
at balance the potentials at 4 and B are not merely equal but are
actually earth-potential so that pick-up of hum and stray noise by
the detector is minimized. A rough balance is first obtained with
S§, in the position shown by the full line; then §, is turned to earth
and R, and Cg are adjusted to give a minimum signal in the detector;
S§, is then restored to its original position and a final balance is
obtained. Ives, PRYyor and FEATEs!l!? obtain an equivalent effect
by the use of two 1000 Q radio potentiometers connected across the
output of the oscillator, the moveable tappings being taken to the
bridge input.

The oscillator and detector are important auxiliaries. The oscil-
lator should give a good sinusoidal wave-form at all frequencies
from 500 c/s to several thousand. The amplitude should be variable
from a few volts down to very low values and both the output
terminals should be isolated from earth. It is best to isolate the
bridge from both the oscillator and the detector by good quality
transformers as otherwise the Wagner earth will not function pro-
perly. The detector consists first of one or two stages of amplification,
in which an automatic gain control may be incorporated to limit
the maximum signal when the bridge is far off balance. The ampli-
fier may be followed by a telephone headset, which is remarkably
sensitive around 1000 cfs, but the tendency today is to use a cathode
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ray oscilloscope which is much more versatile and less nerve-racking.
The horizontal deflection plates are fed from the oscillator and the
vertical ones from the amplifier; the out-of-balance trace is an
ellipse which becomes a horizontal straight line at balance. An
outfit of this kind can readily detect a variation of a few parts in a
million in the bridge setting.

Cell design. The object of the measurements is to determine the
pure ohmic resistance R, of the solution between the electrodes. If
the cell impedance <, consisted only of this resistance, R, would
equal R, at all frequencies and the capacitor C; would be required
only to compensate for capacity between the cell leads and for the
small capacity in parallel with the cell due to the action of its elec-
trodes as a capacitor with the solution as dielectric. In practice
there are several other sources of impedance which cause R; and C,
to vary appreciably with frequency. Some of these can be avoided
by proper design and the others are inherent in the electrode pro-
cesses. The former comprise the Parker effect and the effect of a
conducting thermostat medium discussed on p. 87. The Parker
effect arises when the cell leads pass near to the cell solution giving
the effect of a capacitor connected between one end of R, and some
point in the middle of R,; it can be avoided by spacing the leads
well away from parts of the cell containing solution as in the designs
shown in Figure 5.3. Mercury-filled lead-in tubes are often used but
are a nuisance: we replace them by heavy silver wires welded to
the outer ends of the electrodes beyond the seals.

Designs for electrode assemblies which can be used as dipping
electrodes in containers of any size are given by BRoby and Fuoss(!2),

The effects associated with the electrode processes themselves are
of interest and their understanding is necessary in order to eliminate
them from the measurements. KoHLRAUscH!®) showed that this
could be largely achieved by coating the electrodes with platinum-
black, when R, becomes practically independent of frequency; this
course is, however, not always possible since platinum-black may
catalyse unwanted reactions and may in dilute solutions adsorb
appreciable quantities of solute, making necessary emptying and
refilling of the cell until a constant reading is obtained. The
platinizing solution recommended by Jones and BoLLmGer® is
0-025N hydrochloric acid containing 0-3 per cent of platinic chloride
and 0-025 per cent of lead acetate; the lead acetate improves the
adherence of the deposit. The platinizing current should be 10 mA
Jem?, the polarity being reversed every ten seconds. Even a barely
visible deposit greatly reduces the frequency dependence and a
deposit corresponding to a few coulombs/cm? is ample.
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Electrode effects can also be eliminated by eliminating the elec-
trodes. This is done physically in the transformer bridge due to
CALVERTY® ¢t al., in which a loop of solution links a current trans-
former with a voltage transformer; and virtually by the double cell

L
RN

(c)

Figure 5.3. Typical conductivity cell designs for (a) moderate, (b) high, and (¢) low
concentrations; the last after Daccert, H. M., BaR, E. J. and Kraus, C. A,
. Amer. chem Soc., 73 (1951) 799

design of FEATEs, IVEs and PRYOR*? who use two cells with identical
electrodes but with different lengths of solution between them and
measure the difference in the resistances of the two cells, this differ-
ence showing only a small residual frequency dependence. They
also employ two independent leads to each electrode so that lead
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resistances can be completely eliminated by the ‘four leads’ method
used in platinum resistance thermometry. By these means they have
attained remarkable accuracy in the conductometric measurement
of ionization constants,(1%

The elimination of electrode effects from ordinary cells, without
platinization, is still of great importance. The modern theory of
electrode processes leads to a schematic representation of the con-
ductance cell shown in Figure 5.4, which is that proposed by Ives’
school® with the addition of the ‘Warburg impedance’ ~-W-. In this

A
7 (11
AAAAA i1
G
—1
G

Figure 5.4. Network elecirically equivalent to conductance cell

figure R, is the true ohmic resistance of the electrolyte, which is to
be determined. This is independent of frequency at audio fre-
quencies, because the Falkenhagen effect, associated with the relaxa-
tion of the ionic atmospheres, does not become appreciable until
radio frequencies are attained. In series with R, is the capacity C;
of the double layer of ions at the electrode surfaces: this is also
expected to be independent of frequency. Because of the small
thickness of the double layer, this capacity is surprisingly large,
often amounting to several microfarads per sq. cm. of electrode
surface. The current through R, is transported across the double
layer mainly by virtue of this capacity without any actual discharge
or formation of ions, for the cell gives definite resistance readings
when the potential across it is only a few millivolts, far too little to
cause electrolysis of most solutions at bright platinum electrodes.
However, some electrolysis will normally occur simultaneously, per-
haps through the depolarizing action of dissolved oxygen and the
discharge of ions of the solvent, and in some cases through reversible
discharge of ions of the electrolyte, for example in a cell with silver
electrodes in a solution of silver nitrate. The electrolysis process is
represented as a ‘faradaic leakage’ in parallel with the double layer.
In general, as shown by GRAHAME!® and by RaNDLEs,® it will
consist of two parts: a pure resistance R;, independent of frequency,
and a “Warburg impedance’ at the electrodes. For the full theory
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of the Warburg impedance, the original literature should be con-
sulted: here we merely note that it can be regarded as equivalent
to a resistance and a capacity in series, the impedance of both being
the same at any one frequency but both varying inversely as w?.
They can therefore be represented together by:

“W-= k(1 —j)/Ve

where k is a constant of dimensions (resistance x time-1). Solution
of the balance conditions leads to the result that, if the impedance
of the cell arm with the omission of Cy is denoted by Z, then:

1/R, = real part of !

from which R, may be determined in terms of R, C,, R; and k.
The following special cases are of interest.
({) R;infinite: the electrodes are ideally polarized and:

R, = R, + (w?CIR)1 o (8)

This is unlikely to arise in practice, as pointed out by Ives, Pryor

and Feates, because of the depolarizing action of dissolved oxygen:

it might perhaps be expected in solvents of very low self-dissociation

and with an electrolyte whose ions have high discharge potentials.
(i) If the Warburg impedance is negligible compared to R;,

R\Rs + R}
R(1 + w*CiRY) + R,

which, since in any ordinary conductance cell R, >> R, ap-
proximates well to:

Ry = R, + R /(1 + w?CIRY) .. (5.2)

This is the model proposed by Feates, Ives and Pryor as applicable
to a conductance cell with grey platinized electrodes; it also corres-
ponds to the behaviour of a cell with bright platinum electrodes in
an aqueous solution. Although equation (5.2) is ill-adapted to
graphical extrapolation to infinite frequency, it is found in practice!1?
that R, as obtained by solving it for three frequencies agrees well
with the value obtained by a linear extrapolation of R, against w=!.

(i) If C, is very large, so that its impedance is small compared
with that of the faradaic leakage, R, = R, at all frequencies. A
very near approach to this behaviour is found with heavily blacked
platinum electrodes.

(iv) Where the Warburg impedance is large compared to R; but
small compared to R,, one obtains solutions approximating to:

R, =R, + kiVo ....(5.3)
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This corresponds to the behaviour found by Jones and CHRisTIAN?
in their studies of electrode polarization, more particularly at silver
electrodes in silver nitrate solution or at platinum electrodes in acid
solutions. It does not appear to be as general as was thought earlier
for bright platinum electrodes: Jones and Christian themselves
found marked curvature of the R, vs. 1/V/w curves for such electrodes
in potassium chloride solution and Brobpy and Fuoss!!® report a
number of cases in which R, is quadratic ink/ VVw. These are presum-
ably intermediate between (if) and (iv).

To sum up, it is necessary when using bright platinum elec-
trodes to measure at a number of frequencies, preferably including
higher frequencies than the usual 2 Kc¢/s., and to extrapolate to
infinite frequency according to the kind of frequency dependence
observed.

Standards of specific conductance—The actual measurements are of
the resistance between two electrodes of fixed shape and size in a
cell filled with the solution. This resistance naturally depends on
the geometry of the cell as well as on the dimensions and separation
of the electrodes; it is therefore the invariable practice to calibrate
the cell by means of a solution of known specific resistance. It is
usual to define a cell constant a by

K., = a/R,

R being the measured resistance with a solution of specific con-
ductivity, K, in the cell. To provide such a standard, a great deal
of careful work has been expended on determinations of the specific
resistance of potassium chloride solutions. The standards generally
accepted today are those of JoNEs and BRADSHAW!®, and in view of
their fundamental importance the methods used in obtaining them
will now be described.

At the time the work was done, the accepted unit of electrical
resistance was the international ohm, defined as the d.c. resistance
at the ice-point of a uniform column of mercury 106-300 cm in
length and of 14-452]1 g mass. Thus a conductivity cell could be
calibrated in international ohm units by measuring its resistance
when filled with mercury at 0°C. Jones and Bradshaw prepared
cells having resistances of approximately one ohm when filled with
mercury at 0°C, and measured their resistance (to direct current)
on a Kelvin bridge in terms of the international chm. However, it
was not possible to use these cells directly for determining the
specific conductivity of standard potassium chloride solutions, since
a one molar solution at 0° would have had a resistance of the order
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of 100,000 €, which is too high for accurate determination on an
a.c. bridge. They therefore measured the conductivity at 0° of a
relatively concentrated (6 N) sulphuric acid solution, which was
then used to calibrate smaller cells. In these smaller cells, the
specific conductivity of one demal solutions (see below) was meas-
ured at 0°, 18° and 25°, with allowance for the thermal expansion
of the cell at the higher temperatures. The one demal potassium
chloride solution was then used to calibrate still smaller cells in
which the conductivity of 0-1 demal potassium chloride was
measured and finally the 0-1 demal solution was used to calibrate
even smaller cells in which the conductivity of 0-01 demal potassium
chloride was found. Thus the series of steps by which the standard
values for potassium chloride were obtained may be represented:

International ohm - Hg - H,SO, -+ 1 D KC] » 0:1 D KCl
- 0-01 D KCL

In these measurements, the exact concentration of the sulphuric acid
was not required as it served only as an intermediate standard; but
the concentration of the potassium chloride was very carefully
defined in terms of the weight of salt in 1,000 g of solution. Appendix
5.1 gives the compositions and specific conductivities of the three
standard solutions determined by Jones and Bradshaw.

The term ‘demal’ was introduced by PARKER and PARKER'® in
an earlier determination of standards; it is not in general use as a
measure of concentration, but the name was retained by Jones and
Bradshaw as a convenient label for their standard compositions. It
will be noted that Jones and Bradshaw’s standards, being defined
only in terms of weights in vacuo, are independent of volume stan-
dards and of atomic weights, changes in both of which have caused
considerable confusion ever since the first standards were proposed
by Kohlrausch. It is particularly unfortunate that the extensive
compilation of electrolytic conductivities in the International
Critical Tables is in terms of the earlier Parker and Parker standards,
which are now generally considered to be unsatisfactory. Practically
all recent work, in English-speaking countries at least, has, however,
been based on the Jones and Bradshaw standards (Appendix 5.1),
and for the sake of consistency they should be retained even if future
work shows them to be slightly in error. Already one change has
occurred which emphasizes the difficulty of defining a standard to
a high degree of accuracy: the international ohm is no longer the
recommended unit of resistance, having been replaced by the
absolute ohm which is defined in terms of the fundamental units of
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the c.g.s. electromagnetic system. The relation between the
absolute and international ohm is:

1 int. chm = 1-00050 abs. ochm.

It follows that the measure of a given resistance in absolute ohms is
0-050 per cent larger than its measure in international ohms; and
the measure of a given specific conductivity in (abs. chm)-! cm-!
0-050 per cent smaller than in (int. ohm)~! cm-!.

However, there seems to be no point in revising all the literature
values of conductivities of electrolytes into (abs. ohm)-! cm-!, as
we are far more concerned with the variation of conductivity with
concentration than with its exact value to five significant figures;
theory is unable to predict conductivities a priori to even two
significant figures, though it can do much better with the change of
conductivity with concentration. The fact that resistance bridges
are now calibrated in absolute ohms need not cause any difficulty,
as the usual experimental determination is not that of an actual
specific conductance, but its ratio to the specific conductance of one
of the standard solutions, via the cell constant. Hence as long as
the standard is defined in international units, the conductivity of
the substance studied will be in the same units. It must be noted
that the standard specific conductivities recorded in Appendix 5.1
are corrected for the specific conductivity of the water used in
preparing them. As this is usually of the orderof I X 10-¢ Q-1cm-1,
it will not be significant for the 1 demal standard, but must be
allowed for when the 0-1 D and especially the 0-01 D solutions are
used for cell calibration; in the last it can make a difference of the
order of 0-1 per cent to the cell constant.

Variation of the Cell-constant with Temperature

The standard solutions specified by Jones and Bradshaw have
accurately known conductivities at 0°, 18°, and 25°. For work at
other temperatures, the cell constant measured at one of the standard
temperatures must be adjusted slightly to allow for expansion of
the glass and the platinum electrodes. The naive expectation that
the correction factor would be the same regardless of the geometry
of the cell is disappointed, as the following argument shows.

Treating the cell as consisting of a number of regions in each of
which the current density is uniform, the cell constant is given by

I
=3 -
t=27

where [ is the length of each region and 4 its cross-sectional area
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normal to the current. Two extreme types of cell design may now
be considered:

(f) A long narrow tubular cell with large electrodes in bulbs at
the ends. Here nearly all the resistance is contributed by
the narrow tube. If the glass has a linear expansion coeffi-
cient a,, the relative change in a with temperature (¢) is
given by:

lda 1d! 1d4
R == v —

adt Idt Adi
= o, — 20, = — &,

(&) A cell consisting of two large electrodes of area 4 separated
by a small distance I. The electrodes are supported by
platinum wires sealed into the cell at points distant § apart,

1 1
ld'-l‘ld|
|

e

the length of wire between the electrode and the seal being
d in each case so that the separation of the electrodes is
{ = § — 2d. Thermal expansion has three distinct effects:

(a) The area 4 of the electrodes is increased.

(6) The distance S is increased.

(¢) The distances 4 are increased.

The cell constant is given approximately by:

1 _§—-2
A4 4

a =

By logarithmic differentiation with respect to temperature
one obtains the temperature coefficient:

Ida =~ 8§ _o5,.,.5-4
adt = 'S~ 24 P S
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If the expansion coefficients of the glass and the platinum are
equal, as is approximately the case with a soda-glass cell, we have

1 da

A i
just as for the long tubular cell. In this case therefore the expansion
correction is the same for both, and the result clearly generalizes to
cells of any shape. But if Pyrex glass is used, differences can arise.
Taking

a, = 36 x 10~¢deg C-!, and ap, = 9 X 10-% deg C-!
we have for the two cases:

(i) 192 = _3.6 x 10-¢ deg G-
a dt

(1) Putting § = 10 mm and 4 = 2 mm

1 da
- — = —18 x 10-¢ deg C-!

a dt 8

so that for a temperature change of 100° the cell constants would
change by 0-049%, and 0-189, respectively.

A very large temperature coefficient may occur if the electrodes
are very close together and supported by rather long wires sealed
into Pyrex glass: thus for example if § = 20 mm and d = 9 mm,
giving electrodes only 2 mm apart supported on 9 mm lengths of
wire:

1 da

-—=6 10-¢ -1

-4 3 X deg C
corresponding to a change of 0-63 per cent in the cell constant for
100° change.

Direct Current Conductivity Measurements

It will be clear from the foregoing account that the alternating
current method for conductivity measurements, though capable of
extreme accuracy, introduces a great many new complications due
to capacity effects in the circuit; the compensating advantages are
the elimination of polarization, the fact that electronic amplifiers
are easily incorporated in the detector circuit and that thermo-
electric effects and contact potentials in the resistance box are
unimportant.

The direct current method is therefore simpler in principle,
requiring only the passage of a steady current through the solution
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and through a standard resistance in series, and the comparison of
the potential developed between two fixed points in the solution
with that across the standard resistance. Since potentiometric
measurements can be made with an accuracy of 0-001 per cent the
method should be capable of accuracy comparable with that of the
best a.c. technique. It is, however, essential that the potential
measurements in the solution be made between strictly reversible

A B

Side
Figure 5.5, GORDON'’s d.c. conductivity cell

electrodes. The greatest success with the d.c. method to date
has been achieved by Gorpon and his collaborators®® on dilute
halide solutions in water and in methanol.

A slighty modified form of their cell, described by Evrias and
ScHIFF'1* is shown in Figure 5.5.

A cylindrical Pyrex tube, about 20 cm in length and 5 cm in
diameter, has two side-tubes about 10 cm apart to hold the probe-
electrodes, B, B’, each of which is made of an 8 mm platinum disc,
so mounted that its position is not subject to appreciable variation
in successive experiments. Each electrode is covered with fused glass
except for a narrow slip | X 6 mm in size which is silver-plated and
chloridized (or bromidized). The electrodes, 4, A’, which introduce
the current are inserted in narrow collimating tubes at each end:
they are of heavy silver-plated platinum, dipped in fused silver
chloride (or bromide). Through this cell, with a calibrated 500 Q
resistance in series, current is passed by means of the constant current
circuit used in transport number work. The potential across the
500 Q resistance is measured first, then the potential across the probe-
electrodes; to eliminate any bias, itis advisable to reverse the current
and measure the potential again, with a further measurement across
the standard resistance as a check.

In Gordon’s design the fact that there is a potential gradient near
the potential-measuring electrodes makes it essential that these be
small and reproducibly located, so that only silver-silver halide
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electrodes are really suitable. Ives and Swaroopa1® ysed a cell
in which the solution being measured was connected to two quin-
hydrone electrodes via arms so placed that no potential gradient
occurred in them; this made possible the use of a liquid junction
between the quinhydrone electrode and the solution, increasing the
scope of the method. Evias and ScHIFF*%8} have developed a more
precise apparatus on the same principle. Their cell is that of
Figure 5.5, but the tubes B and B’ carrying the potential-measuring
electrodes are replaced by the components shown in Figure 5.6.

Front Side

£lectrodes

(a) (b)

Figure 5.6. Liquid junction electrode vessels. After ELias, L, and
Sciurr, H. L, 7. phys. Chem., 60 (1956) 595

Silver-silver halide electrodes mounted in the small central tubes
are surrounded by alkali halide solution in tubes a or b, this solution
making a liquid junction with the main cell solution at the position
shown by the dotted Jines. Type a is used when the cell solution is
denser than the probe solution and type & in the opposite case.
Since no electrolysis current flows through the solution in the side
arm, the potential between the probe electrodes is proportional
to the resistance of the cell solution. The current carrying electrodes
are silver plated platinum; no electrode is needed reversible to
either ion of the electrolyte being studied and the method has general
application,

Radio Frequency Measurement of Conductivity

The audio frequency a.c. bridge technique and the d.c. methods
discussed above are high precision methods designed to meet the
exacting requirements of the physical chemist whose concern is with
the nature of electrolyte solutions and the mathematical interpreta-
tion of their behaviour. Conductivity measurement is, however,
also an everyday analytical tool of immense value; for purposes

101



5 MEASUREMENT OF CONDUCTIVITIES AND TRANSPORT NUMBERS

such as conductimetric analysis it is seldom necessary to adopt all
the refinements of technique described above. Many commercial
instruments for conductimetric titration, for example, operate at the
rather low frequency (~ 50 c/sec) of the electric mains, with an
accuracy of one or two per cent, which is quite adequate for the
purpose. A very interesting development of recent years, with great
possibilities for analytical and process-control applications, is the
use of radio-frequency methods for conductivity measurements.
The great virtue of these methods is that the electrodes need not be
in contact with the solution; polarization errors are therefore com-
pletely absent. The cell vessel may be a simple test-tube or flask
which is placed either within a coil or between the plates of a
condenser which form the elements of an oscillatory circuit. The
presence of the electrolytic resistance alters the frequency of the
oscillations, or in another method, the coupling between two
oscillatory circuits, and the change is measured by suitable meters.

MEASUREMENT OF TRANSPORT NUMBERS

The experimental methods available for measuring transport
numbers fall into three categories: (i) the Hittorf method, (i) the
moving boundary method, and (iit) a method depending on con-
centration cells with a liquid junction.

The first of these is so familiar that it requires little comment.
Devised in 1853, it was the instrument for an outstandingly compre-
hensive study lasting over half a century and, although it has been
superseded by other techniques, the value of this one man’s contri-
bution should be recognized. It is especially remarkable that many
of these measurements were made before the Arrhenius ionic theory
was developed. Several modifications of the apparatus have been
made, but all consist essentially of an anode compartment, a cathode
compartment and a third intervening compartment. Current, in
amount measured by a coulometer, is passed and the change in
composition of each section determined analytically; assuming that
the current is not passed so long that the composition of the central
compartment changes, then the loss in either the anode or the
cathode compartment gives one of the two transport numbers,

The application of the Hittorf method is limited by two main
factors: at least one and preferably both the electrodes must be
reversible and extreme accuracy is needed in the analysis of the
solution before and after electrolysis. There are few electrodes
through which it is possible to pass a substantial quantity of electri-
city, e.g., 20 coulombs, without gassing or other unwanted side-
reactions. Well annealed, very pure silver behaves satisfactorily in
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aqueous silver nitrate solution provided oxygen is excluded; silver-
silver halide electrodes are suitable for aqueous chloride and bromide
solutions. The possibility of electrode reactions with the solvent
must be considered. The analytical problem can be reduced in
importance by passing sufficient electricity to produce a large change
in concentration, but this involves either long runs with the danger
of diffusion of the anode and cathode solutions into one another, or
large currents with consequent overheating of the solution, resulting
in turbulent mixing.

Figure 5.7 shows a modern form of Hittorf apparatus developed
by STeeL and STOKEs?® for use with alkali bromide solutions in

Figure 5.7. Diagram of transport number apparatus after Stee, B, J
and Stokes, R. H., 7. phys. Chem., 62 (1958) 450

mixed solvents. The important feature of this apparatus is the built-
in conductance-cell which makes possible the analysis of the cathode
solution without removal from the apparatus. After an initial
measurement of the conductance, current is passed through thessilver-
silver bromide electrodes to produce a 10 to 20 per cent change in
concentration of the solution near the electrodes. The tap is then
closed, the whole of the cathode solution is thoroughly mixed in the
bulb and returned to the position shown for a second conductance
measurement. As a check on the reversibility of the electrode-
reactions, the tap is then opened, the anode and cathode solutions
are remixed in the bulb, and a final conductance reading—which
should agree with the first—is taken. The volume of the cathode
solution is read off from the calibrated stem of the mixing-bulb; to
ensure proper drainage, the bulb is coated with a water-repellent
silicone film. The ‘apparent’ transport number of the cation is
vAcF[Q, where v is the volume of the cathode solution, Ac is the
change in its concentration in equivalents per unit volume and Q

103



5 MEASUREMENT OF CONDUCTIVITIES AND TRANSPORT NUMBERS

is the quantity of electricity passed; this is converted to the Hittorf
frame of reference, (motion relative to the solvent), by the use of
density data. Some results obtained by this method will be con-
sidered in Chapter 11; while not quite equal in precision to the
moving-boundary method, it offers some prospect of success in non-
aqueous solutions where transport number data are urgently needed.

The Moving Boundary Method

The considerations upon which this method is based are simple:
let solutions of two salts (having a common anion, X-), form a
boundary ab and let current be passed so that the cations move up
the tube and the anions down the tube (Figure 5.8). If the conditions
are chosen properly the boundary will remain distinct but will move

¢ d
Mtx- ‘
a &
N XT I
A
8
Figure 5.8 Figure 5.9

up the tube. After a certain time let it be at the position ¢d. In this
interval all the cations, M+, in the volume V between ¢d and ab
must have crossed a plane at ¢d. If the amount of electricity passing
be @ coulombs, then the amount moving upwards is ¢,Q coulombs.
If V is the volume between ab and ¢d and the concentration of the
solution of M+X- is ¢ ion equivalents of M* per unit volume, the
amount of electricity moving upwards must be V[¢]F whence:
t, = VcF|Q

All variants of this method depend fundamentally on measuring
this volume for unit amount of electricity passed and the successful
application of the method depends on three factors: (1) the con-
struction of an apparatus capable of producing a sharp boundary,
(2) the use of a suitable salt N+X- (called the indicator) and its use
at the proper concentration, and (3) a small correction for changes
in the position of the boundary due to volume changes. The sharp
boundary can be produced by one of three methods. The first was
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developed by MacInngs and BricuToN®) and is called the ‘sheared
houndary, method. In its simplest form (Figure 5.9) the tube con-
taining the two solutions is divided with the upper half held in a
hole in a disc .4 over a depression in another disc so that a drop of
the solution hangs from the end of the tube. The other half is held
in the disc B immediately under a cut or indent in the disc 4 and
is filled with the other solution until a drop protrudes at the end.

2/

Figure 5.10. From HarTLEY,G.S.
and DonaLbsoN, G. W., Trans,
Faraday Soc., 33 (1937) 457

0

If the two discs have plane surfaces and the discs are moved over one
another so that the two tubes are adjacent the excess of each liquid
is ‘sheared off’ and a sharp boundary is formed. The second method
is the ‘autogenic’ method of FRANKLIN and CapY?® in which the
indicator solution is formed by making the anode at the bottom of
the tube of a metal such as cadmium, with a solution of potassium
chloride over it: on passing a current, a solution of cadmium
chloride is formed and a boundary is produced between this solution
and the potassium chloride solution. Again, an anode of silver can
be used to give a boundary between a silver nitrate solution and a
potassium nitrate solution. The third method is the ‘air bubble’
method®®). The apparatus is shown in Figure 5.10. To the top of the
capillary tube F, two pinchcocks are attached, one closed and one
half open. At the beginning of the experiment, the whole apparatus
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is filled with the leading solution and by closing one pinchcock an
air bubble is formed by compressing the air in the capillary F;
this expands into 4 at G separating the solution into two parts.
That in C, D and E is removed, these portions of the apparatus are
rinsed several times with water and filled with indicator solution.
By unscrewing the pinchcock the air bubble can now be withdrawn
into F and a boundary formed at G.

If the boundary moves up the tube, it is necessary to have the
indicator solution of greater density than the leading solution and,
conversely, if the indicator solution is to be on the top of the leading

Boundary

Potential

Oistance along fube
Figure 5.11

solution and the boundary is to move downwards, then the indicator
solution should be lighter. Moreover, in whichever direction the
boundary moves, the ion of the indicator solution must have a
mobility lower than the ion of the leading solution. Fortunately,
there is a kind of self-regulating effect which restores the sharpness
of the boundary if it is for some reason diminished. Let us consider
what will be the concentration of the indicator ion N+ behind the
moving boundary. We have already seen that during the passage
of an amount, @ coulombs, of electricity all the M+ ions between ¢d
and ab cross the boundary ¢d. Let a further @ coulombs pass: then
all the N* jons between ab and cd must cross the plane at ¢d and

V£N¢F
Q

where ¢; is the transport number of the N+ ion at the concentration
¢n+ at which it is present in the volume V behind the boundary.

Then Lt = emefens

'—
1 =

This is sometimes called Kohlrausch’s regulating function. Now ¢
must be less than ¢; and therefore cy. must be less than cp.. Thus
if we consider the fall in potential along the tube (Figure 5.11),
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both the lower mobility and the lower concentration of the indicator
ion will combine to produce a sharper drop in potential in the
indicator solution than in the leading solution. If by any mischance
a leading ion diffuses into the indicator solution its comparatively
high mobility shoots it forward again down the comparatively large
potential gradient; conversely should an indicator ion find itself
too far ahead, its lower mobility combined with the lower gradient
slows it up: in either event, there is a mechanism at work to restore
the sharpness of the boundary. The same mechanism adjusts the
concentration ¢y« of the indicator solution: if ¢y. is initially too
large, the potential gradient is lower than that demanded by the
condition ¢,ft] = ¢yy+fcn+ and the N+ jon travels more slowly until
the correct value of ¢y. is reached, and conversely, if the initial
value of cy. is too small. Naturally it cannot be expected that this
‘self-regulating mechanism’ can cope with wide departures from
ideal conditions. MacInnes has found by experiment, however,
that considerable tolerance is permitted so that it is sufficient to
adjust the concentration of the indicator solution to within only 5
to 10 per cent of the required value.

During the passage of the current there may be volume changes
resulting from electrode reactions, etc. Except in concentrated
solutions, the correction for this effect is small but it may be con-
sidered here in some detail because of its bearing on the distinction
between the Hittorf and the moving boundary transport numbers,
a matter appreciated very clearly by LEwis®® as long ago as 1910.
The moving boundary method gives an ionic mobility relative to
the fixed glass tube in which the measurements are made. The
Hittorf experiment measures the number of ions crossing a plane
fixed relative to a hypothetical plane in the solvent which of course
moves if the solvent moves. MAcCINNEs and LoNGswoRrTH!®® illus.
trate this by reference to an experiment (Figure 5.12) in which
potassium chloride forms the leading solution, barium chloride the
indicator solution and the tube is sealed at the bottom by a silver
electrode; x marks the position of a water molecule of a hypo-
thetical type, hypothetical since it is presumed free of Brownian
motion. ¢dis a plane in a region not subject to change of concentra-
tion. On passing a faraday of electricity the following changes occur:

1. ¢, equivalents of K+ cross the plane ¢d in an upward direction
giving a volume decrease ¢, PES), i.c., ¢, times the partial molal
volume of the potassium ion in potassium chloride solution.

2, ty equivalents of Cl- cross ¢d in a downward direction with a
volume increase ¢, PEC.
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3. An equivalent of metallic silver is lost with volume decrease P,,.

4. An equivalent of silver chloride is formed with volume increase
Va
gCl-

5. An equivalent of Cl- is lost by reaction with silver with volume
decrease PEph,

6. Since the number of Bat+ ions below the boundary remains
unchanged the loss in process 5 above must be exactly com-
pensated by a transfer of an equivalent of Cl- downward
across the boundary with a volume increase PBath — PEC,

ox!

X
d

¢ KCU
KCL

a /] Ba.Cl.z
BaCl,

IR Ag Cl
Ag RAILLLS 114 Ag

Figure 5.12. After MacInNEs, D. A. and LoNnGswORTH, L. G., Chem. Rev.,
11 (1932) 204

The net volume increase is:
AV = VAaCl - VAg - thEQI - (1 — ;z)ng}l
= Prga — Pag — hPxar

The moving boundary transference number is ¢, = Veg. but
because of the increase in volume, AV, the water molecule at x is
raised to x’. Relative to this molecule, the boundary has not moved
so much and the Hittorf transport number is:

tl = (V - AV)CK+

There is a further correction to be applied if the solvent conducts
an appreciable fraction of the current, which has been shown% to
take the form:

(1 + K,, solvent/K,, solution)

This becomes important with very dilute solutions.
Although microcoulometers have been used to measure the
current®”, the usual practice is to hold a known current as steady
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as possible for a measured time interval. A somewhat elaborate
device is used by the Rockefeller Institute workers®®*® although
others(3 39 have preferred a simpler mechanism.

The accuracy of moving-boundary measurements depends to a
large extent on the precision with which the boundary position can
be determined at any time. The usual method makes use of the

+ -
MTX b

cp——=—1d

a b Porous
N+ x- daise

Figure 5.13. After SPiro, M. and PArTON, H. N,
Trans. Faraday Soc., 48 (1952) 265

difference in refractive index between the leading and indicator
solutions, a schlieren image of the boundary being formed by a lens
system. It is not however always possible to secure a clearly visible
boundary while meeting the other requirements of the method, and
Gorpon and his co-workers!3 have reported a technique of detect-
ing the boundary by means of the abrupt change in conductance
which occurs as it passes a pair of micro-conductance electrodes
sealed into the walls of the tube.

Transport Numbers by the Analytical Boundary Method

In this variant of the moving boundary method!3}, a tube is
divided (Figure 5.13) into two compartments by a sintered glass
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disc; one compartment contains the solution under investigation
and the other the indicator solution. After electricity in amount Q
has passed, the boundary, originally at the disc, has moved to ¢d
through a volume ¥V given by

@ _ o

M+ CN+

FV =

where the primed quantity refers to N+ and the unprimed to M+,
Thus a quantity ¢y.V of the ionic species N+ passes through the
disc; this can be measured by ordinary analytical methods and is
equal to @4/F. The upper solution is now the indicator and the
method gives the transport number of the ion in the following
solution. The apparatus used by Spiro and Parton is shown in
Figure 5.13. The indicator solution containing sodium or potassium
nitrate is in the tube 4 of 20-5 mm diameter, the disc D has a pore
diameter of 20-30 u and the cathode, C, is a piece of platinum gauze
in ferric nitrate solution, the ferric nitrate being introduced to
reduce the amount of gas evolution. E is a coarse porous disc
designed to prevent diffusion of ferric nitrate into 4, and 7; and T,
are filling taps. The non-gassing anode R is a rod of silver and the
compartment B contains 0-1 M silver nitrate. The amount of silver
ion migrating into the compartment 4 is determined by a careful
potentiometric titration. For the details of the current regulator
the original paper should be consulted. Spiro and Parton found,
using potassium nitrate as indicator, that there was a range of
indicator concentration around 0-11 M (the Kohlrausch concen-
tration for 0-1 M AgNO,) for which the transport number was
independent of current, time and indicator concentration. The
value found was 0-4676 compared with the accepted value of 0-4682.
Using sodium nitrate as indicator, i.e., using an indicator cation
which moves more slowly than the silver ion, there appeared to be
no range of indicator concentration over which the transport
number remained constant. The correct result was obtained not at
the Kohlrausch concentration but at that concentration of indicator
where the specific conductivities of the two solutions were equal.
This may have been coincidental and further work is needed on this
point. The paper by Brady is interesting in that in one set of
experiments he used radioactive tracers and made the analysis by
counter methods. He developed the method for colloidal electro-
lytes which do not lend themselves to the moving boundary method
and in a subsequent paper®® he has described the determination
of the transport numbers of four surface active agents.
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Transport Numbers from Cell Measurements
The potential, E, of the cell:

Ag, AgClIIMCI(m")| M]MCl(m)|Ag, AgCl Cell I
can be combined with the potential, E,, of the cell:
Ag, AgCl|{MCIl(m')|]MCl(m)|Ag, AgCl Cell 11
to give the transport number of the cation, ¢, as:
t, = EJE

This is the well-known Helmholtz relation and leaves undecided,
without a more detailed study of the theory, the concentration to

i iy

b

Figure 5.14. Cell with transport for determining lransport numbers in zinc perchlorate
solutions. Stokes, R. H. and LEVIEN, B. J., 7. Amer. chem. Soc., 68 (1946) 333

which ¢, refers, By considering the case where m’ is held fixed and
m is varied, measurements of E and E, being made for a range of m
values, it is readily shown that ¢, = dE,/dE. Systems similar to
those designated Cell IT have been used by MacInnes and Shed-
lovsky and also by Gordon to determine activity coefficients, i.e.,
finding Cell I not particularly amenable to measurement because
of experimental difficulties with the electrode M, they prefer to
determine the transport number by one of the other methods
described in this chapter and combine the result with the potential
of Cell II to give an activity coefficient. Very valuable work has
been done in this way, particularly with solutions less than 0-1 M
concentration, to which reference will be made in Chapter 8. For
the present we shall content ourselves with a description of the use
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of Cell II for the measurement of a transport number, for example,
that of zinc in zinc perchlorate, by this method'®®. Whilst the zinc
amalgam electrode is known to work very well and could replace
the silver-silver chloride electrode mentioned in Cell I above, there
is no electrode known to be reversible with respect to the perchlorate
ion which could take the place of the electrode M. However, using
the isopiestic vapour pressure method, it was possible to determine
the activity coefficient of zinc perchlorate over a wide concentration
range, from which the potential of the hypothetical cell:

Zn,Hg|Zn(CIO,)o(m)| X|Zn(C10,),(m) | Zn,Hg

where X is an electrode reversible to the perchlorate ion, can be
calculated. The cell with transport is shown in Figure 5.14. The
vessel A was first filled with the more dilute solution and warm
liquid 5 per cent zinc amalgam run in. The solution had previously
been degassed and the dissolved air replaced by hydrogen. The
other vessel, B, was filled with the more concentrated solution to the
mark shown, amalgam run in and the two parts of the cell united
at the ground glass joint C. The electromotive force became steady
after an hour and remained steady within 0-03 mV for a day. It
was found that the potential of the cell with transport E,, was
related to that of the cell without transport, E, at the same concen-
trations, by the equation:

E, = aF + bE? + ¢E3

so that ¢, = dE,/dE could be obtained easily. A similar study®® of’
the transport number of zinc iodide failed to reveal any such simple
relation between E and E,, and a method of calculating the differ-
ential due to RUTLEDGE®* was used.

The transport number given by these amalgam cells is not that
of either the zinc ion or the halide ion since allowance has to be
made for the formation of autocomplexes. For example, if we sup-
pose that a concentrated solution of zinc iodide consists only of zinc
and complex Znlj- ions in equal amount we find, on considering
the details of the cell reactions, that:

t (observed) = 1 — dE,[dE = | — 2igp1- - = lgg++ — laniy -

KerkerR and EspENscHIED®® given an interesting discussion of
the cells:
Hg, Hg,HPO,|H,PO(m") |H,-Pt-H,|H,PO,(m") Hg,HPO,,Hg I
and
Hg, Hg, HPO JH,PO,(m")||H,;PO,(m")|Hg,HPO,, Hg 11
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the mercury-mercurous hydrogen phosphate electrode being rever-
sible not directly to the H,POg ion, which is the only anionic species
present in any amount, but to the HPO7 - ion which is in equili-
brium with it. At the concentrations used, very small amounts of
HPO7 - and PO; — - ions are present and the current is carried by
H+ and H,PO7 ions.

The passage of two faradays through cell I (m" < m’) corresponds
to the reaction:

Hg,HPO, + H, -+ H,PO, (m") + 2Hg
in the right hand half cell and
H,PO,(m’') 4+ 2Hg — Hg,HPO, + H,
in the other half cell, so that the net reaction is:
HyPO(m') — H,POy(m")
and the e.m.f. of the cell is given by:
—2EF = AG = RT Ina’ja

There are three processes to be considered when two faradays pass
through cell II:

(2 2Hg + HPOg - — Hg , HPO, + 2¢-

t.e., the loss of a mole of HPO7 ~ in the left hand compart-
ment;

(6) a corresponding gain in the right hand compartment;

(¢} a transfer of 2tg+ = 24g+/(Ag+ + Ampo;) moles of hydrogen
ion from left to right across the liquid junction and a trans-
fer of 2tg po; = 22m,po;/(Am+ + Ampo;) dihydrogen phos-
phate ions in the opposite direction.

Some reaction will proceed in each compartment to maintain
the various ionic species in equilibrium but since tg+ + tgpo; = 1,
the stoichiometric result is the transfer of (2ig+ — 1) moles of phos-
phoric acid from the left to the right compartment so that:

— E,F = (2tg+ — 1) RTln%
and in the limit when m’ and m” difler only infinitesimally:
Lovserved = dE,/dE
= (2g+ — 1) = (1 — 2gpoy7)

= tg+ — lgpoy
113



5 MEASUREMENT OF CONDUCTIVITIES AND TRANSPORT NUMBERS

Thus the ‘observed transport number’ is neither of the true transport
numbers but their difference. It seems desirable when using the
cell method to work out the details of the cell reaction for each case
along the above lines rather than to depend blindly on the formula
¢t = dE/dE, which is clearly of limited application.

Transport Numbers from Centrifugal Cells

The first measurements on gravity and centrifugal cells were
made by Des Coupres®®”), The effect in a gravity cell is of the order
of a few microvolts per metre but by means of a specially constructed
potentiometer circuit GRINNELL and KoEen1G®! have increased the
accuracy of measurement and obtained 0-4900 and 0-4893 for the
cation transport number of 0-975 and 0-712 M potassium iodide at
20°. ToLman® made experiments with a powerful centrifuge
corresponding to a gravity cell some 1,200 m in height and his
potentials were of the order of several millivolts.

MacInNnes“® has devoted much attention to cells of this type in
recent years. In a centrifugal cell such as: Pt|l, in MI|Pt where
M is a cation, two identical iodine-iodide electrodes situated at dis-
tances ry, ry from the point about which the cell is rotated develop
a potential E. If current passes inside the cell from the outer to the
inner electrode, the cell reaction is:

I- — }I, + ¢ at the outer electrode,
41, + ¢~ — I~ at the inner electrode.

At the same time, for each faraday of electricity which passes, ¢,
equivalents of the cation pass from the region around the outer
clectrode to the region around the inner electrode and ¢, equivalents
of iodide ion pass in the opposite direction. The net result is the
transport of one equivalent of iodine from the inner to the outer
electrode and ¢, equivalents of the salt M/ in the opposite direction.

MaclInnes and Ray have given a rigid deduction of the equation
for the potential of such a cell. The equation can be derived less
rigidly as follows:

The kinetic energy due to the rotation of the equivalent of iodine
at the outer electrode is 2n?rjw* W}, w being the number of revolu-
tions per second and W; the atomic weight of iodine. The increase
in kinetic energy of the iodine on transferring an equivalent from
the inner to the outer electrode is therefore: 2nw?(rf — r}) Wj and
there must be a similar term for the ¢, equivalents of salt transferred
in the opposite direction. But the volumes occupied by the salt and
by iodine may not be the same and therefore there may be a move-
ment of solution as a whole to compensate, involving a transfer of
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p(Pr — ;P ;) grams of solution wherep is the density of the solution.
By equating the electrical work to the net change in kinetic energy
we get:

EF = 2n%w¥(rj — (W) — W) —p(Pr — t.Pp1)] ... .(54)

The apparatus used by MaclInnes and his colleagues is shown in
Figure 5.15. The rotor R is a magnesium disc 23 cm diameter and
5 cm thick, turned by the pressure of the disc D on the plate P

Figure 5.15. Diagram of apparatus after MacInngs, D. A. and Daviiorr, M. O.
J- chem. Phys., 20 (1952) 1035

which is rotated by a synchronous motor M. The potential is
measured through the mercury wells G, and G, whilst the wells G,,
G, are used to measure the temperature of the rotor with a copper-
constantan junction J and an external ice-bath I. Radial tempera-
ture gradients are eliminated as far as possible by maintaining a
vacuum of 10 u around the rotor (thus avoiding gas friction) and
circulating cooling water at the vacuum bearing. Another impor-
tant feature of the technique arose from the presence of minute
suspended particles in the cell solution, which all precautions failed
to eliminate and which gave rise to erratic potentials. This error
can be avoided by sealing the electrodes E,, E, in the form of
platinum rings several millimetres from the ends of the cell C. The
centrifugal force then drives the suspended particles clear of the
electrodes and they collect harmlessly at the base of the cell. Rotor
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speeds between 40 and 120 rev/sec are used. It is important to
realize that the cell potential originates from a difference of centri-
fugal potential at the two electrodes and not from a concentration
gradient set up in the solution as a result of centrifugal force. The
theory assumes uniformity of concentration. On continued centri-
fuging a concentration gradient should be set up sufficient to reduce
the cell potential to zero, and at high speeds of the rotor MacInnes
did observe a slow fall in potential if the experiment was prolonged.
PEDERSENY has obtained similar sedimentation with some salts
using an ultracentrifuge at much higher speeds.

The work of Maclnnes is still at the stage where very fine tech-
nique is being developed: so far the experiments have yielded a
transport number ty,. = 0-3827 for 0-1911 N sodium iodide and
tg+ = 0-4873 for 0-1941 N potassium iodide compared with the
value, 0-4887, found by LoNcsworTH#2), More recently®®, the
transport numbers of lithium, rubidium and caesium iodide have
been measured. The method is being developed for application to
non-aqueous solutions where other methods encounter difficulties
due to the joule heat.

It should be added that the experimental data had to be inter-
preted in the light of a further complication, the formation of
complex iodide ion, and that the assumption of the formula I5 for
this complex ion was sufficient to reconcile the, at first sight, con-
fusing results obtained with varying iodide concentrations.
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6
THE LIMITING MOBILITIES OF IONS

THe transport of electricity through electrolytes differs funda-
mentally from metallic conduction in that the carriers are ions, the
dimensions and masses of which are much larger than those of the
electrons responsible for metallic conduction. The ions of course
share in the general Brownian motion of the liquid, and may be
expected to have randomly-directed instantaneous velocities of the
order of 10* cm sec™!, though of course with the extremely short
mean free path characteristic of the liquid state. In the absence of
an external field or a concentration-gradient, the Brownian move-
ment is entirely random, and does not lead to a drift of ions in any
one direction. The presence of an electric field, as in conductance,
or of a concentration-gradient, as in diffusion, has the effect of
biasing the Brownian movement in a particular direction. In a
field of 1 V/cm the average velocity of the ions in the direction of
the field is of the order of 10-3 to 10~* cm sec-1, and hence represents
only a very small perturbation of the random ionic motions. The
actual path of an ion under an electric field of ordinary intensity is
thus extremely erratic, bearing very little resemblance to that of a
billiard-ball sinking in water. Nevertheless, the drastic simplifica-
tion of substituting for the actual chaotic motion a steady progress
of all the ions of one kind with equal velocities in one direction of
the field is extraordinarily successful: the Brownian motion needs
to be considered only in regard to its effect on the interionic forces.

Experimental data on conductivity are fortunately extremely
plentiful and of high accuracy, at least for low concentrations; in
the best work agreement to one part in 10,000 between different
workers is not uncommon. Especially in non-aqueous solutions and
in mixed solvents, conductivity measurements are far more easily
made than those of activities, and provide the greater part of our
knowledge of the behaviour of electrolytesin such solutions. Further-
more, the measurements can be carried to extraordinarily low
concentrations provided proper precautions are taken. Whereas
the measurement of the electromotive forces of cells usually becomes
unreliable at concentrations below about 0-001 M even in the most
favourable cases, accurate conductivity measurements can be made
at concentrations down to about 000003 M. The experimental
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THE LIMITING VALUES OF EQUIVALENT CONDUCTIVITY

techniques have been discussed in Chapter 5; here we are con-
cerned with the theoretical interpretation of the results.

The equivalent conductivity of strong electrolytes at low concen-
trations is found to be accurately a linear function of the square
root of concentration, decreasing as the concentration increases.
Extrapolation to zero concentration yields the limiting equivalent
conductivity A° and the equivalent conductivity A, at very low
concentrations can therefore be represented by the equation:

A= A"— Ay ....(6.1)
as was observed by Kohlrausch.

A complete theory of electrolytic conduction should therefore be
capable of (a) predicting the value of A° from the dimensions,
charges and other properties of the ions and the solvent molecules,
(&) predicting the value of the constant 4 in equation (6.1), (c)
accounting quantitatively for deviations from equation (6.1) at
higher concentrations. Of these three problems, the first is farthest
from solution, the second is solved and the position with regard to
the third has recently been greatly improved.

THE LIMITING VALUES OF EQUIVALENT CONDUCTIVITY

In the state of infinite dilution to which A? refers, the motion of an
ion is limited solely by its interactions with the surrounding solvent
molecules, there being no other ions within a finite distance. In
these circumstances, the validity of Kohlrausch’s law of the inde-
pendent migration of ions is almost axiomatic; according to this
law each species of ion present contributes at infinite dilution a
definite amount to the total equivalent conductivity, regardless of
the nature of the other ions present. Thus for an electrolyte giving
two kinds of ions,
A= 20+ 2 ....(6.2)
The values of 4 and A2 may be determined by measurements of
transport numbers #, which may also be extrapolated linearly to
infinite dilution against the square root of concentration. Thus

2= 8AS

2 = gA°

The accuracy with which such measurements confirm Kohlrausch’s
law of the independent migration of ions may be seen from the
data in Table 6.1 for aqueous potassium and sodium chloride
compiled from papers by Gorpon and his collaborators®). These

measurements represent probably the most accurate test yet made
of the Kohlrausch principle; it will be noted that even at 45° where
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6 THE LIMITING MOBILITIES OF IONS

the experimental difficulties are most marked, the two independent
values of - agree within 0-04 per cent. Thus the step of resolving
A? for a salt into values of A° for its separate ions can be taken with
complete confidence provided that accurate values of the transport
numbers are available at concentrations low enough to permit
extrapolation to zero concentration. To account for the observed

Table 6.1
Test of Kohlrausch’s Law of the Independent Migration of Ions

Temp. °C 15° 25° 35° 45°
A°KCl 121-07 149-85 180-42 212:41

4 (KCl) 0-5072 0-5095 0-5111 0-5128
A (KQY) 61-41 76:35 92:21 108-92
A* NaCl 101-18 12645 153-75 182-65

¢3 (NaCl) 0-6071 0-6038 0-5998 0-5961
A3 (NaCl) 61-43 76-35 92-22 108-88

A® in (cm? Int. Q-1 equiv.~})

values of A° in terms of other properties of the ions is, however, a
much more difficult problem, of which at present only a qualitative
treatment can be given.

The limiting equivalent conductivities of a number of ions at
25° in water are compiled in Appendix 6.1. These have been
obtained as follows: the best available data for A° for various salts
have been selected from the literature as indicated by the references
quoted. In the case of chlorides, the cation mobility A} has been
computed as 1§ = A® — A§,- using the value A%;- = 76-35 obtained
from Gordon’s data (Table 6.1). The values for other anions have
then been computed as 13 = A% — A9 using wherever possible A°
values for potassium or sodium salts and the tabulated values for
Afas or A%.. This is done to ensure the self-consistency of the
tabulated values, but means that in some cases the value given for
A? is not quite that decided upon by the workers referred to, owing
to a different choice of the limiting transport numbers. The table
will, however, permit the calculation of A° from the constituent A°
values within the experimental error.

THE INTERPRETATION OF THE LIMITING EQUIVALENT
CONDUCTIVITIES OF IONS
The most striking feature of the ionic conductivities compiled in
Appendix 6.1 is the extremely high mobility of the hydrogen ion,
which clearly suggests that a special mechanism is involved in its
motion. It is scarcely possible to imagine that the bare proton
could be moving freely through the solution, for this would lead to
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an almost infinite mobility. Nor is it possible to regard the moving
entity as the HyO+ ion, (though this formula is often written for the
aqueous hydrogen ion) since this ion would have dimensions
similar to those of a water molecule, and the mobility of the water
molecule is known from experiments on the self-diffusion of water
to be similar to that of simple ions such as K+ and Cl-.1 A reason-
able explanation has been found!® in terms of a ‘proton jump’
mechanism, by which a proton passes from one water molecule to
a favourably oriented neighbouring one, but in doing so leaves
these molecules unfavourably oriented for another jump.

At any one time, only a few of the protons in a solution will be
indulging in these ‘jumps’. The majority will be definitely associated
with one water molecule or another, and to this extent it is legitimate
to write the hydrogen ion as H;O+. However, it is believed that this
ion can fit into the normal coordinated structure of water almost as
well as can an ordinary water molecule, so the charged molecule
may become the centre of a rather firmly associated group of water
molecules; it may, in fact, become further hydrated. This would
explain the remarkable similarity between the activity coefficients
of lithium chloride, bromide, iodide and perchlorate and those of
the corresponding acids, which implies that from a thermodynamic
point of view the hydrated lithium ion and the hydrogen ion are of
nearly the same size and involve about the same number of water
molecules, while the proton-jump mechanism accounts for the fact
that the mobility of the hydrogen ion under an applied electrical
field is some ten times that of the lithium ion. The suggested proton
jump mechanism can be represented diagrammatically (after
GLAssTONE, LAIDLER and EYRING®) as follows:

H H H H

H—CI)—H + (I)—H - H—Cl) + H—C|)—H
+ +
The abnormally high mobility of the aqueous hydroxide ion, which
is second only to that of hydrogen ion, may be similarly accounted
for by the proton-transfer process:

H H H H
I L |
O—H + 0 >0 +H—0

t+ The mobility of the HyO+ ion as a unit may be approximately calculated in
units of equivalent conductivity as D* = RTA/(|z|F?) where D* is the self-diffusion
cocficient of water (~ 2.4 x 10 cm® sec~! at 25°). This gives Ag o+ &~ 90 cm?®

Q- equiv.-t
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If (Ao — A%a)/Aka is taken as a measure of the abnormal
hydrogen ion mobility, the data in Appendix 6.2 give 2.26, 1.84
and 1.07 for this ratio at 0°, 25° and 100° respectively, suggesting
that the breaking of the water structure reduces the abnormal
mobility. A pressure of 3,000 atm.,!? however, increases the abnor-
mal mobility, the ratio being 2.15 compared with 1.84 at | atm.

The equivalent conductivity of hydrochloric acid which is 426-1
in water at 25° is only 198:5 cm? Q! equiv~! in methanol whilst it
has a minimum value in a water-methanol mixture containing about
10 per cent by weight of watert3!. In this mixed solvent its conduc-
tivity is similar to that of sodium chloride. It is evident that the
proton jump via the CH;OH} complex is less effective than it is via
the H3O* complex and that the abnormal mobility is absent in 90
per cent methanol.

Having eliminated these two exceptional cases, we find that some
further interesting generalizations emerge from an inspection of
Appendix 6.1. The maximum mobility of monovalent ions (at 25°
in water) is about 75 equivalent conductivity units; the mobilities
of K+, Tl+, NH}{, Cl-, Br-, I-, NOj, ClO; all cluster closely about
this value. It appears that these ions lie in a critical range of size: if
they were smaller (in terms of crystallographic radius) they would
acquire a permanent hydration sheath and end up larger and with
lower mobility, as do sodium, lithium and fluoride ions; if they
were larger in crystallographic radius, they would not hydrate, but
would be slower-moving merely on account of their size like, for
example, the carboxylic acid anions.

The order of the mobilities of the alkali-metal cations is the
inverse order of their crystallographic size, which is of course in
accordance with the expectation that ions of the greatest surface
charge will be most strongly hydrated. The same order holds for
the bivalent cations, though the practically identical values for Ca++
and Sr*+ suggest that these two hydrated ions have very similar
dimensions. (This similarity is not so marked in the activity
coefficients of calcium and strontium salts.) The mobilities of the
bivalent cations cover only a small range, about 53-63 units; this
may well be because they all have one firmly attached layer of
water molecules and only a few in a second layer. Among the few
bivalent anions for which data are available the symmetrical tetra-
hedral sulphate ion shows a substantially higher mobility than the
others and even than the bivalent cations, suggesting that it is
sufficiently ‘padded’ with oxygen atoms to prevent any extensive
hydration, Comparison of the structurally rather similar sulphate
and perchlorate ions on the basis of Stokes’ law radius,
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r = 0-820|z|/(A*°), however, indicates that the sulphate ion has a
substantially larger ‘radius’, about 70 per cent greater than that of
ClOy.

The trivalent cations of the rare earths, as might be expected, all
show very similar mobilities, close to A° = 70; the ions are evidently
all hydrated to much the same large extent. This conclusion is
confirmed by the fact that the activity coefficient data for their
chlorides all require values of the ion size parameter a which lie in
the range 56-6:0 A. Their mobilities are strikingly lower than
those of the trivalent complex ions Co(NH,)¢++ and Fe(CN)g—-,
which are both close to 100 units; in these ions the place of the first
layer of water molecules is taken by NH, and CN- respectively, and
water molecules do not appear to attach themselves to these
‘foreign’ groups as readily as to other water molecules. The various
polyphosphate ions, which have been carefully investigated by
Davies and Monk'¥, provide interesting examples of anions with
high negative charges, and attention should also be drawn to
JamEes’ study!® of the sexavalent cation [Co, trieng)®+ of tris-triethy-
lenetetraminecobaltic chloride, a quadridentate compound con-
taining two cobalt atoms and three triethylenetetramine

(NHyCH-CHNH-CH,"CH,;NH-CH,CH,'NH,)
molecules.

The tetra-alkyl ammonium ions'® are of great theoretical interest
because they combine large size and symmetrical shape with low
charge, and furthermore, some of their salts are soluble in many
solvents besides water. In the other solvents, however, the individual
ionic mobilities are less certainly known because (a) the conductivity
measurements are in general less easily extrapolated to infinite
dilution and (b) the limiting transport numbers are seldom known
experimentally but have to be guessed on some reasonable basis.
The 2° values used in compiling Appendix 6.1 for these ions in
water at 25° represent the latest values given by Kraus and his
collaborators'?), obtained from measurements by the most fastidious
techniques extending to concentrations as low as 10-¢ molar, and
are almost certainly to be preferred to the numerous earlier values
to be found in the literature. They are of great value as a test of
the validity of Stokes’ law for ions in aqueous solutions. There is
strong reason to believe, from an examination of the temperature-
dependence of ionic mobility (see pp. 128-129) that for ions which
are (a) intrinsically large and of low surface charge, or () of
sufficiently large surface charge to form firmly hydrated entities,
Stokes’ law is of the correct form though the numerical constant
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may not be 67. For these ions the product A%° is very nearly
constant over a fair range of temperatures in water. The possibility
therefore presents itself that we might use the mobilities of the
tetra-substituted ammonium ions to calculate correction factors for
Stokes’ law in water, and then by using these factors, calculate the
size of the strongly hydrated ions from their mobilities. In order to
do this it is of course necessary to know the sizes of the substituted
ammonium ions. A fair approximation to their sizes may be
obtained as follows:

1. The effective radius of the N(CH,) } ion can be estimated from
the N-C internuclear distance of 1-47 A to which is added Pauling’s
value of 2:0 A for the Van der Waals radius of the methyl group
as a whole, giving 347 A.

2. For the ion N(C,Hj)¢ a similar calculation from bond-lengths
and angles indicates a maximum radius of about 4-2 A, while a
scale model (using ‘Catalin’ atomic models) suggests an average
radius of about 4-0 A; the value is somewhat dependent on the
configuration given to the C—C—H linkages. The latter value is
probably preferable.

3. For the higher homologues, it is not easy to estimate a radius
from bond lengths or models, as too many configurations exist. The
following rather tentative method may be tried: the first two
members of the series are structurally very similar to the sym-
metrical paraffins C(CH,), and C(C,H;), which have molal volumes
of approximately 120 cm?® and 170 cm3 respectively. One would
expect the radii to be directly proportional to the cube roots of the
molecular volumes, and one finds, in fact, that the empirical
relation:

r & 072913

(withrin A and 7 in cm?® per mole) gives for the first two members
r = 3-55 A and r = 3-99 A in adequate agreement with the values
given above. One may then estimate approximate radii for the
higher members by this formula, assuming for the density of the
corresponding paraffins the value of 0-75 which is typical of the
higher paraffins. The radii of the ions calculated in this way are
given in the column headed r in Table 6.2. The Stokes’ law radii
obtained from the limiting mobilities of Appendix 6.1 are given in
the column headed rg; since the viscosity of water at 25° is 0-008903
poise, equation 2.49 becomes rg = 92-1/2° for monovalent ions.
The ratio r/rg can be regarded as a correction factor for Stokes’ law
in water and the table suggests that the law is applicable for
particles greater than ~ 5 A in radius, but gives radii which are
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Table 6.2

Ton r (A) 15 (A) Tiry
N(CH,)} 347 2.05 1-69
N§C.H.)t 400 282 142
N(C,H,)i 452 393 1-15
N§C.H,;t 4.94 473 1-04
N(CH,)); 529 527 1-00

r = radius estimated from molecular volumes or models.

7g = radius calculated from the limiting mobility by
Stokes’ law,

considerably too small when applied to particles smaller than this.
The correction factor is plotted against the Stokes’ law radius in
Figure 6.1. We may now very tentatively use this graph to estimate
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Figure 6.1. Tentative correction factors for Stokes’ law in water at 25°

the radii of heavily hydrated ions from their limiting mobilities,
assuming these corrections to apply. The results for a number of
ions are given in Table 6.3; the calculation is of course confined to
cases where the ion is of symmetrical shape and has a Stokes’ law
radius, rg = 0-820]2}/(°7°), in the range above 2:0 A.

The ‘corrected Stokes’ law radius’ of the hydrated ion can then
be used to estimate its volume, and since the volume of the bare
ion itself is negligible compared to the resulting values, a rough
estimate can then be made of the average number of water molecules
involved in the hydrated entity by neglecting the electrostriction of
these molecules, and ascribing to them their ordinary liquid volume
of 30 A3. The hydration numbers ‘4’ so obtained are given in the
last column of Teble 6.3, and it must be admitted that they are
eminently reasonable.
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Table 6.3
Estimates of the Radii of Hydrated Ions from Modified Stokes® Law :

, = 0-820]<} (L) inA

A \rg
r
nrt
Ion A0 7, r (crystal- § h
s lographicy | (€4 A)

Nat 50-10 1-83 33 0-97 150 5
Li+ 3868 2:37 37 0-60 210 7
Bet+ 45 4-08 4-6 — 410 13-14
Mg++ 53-05 3-46 44 0-65 360 12
Cat*+ 59-50 3-09 42 0-99 310 10
Sr++ 59-45 309 4-2 1-13 310 10
Bat+ 63-63 2-88 41 1-35 290 9-10
Zntt 53-0 3-46 4-4 0-74 360 12
Lat++ 69-75 395 46 115 410 13-14

(The correction factor — is read from Figure 6.1 for the value of rg in the third
column.) Ts

THE VARIATION OF LIMITING IONIC CONDUCTIVITIES
WITH TEMPERATURE

The data given in Appendix 6.1 are mainly confined to cases
where accurate values of the limiting conductances of salts of the
ions have been determined at 25° by means of measurements
extending down to very low concentrations, e.g., 10-3 to 104N,
making possible reliable extrapolations for A? A few less reliable
values, e.g., that for Bet+, have been included for completeness. A
much more extensive tabulation, including data for other tempera-
tures, is given by WALDEN'®, There is an extremely large body of
conductivity data for 18°, which was the standard temperature for
many physico-chemical studies in Britain and Europe until the
1920’s, when the American practice of using 25° as the standard
temperature became general. Other temperatures for which data
are fairly plentiful are 0° and 100°. However, the use of the precise
moving boundary method for determining transport numbers has
been mainly confined to 25°, with the result that transport numbers
for other temperatures are less certainly known.

The most accurate information we have on the variation of ionic
mobilities with temperature comes from the work of Gorbon and
his collaborators; #, who have measured the conductivities and
transport numbers of potassium chloride, sodium chloride and
calcium chloride and the conductivity of potassium bromide at 15°,
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VARIATION OF IONIC CONDUCTIVITIES WITH TEMPERATURE

25°, 35° and 45°. Their measurements were carried to concentra-
tions low enough to permit reliable extrapolation to zero concen-
tration.

Their transport numbers for the chloride ion in potassium
chloride solution at infinite dilution, -, are plotted against the
temperature in Figure 6.2. (The results do not confirm the claim
of some earlier workers that transport numbers tend to approach
the value 0-5 as the temperature is raised.) From this curve a value
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Figure 6.2. Limiting transport number of the chloride ion in aqueous potassium
chloride as a function of temperature

of §,- = 0-5079 may be interpolated at 18°. The four points on
this graph suggest that an extrapolation to 0° would give #,- ~
0-504. Walden, before Gordon’s data were available, estimated a
value of 0-507. Owen1® has fitted the conductivity data for a
number of electrolytes to a cubic equation in the temperature; if
his equation is used for extrapolation, it appears that at low
temperatures the transport number decreases more rapidly with
decreasing temperature than the results between 15° and 45°
suggest. On this basis values of 0:502 and 0-504 at 0° and 5°
respectively would seem reasonable and will be used for further
calculations. At high temperatures the position is much less satis-
factory. To extrapolate Gordon’s data for more than 10° or so
beyond 45° would be risky; but it seems likely that even at 100°
{c- should lie between 0-51 and 0-53. Owen’s equations lead to
0-522; Walden in his compilation in Landolt-Bérnstein’s “Tabellen’
adopts the value 0-509; here we shall assume that - (100°) = 0-52;
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6 THE LIMITING MOBILITIES OF IONS

the difference is unimportant for the purpose of examining trends
in ionic mobility with temperature, but our figure seems more in
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Figure 6.3. Variation of the product 1°n° with temperature

keeping with the slow increase observed by Gordon between 15°
and 45°.

Having settled upon these values for the transport number of
chloride ion in potassium chloride, we can now use them in con-
junction with the limiting conductivities of potassium chloride to
calculate values for the limiting conductivity of the chloride ion at
various temperatures.

With these values for the chloride ion as a basis, the limiting
conductivities of many other single ions may be computed from the
A° values for various salts. A representative selection is given in
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IONIC MOBILITIES IN NON-AQUEOUS SOLVENTS

Appendix 6.2 which has been compiled from the sources given in
the footnotes.

The temperature variation of ionic conductivity is large, involving
a five- or six-fold change over the range 0° to 100°. There is no doubt
that the increasing mobility is closely related to the increasing
fluidity of water; this can be shown by plotting the product A%°
(n°® = the viscosity of water) against the temperature as in Figure
6.3. It is noteworthy that the ions for which 1%;° is most nearly
constant are those of large size, whether this large size is due to their
being polyatomic (e.g., acetate and substituted ammonium ions) or
to extensive hydration (e.g., Lit, Cat+, Lat++), This observation
does a good deal to justify the arguments by which we estimated
the sizes of highly hydrated ions in terms of those of the substituted
ammonium ions (see pp. 124-126).

The monatomic ions, K+, Rb+, Cl-, Br-, I-, and ClOg, NOj are
of similar mobility, and show a similar variation of the product
A%° with temperature; this behaviour shows up clearly in Figure 6.3
in contrast to the approximate constancy of 1%° for the larger ions.
It should be noted, however, that even with these ions the variation
of 1%°® with temperature is only of the order of 30 per cent over
the range 0° to 100°. This suggests that ordinary viscous forces
account for most of the resistance to the motion of these ions in
water, though there is evidently some other effect operative as well,
which is important enough to render useless any attempt to estimate
the sizes of these ions on the basis of Stokes’ law.

IONIC MOBILITIES IN NON-AQUEOUS SOLVENTS

The measurement of the conductivities of non-aqueous solutions is
a straightforward matter, the main requirements being careful
attention to the purity of materials and the exclusion of atmospheric
moisture. The work of Kraus and his school™!! may be quoted as
examples of the most precise techniques. It is, however, much more
difficult to obtain from the experimental results accurate values for
limiting ionic conductivities. First, the low dielectric constants of
most non-aqueous solvents result in a much more pronounced
decrease of the equivalent conductivity with concentration than is
the case for aqueous solutions; and the theory required in extra-
polating the conductivity to zero concentration is complicated by
the effects of ion-pair formation. These difficulties can, however,
be overcome, partly by carrying the measurements to very low
concentrations, and partly by the introduction of a finite dissocia-
tion-constant into the conductivity formulae. The latter method
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6 THE LIMITING MOBILITIES OF IONS

has been highly developed by Fuoss, and is discussed in Chapter 14.

The second and more serious difficulty is that at present there are
practically no accurate transport number data available for non-
aqueous electrolytes. The measurement of transport numbers in
aqueous solutions has been developed to a high pitch of precision,
the moving-boundary method of Longsworth being the standard
method for dilute solutions. GorpoN and his co-workers!® have
successfully applied this method to sodium and potassium chlorides
in pure methanol and in methanol-water mixtures, (see Chapter 7)
and HARNED and DreBY}® have derived the transport numbers of
hydrochloric acid in dioxane-water mixtures from electromotive
force studies. Measurements in mixed solvents, interesting though
they are, present new theoretical problems connected with the
preferential solvation of ions by one component of the solvent, and
are therefore of less direct interest than would be the corresponding
data in single non-aqueous solvents.

Many attempts have been made to estimate separate ionic con-
ductivities from those of salts on a hydrodynamic basis. WALDEN®®
found that the limiting equivalent conductivity of tetra-ethyl-
ammonium picrate in a wide variety of solvents including water
conformed closely with the formula:

A%°® = constant

which is derivable from Stokes’ law and is known as Walden’s rule.
Walden’s data showing the constancy of the product A%;® for this
particular salt at various temperatures and in various solvents are
quite striking. A similar constancy was found for tetramethyl-
ammonium picrate, but the higher homologues, ¢.g., tetra-iso-amyl
ammonium picrate, showed considerably larger variations of the
A%n® product. Walden considered that the constancy found for
tetracthyl ammonium picrate justified the assumption that the
picrate ion separately would have constant values of the product
A%?; on this basis, he deduced A° values for the picrate ion in
non-aqueous solvents from the known value of 4° in water, the only
solvent for which accurate transport number measurements are
available: for water, the value is found to be A%° = 0-270 ¢cm?
Q-1 equiv-! poise. Limiting conductivities of other cations can then
be found by subtraction of the appropriate value for the picrate ion
from observed value of A® for various picrates in other solvents.
Walden’s assumption of a constant value of 1°)° for the picrate
ion has been challenged by Kraus!®, who prefers to estimate trans-
port numbers on the basis that the large tetra-n-butylammonium
and triphenylborofluoride ions should have equal mobilities in
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all solvents: this permits the estimation of separate ionic equiva-
lent conductivities which are believed to be reliable within 5 per
cent. The ionic conductivity values so obtained for the picrate
and tetra-ethylammonium ions do not exhibit the constancy of the
product A°4° assumed by Walden, that for the picrate ion varying
from A%° =~ 0-24 in ethylene dichloride to 0-30 in pyridine.
Furthermore, Kraus cites data which show that the product A%;®
for tetra-ethylammonium picrate itself is by no means as constant
as Walden claimed: this argument is independent of any arbitrary
choice of transport numbers. In pyridine, in particular, the con-
ductivity is abnormally high. While Walden’s rule gives a useful
guide to the conductivity to be expected, it cannot be considered
quantitatively reliable. In a limited way, it is of value in interpreting
the variation of ionic conductivities with temperature in one solvent:
this aspect has been considered for aqueous ions on p. 124. The
obtaining of accurate experimental transport number data for non-
aqueous solutions is clearly the key to further progress in under-
standing the interactions of ions with these solvents.

The conductivities of electrolytes in methanol and hydrogen
cyanide and some amides as solvents are discussed in the next
chapter and concentrated sulphuric acid as a solvent for electrolytes
is considered in Chapter 13. In solvents of lower dielectric con-
stant, electrolytes readily form ion-pairs; thisis discussed in Chapter
14, but mention may now be made of Appendix 14.2, which gives
the limiting equivalent conductivities and dissociation constants of
a number of electrolytes in non-aqueous solvents.

REFERENCES

1 ArLcoop, R. W,, LeRoy, D. J. and Gorpon, A. R., J. chem. Phys., 8
(1940) 418; Arrcoop, R. W. and Gorpon, A. R,, ibid., 10
(1942) 124; Benson, G. C. and Gorpon, A. R., ibid.,, 13
(1945) 473

? BerRNAL, J. D. and FowLer, R. H., ibid., 1 (1939) 515; see also GLass-
TONE, S., LAIDLER, K. J. and Evring, H., “The Theory of Rate
Processes’, Chap. X, McGraw-Hill Book Co. Inc. (1941)

2 HaMANN, S. D., ‘Physico-Chemical Effects of Pressure’, p. 123, Butter-
worths Scientific Publications, London, (1957)

3 Sueprovsky, T. and Kav, R. L., 7. phys. Chem.. 60 (1956) 151; ErDEY-
Groz, T., KUuGLER, E. and REeicH, A., Magyar Kém. Folydirat, 63
(1957) 242; Erbevy-GrUz, T. and MajTHENnYI, L., ibid., 64
(1958) 212; Tourky, A. R. and Mikuawn, S. Z., Egypt. 7.
Chem., 1 (1958) 1, 13, 187

4 Davies, C. W. and Monk, C. B., J. chem. Soc., (1949) 413; Monk, C. B.,
thid., (1949) 423, 427

$ James, J. C., Trans. Faraday Soc., 47 (1951) 392

¢ Kraus, C. A, Ann. N.Y. Acad. Sci., 51 (1949) 789

131



6 THE LIMITING MOBILITIES OF IONS

7 DAGGETT, Ig M7,9 gux, E. J. and Kraus, C. A,, 7. Amer. chem. Soc., 73
(1951)

® WALDEN, P., LANDOLT-BORNsSTEIN, ‘Tabellen’, Eg. III, p. 2059, Julius
Springer, Berlin (1936)

® KeENAN, A. G., McLeob, H. G. and GorboNn, A. R., 7. chem. Phys., 13
(1945) 466

1 OQwen, B. B., 7. Chim. phys., 49 (1952) C 72

11 Hnizpa, V. F. and Kraus, C. A., 7. Amer. chem. Soc., 71 (1949) 1565

13 Davies, J7. 13., Kay, R. L. and Gorpon, A. R., 7. chem. Phys., 19 (1951)

4

18 HarNED, H. S. and Dresy, E. C., 7. Amer. chem. Soc., 61 (1939) 3113

4 WaLDEN, P., ULicH, H. and Busch, G., £. phys. Chem., 123 (1926) 429;
WALDEN, P. and BIrw, E. J., ibid., 153 A (1931) 1

132



Copyrighted Materials

Copyright © 2002 Dover Publications Retrieved from www.knovel.com

7

THE VARIATION OF CONDUCTIVITIES
AND TRANSPORT NUMBERS WITH
CONCENTRATION

In THE last chapter we have considered the equivalent and ionic
conductivities at infinite dilution, f.c., in a state where the ions are
far enough apart to be without influence on one another. We now
take up the question of the variation of conductivity with concen-
tration, a problem which calls on all the resources of ionic inter-
action theory. There are two main effects of the interaction
between the clectric charges of the ions: these are the electrophoretic
effect and the relaxation effect.

THE ELECTROPHORETIC EFFECT

The electrophoretic effect arises in the following way. When an
ion moves through a viscous medium it tends to drag along with it
the solution in its vicinity. Neighbouring ions therefore have to
move not in a stationary medium but with or against the stream
according as they are moving in the same direction as the first ion
or oppositely. The effect will clearly be concentration-dependent,
falling to zero at infinite dilution, and its computation will require
the use of the distribution function, since it involves the distances
between ions. For the equilibrium case where no external forces
such as electric fields or concentration-gradients are acting on the
solution, we have been obliged to adopt the distribution functions
(4.9) for unsymmetrical electrolytes, and (4.14) for symmetrical
electrolytes; these conform to the Boltzmann distribution law as
nearly as is permitted by the principle of the linear superposition
of fields, and are mathematically consistent with the expression
(4.13) for the potential y; If the ions are moving under the
influence of external forces, these distributions will in general be
disturbed. In the case of the diffusion of a single electrolyte, how-
ever, all the ions must move with the same velocity, and the sym-
metry of the distribution is not affected. In this case, therefore,
the electrophoretic effect may legitimately be computed from these
distribution functions. In electrical conduction the symmetry will
be disturbed; this gives rise to the relaxation effect which will be
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION

discussed later, but we shall neglect the effect of the dissymmetry
when calculating the electrophoretic effect in conduction. Also, for
the sake of generality, we shall use the Bolizmann distribution law
(4.5) rather than forms (4.9) or (4.14), in order to facilitate the
investigation of questions of convergence; the results corresponding
to the distributions (4.9) and (4.14) can then be obtained as special
cases of the general formula. However, we retain the simple expres-
sion (4.13) for the potential ¢;. The treatment of electrophoresis
given here is essentially that of ONsAGER and Fuoss'V, but employs
the general term of the Boltzmann distribution law. We shall also
confine ourselves to solutions containing only a single electrolyte,
subscripts 1 and 2 denoting cations and anions respectively, and a
subscript 4 the solvent.

In the cases considered here, bulk motion of the solution as a
whole is irrelevant; it follows that the forces k, and &, acting on
the ions must be balanced by other forces k, acting on the solvent
molecules; and denoting the respective bulk concentrations by
ny, ny and n,, we have:

ngk = — mk, — nyk, o (7.0)

At a distance r from a chosen cation the local concentrations of ions
are given by the Boltzmann expression (4.5). A spherical shell of
radius r and thickness dr is subject to a resultant force given by:

(niky + ngky + nk 4nr? dr

Provided that we neglect any variation in n4 at this point from its
bulk value (a course which is safe for dilute solutions), we can
eliminate 7k, by means of (7.1) obtaining for the resultant force
on the shell:

[(n; — n)ky + (ny — np)kg)4mr® dr

This force is assumed to cause the shell and all points within it to
move with a velocity obtained, according to Stokes’ law, by dividing
the force by 6myr. Each shell thus contributes an electrophoretic
increment to the velocity of the central ion, and the whole incre-
ment, Ay, is obtained by integrating over all the shells, beginning
at r = a (the distance within which no other ions can penetrate and
within which the electrophoretic velocity remains constant). This
gives:

2 @
Ay, = ). [(n] — n)ky + (n3 — ng)kglrdr ....(7.2)
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THE ELECTROPHORETIC EFFECT

If we take n] and n; to be given by the Boltzmann distribution (4.5),
we have on expanding the exponentials:

© (—1)m (Zlﬂ’)"

no—m=m I
- n! kT
" ‘( 1y o (13)
, _ &= Zep\"
e 55 ()

It will prove convenient to express the concentrations n, and n, in
these formulae in terms of the quantity (xa). From equation (4.12)
we have, using the electrical neutrality condition, #,2, + nyzy = 0,

_ (Ka)z e2 )—l l
"= tmat \ekT 21(2y — 29)

_ (xa)? _e”_)“ 1
s = 4ma® \ekT Zg(Zg - Z])
Using these values in (7.3) and taking the potential y to be given
by equation (4.13), we obtain from equation (7.2):

po o LG (@ [~y ()
N6y @ \kT) E 19T 4 -z n!

et \» Fo \n [o g—mr
(ek—T) (1+,m) J; S dr| ....(74)

The integral occurring in (7.4) can always be evaluated as:*

f T gy = Slxa) ... (1.5)

m-1 au-z

where §,(xa) is a function of (xa) only. Equation (7.4) may there-
fore be more briefly expressed as:

Bt [ . ek
Ao, = ,21 6mnn! \ekT, ar 2 — 2 ¢u("a)
.. (7.6)

where the function ¢,(xa) is a function of (xa) only, and is defined
by:

baten) = (k) () Sate0

1 4 xa

* See appendix to this chapter, p. 170,
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION

The corresponding equation for the electrophoretic increment to the
velocity of an anion, Auv,, is obtained by merely interchanging the
subscripts 1 and 2 throughout equation (7.6). The further
abbreviation:
2 A = k)
Ay, = 4,
! ngl an(zl - Zs)

e (2.7)

is useful where A4, depends only on (xa), temperature, and solvent
properties and is given by:

—_ l)u 2 \n-1
4, = %Gﬂ_n (;TT) $a(Ka) .\ (18)

Equation (7.7) contains the (as yet) unspecified forces k, and &,
which act on the ions. In conductance, these forces are given by
the product of the field intensity and the ionic charge; in diffusion,
they are the combination of a virtual force produced by the gradient
of chemical potential, and an electrical force due to the ‘diffusion
potential’ which results from the electrical attraction of the faster
moving for the slower moving ionic species. The application of
equation (7.7) to these phenomena will be discussed later.

THE ‘RELAXATION EFFECT’ IN CONDUCTIVITY

In general, the motion of ions under the influence of external forces
will disturb the symmetrical distribution of the ions, and one would
therefore expect that this disturbance would tend to decrease the
velocity of the ions. In the solution in equilibrium, the ‘ionic
atmosphere’ (which is a convenient description of the whole
assemblage of ions outside the central one chosen) is on a time-
average distributed with spherical symmetry, and therefore exerts
no resultant force on the central ion. The central ion may then be
pictured as moving to an off-centre position and experiencing a
restoring force, which, however, rapidly dies away as the ‘atmo-
sphere’ is rearranged by the thermal motions of its constituent ions.
The molecular picture thus involves the concept of the ‘relaxation
of the ionic atmosphere’ and the average restoring force experienced
by the ion is called the relaxation effect. The external force acting
on the ion may, in the conductivity problem, be taken as a field of
intensity X acting in the x-direction; the ‘relaxation field’ will
clearly act in the same direction but in the opposite sense, and will
be denoted by AX. The computation of AX involves a combina-
tion of the ideas of the interionic attraction theory with the equation
of continuity of hydrodynamics, and is mathematically the most
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THE ‘RELAXATION EFFECT IN CONDUCTIVITY

difficult part of electrolyte theory. Because of the unavoidable
complexity of the treatment we shall not give the complete deriva-
tion here, but shall merely give a statement of the main results.
The first attack on the problem of the relaxation effect was made
by DeBYE and HickerL'®; a more successful approach, however,
was that of ONsaGer®), who obtained the following limiting law
for the relaxation effect on the conductivity of an extremely dilute
solution of a single electrolyte dissociating into ions 1 and 2:

2
AX _aunet e eee(7.9)

Here the quantity g is defined by:
|a2s] A+ A
T Tal Flal el Tl
{2124
= Tl + [ ([2l8 + 1)
= } for symmetrical electrolytes where |z;| = |z¢| ....(7.10)

The total electric force acting on the ion is thus given by Xz,e

AX
(l + —)-(—) and produces a velocity (relative to the solvent) of:

AX
v; = Xzzeud (l + Y) oo (7.11)

where u] is the absolute mobility of the ion. At infinite dilution, the
velocity produced by the field X is:

W) = Xzeud e (7.12)

Hence introducing (7.9) we have:

z12:€° qx

y=9 ( t 3T l+\/q)
as Onsager’s expression for the velocity of the ion, corrected for the
relaxation effect. Before calculating the further correction required
to take the electrophoretic effect into account, we shall consider
later developments in the theory of the relaxation effect. In
Onsager’s treatment, several approximations are made: (a) The
potential y; is taken as given by the expression:
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fd
1 + «a
that the resulting expression is valid only at great dilutions where
«a is small compared with unity. (b) Various other approximations
involving the relation AX < X are made: these also will be admis-
sible at great dilutions where the relaxation effect is small.

For some twenty-five years after the appearance of Onsager’s
theory no major progress was made with the relaxation-effect. From
1952 onwards however a number of extensions and refinements have
appeared, in all of which the most important new feature is the
introduction of the ion size parameter a, making possible a con-
siderable increase in the range of validity of the theory.

The 1952 paper of FALKENHAGEN, LEisT and KeLBG!?? employed
the Eigen-Wicke distribution function mentioned in Chapter 4, in
place of the usual Boltzmann one; this makes only a minor differ-
ence in the meaning of the quantity « and need not be considered
further here. They obtained for the relaxation-effect, allowing for
finite ion size, the expression:

Le., the factor is omitted from equation (4.13). This means

AX et g«
X  3¢kT 1 —q (1 + xa)ka

Expanding the exponential in (7.13) as far as the first power of (xa)
gives:

[e-vO _ 1] ... .(7.13)

2

AX _uze? g . (1.14)

X 3¢kT | 1 Vg 1 4 ka
which differs from Onsager’s result (7.9) only by the factor (1 4 xa)
in the denominator. Thus they found the effect of finite ion size on
the relaxation-effect to be of the same form as its effects on the
free energy and on the electrophoretic effect (¢f. equation 9.5 and
7.27).

Almost simultaneously, Prrrs® investigated the conductance of
symmetrical electrolytes; his equation is compared with others in
reference (6). His result, on separating out the part dealing with the
relaxation-effect, may be written:

AX  zte? q K (z”e*x)*&
X  3kT 1+ Vg (1 +«a) (1 +xaVy) ckT) 3
.o (7.15)

The second term on the right arises from the ‘higher terms’, §, being
given as a function of (xa) in a table in the original paper. Ignor-
ing this term, which will not appear if we adopt the ‘self-consistent’
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THE ‘RELAXATION EFFECT’ IN CONDUCTIVITY

treatment of the potential problem as discussed in Chapter 4, we
see that (7.15) differs from (7.14) by the presence of a further factor
1+ xa\/}) in the denominator.

In a subsequent paper!?, Falkenhagen’s school introduced another
boundary condition, that the normal component of the relative
motion of two ions must vanish at the surface of ions in contact
since they are treated as hard spheres. On this basis they evaluated
the relaxation-effect as:

AX e? q K

X 36kT 1+ Vg (1 +«xa) [1 + «xa Vq + «%a?/6]
....(7.16)

for 1:1 electrolytes, with ¢ = 0.5. This equation is identical with
the first-order term of Pitt’s result (7.15), except for the further
term (xa)?/6 in the denominator.

In 1953 MirTsKHULAVA® also published a treatment of the
problem along the same lines as Pitts. Her result for the relaxation-
effect is given as a complicated power series (equation 38 of ref. 8),
involving also a term containing the exponential integral function.
The latter is of especial interest since at very low concentrations it
gives rise to a term in (¢ log ¢), as had been anticipated by ONsaGer
and Fuoss\

Fuoss and OnsaGer® have recently given the most comprehen-
sive treatment, including numerical tables of certain transcendental
functions related to the exponential integral functions. Their final
result, giving the contributions of both the relaxation effect and the
electrophoretic effect, is expressed as Onsager’s original limiting-
law result together with a very complicated function of « and a,
for which the original papers must be consulted. They demonstrate
that the transcendental functions involved lead to a term of order
(¢ log ¢), although the approximations giving this form are valid
only at extremely low concentrations. This contribution from the
transcendental terms is quite small, but its relative importance
increases at low concentrations, and Fuoss and Onsager show that
neglect of it can lead to small errors in the extrapolation of conduc-
tance data. They emphasize that the approximation of their trans-
cendental terms to the form (¢ log ¢) at low concentrations does not
justify the use of such terms with arbitrary coefficients for the repre-
sentation of conductance data at higher concentrations, a practice
which has been followed by many workers in the past. An arduous
but worthwhile task for an enthusiastic algebraist would be to deter-
mine to what extent the formulae of Fuoss and Onsager agree with
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION

those of Mirtskhulava, which as far as we know have not yet been
tested against experimental results,

We do not consider it practicable to present the Fuoss-Onsager
treatment in detail; even the original papers give only a condensed
account of the development of the formulac. We shall therefore
use for illustrating the general form of the theory, Falkenhagen’s
expression (7.16) for the relaxation effect.

THE EFFECT OF ELECTROPHORESIS ON THE
CONDUCTIVITY

The general equation (7.7) for the electrophoretic increment to the
ionic velocity may now be specialized for the case of conductivity
by replacing the forces k, and k;, which act on the ions, by the sum
of the forces produced by the external field X and the relaxation-field
AX giving:

= (X + AX)ze, k, = (X + AX)zse
e (717)
Equation (7.7) then becomes:
= (X + AX)e> 4 L il 1}
N v Az — z)
G —
" a2y — )
Hence the final velocity of the ions, corrected for both electro-

phoretic and relaxation effects, is given by combining equations
(7.11) and (7.18):

v, =u + Ay
= (X + AX)zeu? + (X + AX)e 2 y|

..(1.18)
= (X + AX)e S 4

lez

" "(z (2 —2)

But the absolute mobility u{ is also given by equation (7.12) in
terms of the velocity 19 produced by the field X at infinite dilution:

¥ = Xzeu) ....(7.20)
Dividing equation (7.19) by (7.20) gives:

n AX) 24 — z'{z’;]
1 -1 ....(7
2 ( +x [ z‘u'{g "a™(z, — Z3) (7.21)
Since the velocities #, and »? are those attained under the same
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external field X in the actual solution and in the infinitely dilute
solution respectively, the ratio v/t may be replaced by the ratio
of the equivalent ionic conductivities 2,/4}; and the factor m'

1%1
preceding the summation on the right may be put in terms of 1§,

by the relation (cf. 2.46):

= NAY/(F*|z,])
so that (7.21) becomes:

W=+ T 24w+ %)
..(7.22)

AX
the relaxation term 5 being given by equations (7.9), (7.14) or

(7.16) according to the degree of approximation desired. The
corresponding expression for the anion is:

= (a2 )+ X)
..(7.23)

The equivalent conductivity of the electrolyte A = 4, + 4,, is
therefore:

A= (2 + R 3a i)+ %)
...(1.24)

Though we have retained the general expression®® for the clectro-
phoretic terms in developing these expressions, it will be recalled
that the Boltzmann distribution on which this expression is based
is not mathematically consistent with the Poisson equation, and
that for consistency the series can be taken only as far as the first
term for unsymmetrical valency types, and the second for sym-
metrical types. Furthermore, it is obvious from equations (7.22),
(7.23) and (7.24) that in the case of symmetrical electrolytes,
(23 = — z,), the second-order electrophoretic term (7 = 2)
vanishes identically. Hence, in all cases the first-order term alone
need really be considered though examination of the convergence
of higher-order terms may throw useful light on the validity of the
approximation made to the Boltzmann distribution.
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7 VARIATION OF GCONDUCTIVITIES WITH GONCENTRATION

The first-order electrophoretic term in the conductivity equation

Taking only the term for n = | and using the definitions of 4,
¢, and S, given on pp. 135-136, we have:

i Ka
A‘=—6?].l+xa

Equations (7.22), (7.23) and (7.24) therefore become:

Fe K AX

11 = (1‘1’ — 6171]N |Z1| T+ xa)(l -+ '-)—(—) e (725)
F? K AX

lz= (Ag_GﬂﬂN |Z2| 1 +xa)(l +Y) (726)

A= (A" éan' (la] + 122l 7 +xa)(l * AYX)
...(7.27)

THE ONSAGER LIMITING LAW FOR THE CONDUCTIVITY

In Onsager’s treatment, the further approximation of writing
(1 + xa) = | in the denominator of the first-order electrophoretic
correction is made, and the relaxation term é)z—(- is expressed by the
limiting equation (7.9). Further, in evaluating the electrophoretic
effect the forces k, and k, are taken as Xz,e and Xz,e rather than as
(X + AX)ze and (X + AX)z,e; this is equivalent to neglecting the
cross-product of the electrophoretic and relaxation terms in (7.25)~
(7.27). All these approximations are of course quite justified for the
purpose of finding the limiting law, but it is clear that the resultmg
expression will apply only at extreme dilutions, since (xa) is far
from negligible compared to unity at ordinary concentrations, and
diminishes only as 4/c. The Onsager limiting law is thus:

A= A® — Izlzzlez Aqre —
3ckT 1+ Vq Gm)

(Izll + |2a)x
....(7.28)

Since « is given by equation (4.12) it may be written as:
87Ne? \i \/—'
= —— 1
" (lOOOskT)
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where 1 is the ‘ionic strength’ defined by:

I= % (72} + v:23)

with the usual convention that ¢ implies the mole/l scale. Equation
(7.28) then becomes, on inserting the values of the physical con-
stants:

A Ao — [2801 x 10%55lgA° | 4125z + |z2|)] Vi

(€T)¥2 (1 + V) n(eT)¥
... (7.29)
in which # must be expressed in poise and T in °K.
This limiting law is of the form:
A=A"—AVe .. ..(7.30)

which was found by Kohlrausch to describe the variation of equiva-

lent conductivity with concentration in dilute solutions. For aqueous

solutions at 25° it reduces on putting ¢ = 78-30, T = 298-16°K and
= 0-008903 poise, with A expressed as (cm? Q! equiv-1), to:

A° r
A= A0 [0'7852|zm| P 43032 (Jal + z:l)] vi
....(2.31)

CONDUCTIVITY EQUATIONS FOR HIGHER
CONCENTRATIONS

For many years equation (7.29) was employed with added terms in
¢, ¢33, ¢ log ¢, etc., to represent data at concentrations above 0-001N,
where Onsager’s limiting form is no longer adequate. For purposes
of extrapolation, an equation proposed by SHEDLOVsKY{!1) has been
widely used: equation (7.29) may be written:

A= A°— (B, A’ + B,) V¢

where B, and B, are parameters given by the theory. Rearranging
this to:

A® = (A + B,Vo)(1 — BVe), ....(7.32)

Shedlovsky observed that for strong aqueous 1:1 electrolytes the
quantity on the right of (7.32) is not constant, as it would be if
equation (7.29) were obeyed exactly, but varies almost linearly
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION

with ¢ up to concentrations of about 0.IN. He therefore defined an
extrapolation function, A%, by:

AY = (A + ByVo)/(1 — B, V) ... .(7.33)

which when plotted against ¢ would yield on extrapolation to ¢ = 0,
the true limiting conductivity A°. This implies that data up to
0.1N can be fitted by the expression:

A= A®— (B,A° + B)Ve + be(l — B,Ve) ....(1.34)

where the coefficient 5 is chosen to fit the data. Useful as this device
is, its weakness lies in its empirical nature, no simple meaning being
attached to the b coefficient. Fuoss and ONsAGER'™ have shown
that the approximate constancy of b can be accounted for as a
fortuitous consequence of the numerical values of certain terms in
their complete theory.

Still denoting the coefficients of the relaxation and electrophoretic
terms in equation (7.29) by B, and B, respectively, we can combine
Falkenhagen’s equation (7.16) with equation (7.27) to obtain:

By,Ve )(1 _ B,Ve )
1 + «a (1 + xa) (1 + xaVq + %36
.e..(7.35)

A=(A°—

If we expand this product in powers of V¢, putting ka = BaV/,
we obtain:

A = A® — (B,A°® + B,))Ve + ¢(aBB, + B,By + 1:707A° a BB,)
— 2707 a BB,B, ¥% + . ...

Since for most aqueous 1:1 electrolytes Ba ~ 1 (mole-1 litret),
whilst B, &~ 02, B, ~ 60 and A ~~ 100, the coefficients of the
terms in ¢ and B,c%2 are of the same magnitude; to this extent the
expression provides some justification for the form of Shedlovsky’s
function.

Another useful approximation is that proposed by the authorsf!?
shortly after the appearance of Falkenhagen’s earlier equation
(7.13). Combining (7.14) with (7.27) and neglecting the cross-
product of the relaxation and electrophoretic terms, gives:

B,A°® + B,

A= A"—
1 4+ ka

....(7.36)

t.e., we have merely to divide the square-root term of Onsager’s
original limiting law by (1 4+ xa) in order to allow for the finite
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1onic size. Equation (7.36) gives a very fair account of the conduc-
tances of aqueous 1:1 electrolytes up to 0-05 or 0.1N. It may be
rearranged as:

Ao - A + B lA + Ea .
1 + (Ba — B))Ve
oo (737
Table 7.1
. . em ﬂs
Values of the function $,(xa) = (xa) (l_-l-_;&) (k)
(-] e’-'w
at round (xa) where S,(xa) = a"'zj 1 dr
a T

xa | 1004(xa) | 100¢s(xa) | 1004,(xa) | 100¢(xa) | 100¢y(xa)
0-0 0 0 0 0 0
0-05 4-762 0-4566 0-1609 0-0884 0-0584
01 9-091 1-235 04761 0-2624 0-1693
02 1667 2911 1-166 0-6192 0-3764
03 23-08 4405 1-734 0-876 0-499
05 33-33 6-628 2-425 1-100 0-552
07 41-18 7-987 2-686 1-096 0-491
1-0 50-00 9-032 2-678 0938 0-37
1-2 54-55 9-327

1-4 58-33 9-434

1-5 60-00 9-429

1-6 61-54 9-411

18 64-29 9-316

20 66:67 9:170

2:5 71-43 8-692

30 756G 8-172

35 77-78 7-662

40 80-00 7-187
45 81-82 6-753

5-0 83-33 6-359

55 84-62 6-002
6-0 85-71 5-681

From Stokes, R. H., 7. Amer. chem. Soc., 75 (1953) 4563.

where « = BV, which is a useful form for determining A°. Its
advantage over Shedlovsky’s function is that the parameter 2 has a
simple physical meaning and can be expected to lie in the range
3 — 55A; for fully dissociated 1:1 electrolytes it has been found
to be nearly independent of temperature for any given electrolyte
(see Table 7.3).
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION

To each of these equations (7.29, 7.35, 7.36) for A there of course
corresponds a pair of equations for 4, and A, separately; these are
obtained from equations (7.25) and (7.26) by the same method,
and differ only in that 4, or 4, replaces A, 1§ or 1} replaces A9,
and in the electrophoretic term |z| or |z,| replaces the sum
(|zy] + |z5l). The relaxation term for the separate ions in the
equations corresponding to (7.33) and (7.34) is exactly the same as
in these equations for A.

CONVERGENCE OF THE ELECTROPHORETIC TERMS

We now return to equation (7.24) where the electrophoretic contri-
bution appears as the series:

F?2 D -0 2

il 2 A" _"( 1 2)
N 2 a(jal + 12l

In this series the quantities 4, are given by the equation:

4, = %}7- (e—fﬁ) $a(a)

The dimensions of 4, are those of (viscosity-! length™-1), The
dimensionless function ¢, (xa) for values of n up to 5 is given in
Table 7.1. In deriving the conductivity equations, we have used
only the first-order electrophoretic term, obtained by putting n = 1

Table 7.2
Values of the valency factor {4 = 4
PIE P 0al ¥ b
|

Valency type n=1 l n=2 n=3 n=4 n=>5
1:1 2/a | 0 2/a® 0 2/a®
2:2 4/a 0 64/a? 0 1024/a®
1:2and2:1 3/ 3/a? 27/a8 75/at 363/a

in the above formula, a course adopted in the interest of self-con-
sistency. The question as to whether the series does converge rapidly
enough to make this expedient successful has been investigated by
StokEs1® who showed that for aqueous solutions at 25° convergence
depends on the factor:
(e — 23)*
a" (|2 + [22l)

rather than the quantity A,. Table 7.2 shows how this factor behaves
for various valency types.
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Bearing in mind that the ion-size parameter ¢ is in the vicinity
of 4A for most simple ions, it is apparent from Table 7.2 that the
electrophoretic terms given by the series in (7.24) will converge
quite satisfactorily for 1 : | electrolytes in water, so that the formulae
proposed for the conductivity, in which only the term n =1 is
accepted, should be adequate. For 2 : 2 electrolytes, in spite of
the vanishing of the even-order terms, the convergence is unsatis-
factory since the third- and fifth-order terms will be of comparable
magnitude to the first. For unsymmetrical valency types, none of
the terms vanish and convergence will be slow, though somewhat
assisted by the alternation of signs. In non-aqueous solvents the
dielectric constant is usually lower than that of water (hydrocyanic

2
acid is one exception); therefore the factor e:_T which appears to
the (n — 1)th power in the expression for 4,, will be larger and will
militate further against satisfactory convergence. We cannot,
therefore, really expect the present treatment to be quantitatively
successful except for 1 : 1 electrolytes in water, unless there are
good reasons for ascribing a large effective size a to the ions; this
foreboding is, in fact, fulfilled. Merely to include the higher-order
electrophoretic terms is not a satisfactory solution, since the formulae
from which these terms have been computed are self-consistent only
as far as the first order for unsymmetrical electrolytes and as far as
the second order for symmetrical ones. The formulae obtained
above for the higher-order terms are therefore helpful only when
these are negligible; in other cases they serve to demonstrate the
inadequacy of the treatment rather than to provide an adequate one.

EXPERIMENTAL TESTS OF THE THEORY OF
CONDUCTIVITY
The Onsager limiting law (7.29) has been exhaustively tested by
extremely precise experimental studies, and its validity, for the
conditions assumed in its derivation, has been conclusively demon-
strated. These conditions may be summed up by the requirements .
that the dimensionless parameter (xa) should be very small com-
pared to unity, and that the electrolyte should be fully dissociated
into ions. For aqueous solutions at ordinary temperatures, x is
approximately 0-3 X 10® 4/I (see Appendix 7.1); and the mean
ionic diameter a is 3-5 X 10-8 cm; hence «a is of the same order
of magnitude as /1. At a concentration where the ionic strength
I is 0-001, xa is about 0-03, and the approximation of neglecting it
in the factor (1 4 xa) therefore involves an error of about 3 per
cent in the value of (A® — A). At this ionic strength, (A% ~ A) is
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION

about three equivalent conductivity units for 1 : 1 electrolytes, and
rather more for higher valency types, so that the approximation is
of the order of 0-1 units in A. This is several times the experimental
error of the best work and shows that a concentration of one-
thousandth normal must be regarded as a theoretical upper bound
to the range of validity of the limiting law, even for aqueous 1 : 1
electrolytes. In other solvents and for higher valency-types the
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Figure 7.1. Eguivalent conductivity of hydrochloric acid in very
dilute aqueous solution at 25°

-
o

bound is even lower. However, conductivity measurements can in
favourable cases be carried out accurately at concentrations as low
as 0-00003 N: although the measured values at such concentrations
are often close to the limiting value for infinite dilution, the experi-
mental precision is such that the difference still makes a significant
test of the limiting law. The very careful measurements of
SHEDLOVSKY et al.'® have shown that in the concentration-range
from 0-00003 to 0-001 N the Onsager formula (7.29) is obeyed
within experimental error by aqueous sodium chloride, potassium
chloride, hydrochloric acid, silver nitrate, calcium chloride and
lanthanum chloride.
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Silver nitrate actually conforms to the limiting law up to sub-
stantially higher concentrations: this is due to the effect of ion-pair
formation, which, though negligible below 0-001 N, reduces the
conductivity at higher concentrations by amounts comparable to
those involved by neglecting the factor (1 + xa). Figure 7.1 illus-
trates the concordance between the experimertal data of Shedlovsky
for aqueous hydrochloric acid and the predictions of the Onsager
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Figure 7.2, Conductivity of cadmium sulphate at 18°

limiting law at concentrations below ¢ = 0-003. For 2 : 2 electro-
lytes and higher valency types, however, the limiting law is obeyed
only at extraordinarily low concentrations, the formation of ion-
pairs being appreciable even at high dilutions. It is only recently
that evidence has been advanced to show that the limiting Onsager
equation is valid for a 2 : 2 electrolyte. By taking extraordinary
precautions, DEUBNER and HEISE(1¢) have been able to measure the
conductivity of cadmium sulphate solutions at concentrations as
low as ¢ = 2 X 10-% Figure 7.2 shows how the seven values of the
conductivity determined by Deubner and Heise do agree with the
values predicted by the limiting law:

A = 11315 — 408-1+/¢
It is clear that with increasing dilution the experimental values
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION

approach more nearly to the theoretical and are in good agreement
for the four most dilute solutions. At higher concentrations the
experimental values are lower than the predicted; as we shall see
in Chapter 14 this is characteristic of salts subject to ion-pair
formation. The deviation is in the opposite direction with non-
associated salts, and Figure 7.3 illustrates this by using the data of
Shedlovsky for sodium chloride up to comparatively high concen-
trations.

Valuable though the confirmation of the limiting law at these
extreme dilutions is, there is little practical use for a theory dealing

===~ Experimental curve
~——Calcvlated from Onsagers
limiting low

120,

5

D

T

s

g 7170 <

o b
= Seo

< h O

700| Ny
[/ [Z] 02 o3

Ve —
Figure 7.3. Eguivalent conductivity of sodium chloride solutions at 25°

only with such solutions. More interest therefore attaches to testing
the more complete equations for higher concentrations in which
the factor (1 + xa) is not omitted; since these all necessarily reduce
to the Onsager form when xa € 1, it is clear that if they hold, the
Onsager limiting law must also do so when only the concentration-
range below about 0-001 N is considered.

The most careful experimental work has largely been confined to
solutions less than 0-1 N in concentration, and the very precise
direct current method of Gordon has been employed only up to
0-01 N. Below 0:01 N the best measurements by different observers
often agree within about 0-03 in A, but at higher concentrations
uncertainties of several tenths of a unit exist. For example, the
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Table 7.3
Tests of Equation (1.36) A® = A + W_—ﬁ}‘)’—:&
- iy,

o A° Mean 8 Max. 8 Number Range A°
Temp. °C eq. (7.36) per cent per cent of points (molr) Observer (SEF)
HCla = 4-3 A at all temperatures
50 297.61 003 009 12 0-001-0-083 o&s 207.6
15° 361-89 004 009 i 0-001-0-082 o&s 3620
25° 42598 003 006 12 0-002-0-086 O0&S 4262
25° 426-10 003 005 i 0-00003-0-003 s 426-16
35° 489-02 002 006 14 0-001-0-062 0&Ss 489-2
45° 550-18 002 005 i1 0-002-0- O&S 550-3
55° 609-34 002 005 11 0-002-0-070 0&S 6095
65° 66664 002 006 12 0-001-0-072 O&S 666-8

O & S: Owen, B. B, and Sweeron, F, H., 7. Amer. cllan.Su 63 (1941) 2811
S: Sueorovexy, T. (A® converted to Jones and Bradshaw 0:] demal d ‘) bxd.54(|932) HII B
A° (S. B.F)denotenlhevaluel obtained by the observers named, using the S| (7.39)

From RoBINsON, R. A. and Stokes, R. H., 7. Amer. chem. Soc., 76 ( 1954) 1991 (wherc similar data are given for four 1:1 salts at various
temperatures)
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equivalent conductivity of 0-1 N potassium bromide solution at 25° is
given as 131-19 by Jones and BickrorD*®! and as 131-39 by Longs-
worTH1®), However, since the significant quantity for the theory
is (A® — A) and this is larger at higher concentrations, such
discrepancies in the data are not serious; one should, however, be
prepared to tolerate deviations of a few tenths of a unit in A at the
higher concentrations.
All of the proposed equations can be expressed in the form:

A = A® + f(c, a)

so that the problem is to find the best values of the two constants A°
and a. To illustrate the precision with which their equation will
reproduce the experimental results for a strong 1 : 1 electrolyte,
Fuoss and OnsaGer'® quote details for aqueous potassium bromide
at 25°. The experimental data used are those of OWEN and ZELDES!'?
which cover the concentration range 0-0014-0-0072 N. By a method
of successive approximations, the best values are found to be
A® = 151-75, a = 3-6 A, and the corresponding equation fits the
data within 0-01 cm? ohm™! equiv.™,

Shedlovsky’s empirical equation (7.34) will represent the same
data with only slightly inferior accuracy but requires A® = 151-68.
Our equation (7.36) gives a similar fit with A% = 151-67 and
a = 3-2 A. Equation (7.35), which is that of Falkenhagen’s school,
or that of Pitts without the ‘higher terms,’ requires an ion size of
2:0 A and gives A® = 151-71. In Table 7.4 the predictions of these
various equations are compared with the experimental results.
Whilst the table shows that the Fuoss-Onsager treatment gives an
almost perfect fit to this set of experimental results, it must be
emphasized that the other theoretically less exact equations give
deviations of at the worst only 0-02 cm2 ohm-? equiv-? or 0-014 per
cent. The important question is therefore whether the A° value
given by the Fuoss—-Onsager theory is more correct than the others,
which are 0-04 to 0-08 lower. There is no method of determining
A9 absolutely; it must always be found by extrapolation and the
Fuoss-Onsager theory demands that the simpler extrapolation func-
tions should curve upwards slightly in very dilute solutions. Whether
this actually occurs is obscured by the increasing importance of
experimental errors at high dilutions. Probably the most effective
test can be made by using data for very dilute hydrochloric acid;
here the solvent corrections are less important than for other elec-
trolytes, and the data in the dilute region should be correspondingly
more reliable. Application of the Fuoss-Onsager formulae to SHED-
1.0VsKY’s'® data for the range up to 0-003 N, gives A% = 426-27,
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compared with the values 426-16 obtained by Shedlovsky, and
426-10 using equation 7-36 with a = 4:3 A, from the same data.
It seems safe therefore to estimate that A° values obtained by the
SHEDLOVSKY!! or RoBINSON-STOKES!}® methods from data in the
range 0-:001 — 0-01 N will not be more than 0-05 per cent lower
than the Fuoss-Onsager values.

Bearing in mind that unless quite exceptional precautions are
taken, the experimental data will not be of better than 0-02 per cent

Table 7.4
Eguivalent conductance of potassium bromide solutions at 25°

cm? Int, Q-1 equiv-!

104 Aexp. Ar-0 As AR-s Ap-¥
mole/l.
13-949 148-27 148-27 148-26 148-26 148-28
27-881 146-91 146-91 14692 146-92 146-93
42-183 145-88 145-89 145-89 145-90 14590
59-269 144-90 14491 144-90 144-91 144-89
71-696 144-30 144-30 144-28 144-29 144-28
A? — 151-75 151-68 151-67 151-71

—_ a=36A 5=091 a=32A a=20A

Ar-o—-calcu‘]_a;cd by Fuoss-Onsager theory including transcendental terms
(ref. 9).

As —=calculated by Shedlovsky’s function, equation (7.34).
AR-s—calculated by Robinson-Stokes equation, (7.36).

Ap-p—calculated by Falkenhagen or Pitt’s equations, ignoring ‘higher terms,’
equation (7.35).

accuracy, it is clear that the simpler equations will be adequate for
most work, and the arithmetical labour of applying the Fuoss-
Onsager theory will be undertaken only when extreme precision is
needed. To illustrate the reality of experimental errors, we compare
in Fig. 7.4 the results for potassium bromide at 25° obtained by
three investigators, OwWeEN and ZeLpEs'”, BeNsoN and GORDON{?,
and Jones and Bickrorp{1®, The quantity plotted is the arbitrary

deviation function (A + 81v%). It is evident that the differences
between various investigators are as great as the differences between
A obtained by the various equations tested in Table 7.4.
Equation 7.36 is particularly convenient for representing conduc-
tances up to 0-1 N, though the best value of the parameter 4 and
consequently of A° depend slightly on the concentration range
fitted. Table 7.5 compares the experimental conductances of sodium
chloride with the predictions of this equation using ¢ = 4 A; the
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deviations are less than 0-05 per cent up to 0-05 N. Since the equa-
tion involves little more calculation than does the limiting law (7.29),
1514 :

") —-
L]

-
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i

g

(Aea1v0)/(cm® Q' eg

517 o

8005 o
¢/(mole litre™) e
Figure 7.4. Deviation function for the conductivity of aqueous potassium
bromide solutions at 25° according to various investigators
© Ouwen and Zeldes. @ Benson and Gordon. @ Jones and Bickford

its slight theoretical inadequacy compared with the more exact
equation of Fuoss and Onsager may well be forgiven.

Table 7.5
Conductivities of Sodium Chloride Solutions at 25°
¢ A AL.L.
molefl. | Dobs | (Eq. 7.36) | (Eq. 7.29)
0 126-45) | (126-45) | (126-45)
00005 | 12451 | 12451 | 12445
0-001 12374 | 12375 | 12363
0-002 12266 | 12268 | 12246
0-005 12064 | 12068 | 12014
001 11853 | 11857 | 11753
002 11576 | 158 | 11383
0-05 11106 | 11103 | 10650
0ol 10674 | 10652 9823

A (Eq. 7.36) calculated with a = 4A;
AL.L. by Onsager limiting law.

LIMITATIONS OF CONDUCTIVITY EQUATIONS

In deriving the various equations for the conductivity discussed
above, the following assumptions are made, each resulting in some
restriction on the applicability of the final equations. (a) Complete
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ionization is assumed; the formulae will however apply to the
ionized part of weak electrolytes and to the ‘non-paired’ part of
electrolytes in which ion-association occurs. In practice, only a
small number of 1 : 1 electrolytes in water and possibly in some
other solvents of high dielectric constant can be treated as completely
ionized. Fuoss and Onsager comment that the mere fact of intro-
ducing the ion size parameter a implies some degree of ion-associa-
tion, since it involves the idea that some ions do approach to mutual
contact and whilst in mutual contact they will not contribute to
the conductance. (This appears to us to be not quite the case, for
even whilst the ions are in contact they can contribute something
to the conductance by moving round each other.) () The treat-
ments of Fuoss and Onsager and of Falkenhagen are based on the
Debye-Hiickel expression (4.13) for the potential in the absence of
an external field. The limitations of this have been discussed in
Chapter 4; it is an approximation which accords well with thermo-
dynamic data (see Chapter 9) and is most accurate for ions of low
charge in media of high dielectric constant. The more complicated
potential expression employed by Pitts and by Mirtskhulava is a
doubtful improvement in view of the departure from mathematical
self-consistency involved.

The theory is weaker at every point for unsymmetrical electro-
lytes: the potential expression is less exact since the term in 42 does
not vanish from equation (4.7); the convergence for the series for
the electrophoretic effect is unsatisfactory; and the theory of the
relaxation effect has not been properly developed beyond the first
approximation given by equation (7.9). There is therefore little
justification for using any theoretical treatinent except the Onsager
limiting law (7.29) in such cases; empirical terms in ¢, ¢ In ¢, /2
etc., may be added but only for convenience of representation. Mere
division of 4/ in equation 7.29 by (1 4 xa) does indeed give a rough
fit, and with reasonable ion size parameters, but the discrepancies
between its predictions and the measurements are much greater
than experimental error. Two examples are given in Table 7.6.

Even for aqueous 1 : 1 electrolytes, one is straining the mathematics
to the limit in applying theory to solutions as strong as 0:1 N, and
only approximate treatments can be given at higher concentrations.
Some of these will be discussed in Chapter 11.

THE VARIATION OF TRANSPORT NUMBERS WITH
CONCENTRATION

Experimental results show that transport numbers are in general
concentration-dependent, and the interpretation of this observation
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION

provides a useful test of the theory. In the case of non-associated
uni-univalent electrolytes the form of the concentration dependence
is as follows:

(a) If the cation transport number is close to 0-5, it scarcely varies
with concentration; this is seen in the case of potassium
chloride.

Table 7.6
Conductivity of Calcium and Lanthanum Chloride Solutions at 25°

CaQl, (i) LaCl, (if)

¢ Aovs. | Acate. | Av. ¢ Aovs. | Acie. | Ara.

0 (135-85)( — —_ 0 (145-9) — —
0-00025 | 13190 | 132-02 | 131-88 | 0-000167| 1396 139-9 139-6
0-0005 130-32 | 130-52 | 130-23 | 0-000333| 137-0 1376 137:0
0-0010 128-20 | 128-47 | 127-91 | 0-00167 127-5 128-8 126-0
0-0015 126-61 | 12695 | 126-12 | 0-00333 121-8 123-0 117-8
0-0025 124-23 | 124-65 | 12329 | 0-00667 115-3 1159 106-2
0-0035 122-47 | 122-85 | 120-99 | 0-0167 106-2 104-3 83-1
0-0050 12036 | 12069 | 118-09 | 0-0333 99-1 94-3 57-1

001 11565 | 11565 | 110-73
0025 10847 | 107-19 | 9614
005 10246 | 9952 | 7968
(a=4314) (a=494)

() Data up to ¢ = 0-005 from Benson, G. C. and Goroon, A. R., 7. chem. Phys.,
13 (1945) 470; above ¢ = 0-005 from Sueprovsky, T. and Brown, A. S,
J. Amer. chem. Soc., 56 (1934) 1066

(it) Jones, G. and Bickrorp, C. F., J. Amer. chem. Soc., 56 (1934) 602; Loncs-
woRTH, L. G. and Maclnnes, D, A, ibid., 60 (1938) 3070

(b) If the cation transport number is less than 0-5 as with lithium
chloride, it decreases further with increasing concentration.

(¢) If the cation transport number is greater than 0-5, it increases
with concentration; this occurs for example with hydro-
chloric acid.

These findings are completely and quantitatively explained by
the interionic attraction theory®. According to equations (7.25),
(7.27) and (7.36) the transport number ¢, of the cation is given by:

— ﬁ = 2 — 3 z4|B:vI[(l + ka)
A=A T A el + DB e
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VARIATION OF TRANSPORT NUMBERS WITH CONCENTRATION
where
For 1 : 1 electrolytes this simplifies to:
y = BB+ o)
A® — Bya/c[(1 + ka)
Thus the transport number expression contains only electrophoretic

terms, the relaxation factor having cancelled out from equations
(7.25) and (7.27). Itis clear from (7.39) that if the limiting transport
0

and «a = Ba+v/I

...(7.40)

number ¢ = 7\-’3 is 0-5 exactly, £, will not vary from this value, and

that the behaviour described under (4) and (¢) above is also
accounted for. Equation (7.39) gives an excellent quantitative
account of the observed transport numbers; for aqueous 1:1
electrolytes at 25°, B, = 60-65 and xa = 0-329] a+/c. Table 7.7
gives some observed and calculated values of ¢,. The high degree of
agreement with theory exhibited in Table 7.7 is striking evidence
for the soundness of the treatment of the electrophoretic effect for
1: 1 electrolytes. The values of the ion size parameter 2 needed to
account for the transport numbers are very reasonable, and similar
to those found from consideration of the activity coefficient data.
The ions of potassium chloride, for example, appear from their
mobilities to be very nearly of the same effective size, and the
crystal radius of the chloride ion is 1-8 A; thevalue a = 3-7 A is thus
Jjust about what would be expected. For the fairly strongly hydrated
sodium and lithium ions we have estimated in Chapter 6 radii of
3-3 and 3-7 A respectively by using a modified Stokes’ law formula:
combining these with 1:8 A for the chloride ion, we have a = 51
and 55 A for sodium chloride and lithium chloride respectively, as
compared with the value a = 5-2 A found adequate for both salts
in Table 7.7. A Stokes’ law estimate cannot be used for hydrogen
ion because of the abnormal transport mechanism involved, but the
value a = 4'4 A for hydrochloric acid compares very well with
a = 447 A required for the activity coefficient data (Chapter 9).
Very few transport number data are available for solvents other
than water, and such as there are have mostly been obtained in
mixed solvents, e.g., the transport numbers of hydrochloric acid
have been measured by HarneED and DRreBY!?) in a number of
dioxane-water mixtures, and GorpoN and his collaborators‘??! have
used the moving boundary method for sodium and potassium
chlorides in equimolar methanol-water mixtures. These results for
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Table 7.7
Observed and Calculated Cation Transport Numbers of Aqueous | : | Electrolytes at 25°: Tests of Equation (7.39)

HCI*t LiCl* NaCl$§ NaAct KClI*§ KAc||
¢y obs. ¢ eate. ¢) ovs. £ cale. {3 obs. £, eale. £ obs. £y cale. £ obs. £ eale. ¢y obs. £y eale.
0 (0-8209) | 0-8209 | (0-3363) | 0-3363 | (0-3962) | 0-3962 | (0-5506) | 0-5506 | (0-4905) | 0-4905 | (0-6425) | 0-6425
0-01 0-8251 0-8249 0-3289 0-3285 0-3918 0-3918 0-5537 0-5538 0-4902 0-4901 0-6498 0-6495
0-02 0-8266 0-8263 0-3261 0-3258 0-3902 0-3902 0-5550 0-5550 0-4901 0-4900 0-6523 0-6521
0-05 0-8292 0-8287 0-3211 0-3211 0-3876 0-3875 0-5573 0-5573 0-4899 0-4898 0-6569 06570
01 0-8314 0-8310 0-3168 0-3165 0-3854 0-3849 0-5594 0-5596 0-4898 0-4895 0-6609 0-6619
0-2 0-8337 0-8337 0-3112 0-3112 0-3821 0-3819 0-5610 0-5626 0-4894 0-4892 -—_
0-5 0-838 0-838 0-303 0-301 —_ — — — 0-4888 0-4887 — —_
1-0 | 0-841 0-841 0-297 0-287 — — —_— — 0-4882 0-4883 — —
20 . 0843 0-843 —_ — —_ — —_ —_ — — —_ —
30 0843 0-845 —_ — — —_ — — - — — —
a (A) 44 5:2 52 3.7 3.7 37

* LonosworTH, L. G., 7. Amer, chem. Su. 54 (1932) 2741.

1 Haawep, H. §. and Dresy, E. c.. bid, 61 (1939) 3115.

1 LonaswortH, L. G., ibid., 57 (l

§ ALLcoop, R. W., LeRoy, D. J. and 3 Garaon . chem. Phys., 8 (1940) 418 and 10 (1942) i24.
Il LeRov, D. J. and Goroon, A. R., ibid., A (1938) s

Note: Experimental values given to four ﬁgures are by moving boundary method; those given to three figures are by the e.m.f. method
for hydrochloric acid and by the Hittorf method for lithium chloride.
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hydrochloric acid appear to conform reasonably well with the
requirements of the theory at low concentrations, but not so well
at higher concentrations. This is perhaps to be expected since the
convergence of the theoretical formulae for the electrophoretic effect
is less satisfactory in media of low dielectric constant.

For higher valency types, even in water, the theory is also found
to be inadequate; with calcium chloride, for example, equation
(7.39) gives results which are nearer to the observed values than are
those predicted by the limiting law, but are still substantially low.
In 0:05 M calcium chloride at 25° the observed cation transport
number is 0-4070; equation (7.39) with a = 5 A gives 0-3952; and
the limiting law equation (i.e., equation (7.39) with a = 0) gives
0-3545. Thus while the ion-size correction gives a useful improve-
ment, it does not lead to the quantitative agreement which can be
obtained with 1:1 electrolytes. This is probably attributable to
the lower degree of self-consistency of the interionic attraction theory
for unsymmetrical electrolytes.

For bi-bivalent electrolytes (i.c., of the zinc sulphate type), the
theory should be applicable; but here the difficulty arises that a
large proportion of the ions are present as closely associated ion-
pairs; this effect is quite important at the lowest concentration
accessible to transport number experiments, viz., about 0-005 M.
Unfortunately no moving-boundary measurements have been made
on 2 : 2 electrolytes, and we therefore have to rely on older and less
precise measurements by the Hittorf method. The measurements
on cadmium sulphate at 18° by Jaun and his co-workers?? seem
to be the best available, and internal evidence suggests a reliability
of a few units in the third decimal place of the transport number.
The curve of ¢, against 4/¢ also bears a strong resemblance to that
found by the electromotive force method®® for zinc sulphate,
except in the most dilute region, where the Hittorf method may well
be more reliable.

The transport number of the cadmium ion is found to fall almost
linearly in 4/¢c from 0 = 0396 at c =0 to 4, = 0254 at ¢ = |
mole per litre; deviations from this straight line scarcely exceed the
experimental error. Taking the limiting equivalent conductivities
at 18° as 4%;.. = 448, 13o-- = 684, and inserting the appropriate
numerical values for 18° in equation (7.39), we have:

44-8 — 101:74/¢/(1 4 0-6546 x 108 a+/¢)
71132 — 203-44/¢/(1 + 06546 x 108 a+/c)

With the value a = 3-5 A, equation (7.41) gives very fair agree-
ment with experiment as shown in Table 7.8. The formation of
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION

ion-pairs in a symmetrical salt does not result in the appearance of
any new ionic species and the effect on the transport number should
therefore be merely that of ‘diluting’ the solution by removing
some of the ions to form electrically neutral pairs, the ‘dilution’

Table 7.8
Cation Transport Number in Cadmium Sulphate at 18°

¢ (mole/litre) 0 0-01 0-09 025 049 1-00
4, obs, (0-396) 0-384 0-353 0-323 0-295 0-254
L, cale. 0-396 0-378 0-347 0-321 0-299 0-270

factor being «, the degree of dissociation of the ion-pairs. The
success of equation (7.41) in which the ion pairing is ignored is
apparently due to this ‘dilution factor’ being approximately
compensated by the use of a rather small value (35 A) for the
ion-size parameter.

Negative cation transport numbers

The behaviour of the transport numbers of calcium chloride or
zinc perchlorate may be regarded as normal for 2: 1 electrolytes
in spite of the inability of theory to cope with it. Many of the

Table 7.9

Cation Transport Numbers of Aqueous 2 : 1 Electrolytes at 25°, showing
Effect of Autocomplex Formation in Jinc Halides

m Zn(ClO,),* Znl,f ZnBr,} ZnCl§
0 (0-440) (0-408,) (0-404,) (0-409,)
0-05 — 0-382 0-366 0-365
01 0-409 0-363 0-349 0-350
02 0-389 0-345 0-331 0-335
05 0-361 0-320 0-306 0-331
1-0 0-335 0-291 0-286 0171
2:0 0-303 0-178 0-181 0-000
3-0 0-281 0-056 — 0-059 — 0-137
40 0271 — 0-050 — 0151 — 0-256
50 — — 0-190 — 0233 — 0-364
80 — — 0444 ~ 0-445 — 0-562
10-0 — — 0550 — 0-563 — 0-559

® Stoxes, R. H. and Levien,

m = mole salt per kg water

v J. Amer. chem. Soc., 68 (1946) 333

B.J.
t Sroxss, R, H. and Levian, B. }., ibid., 68 (1946) 1852
t Parton, H. N, and MircueL, J. W., Trans. Faraday Soc., 35 (1939) 758
§ Harwus, A, C. and Parvon, H. N,, idid., 36 (1940) 1139

transition-metal halides?®), however, show very different behaviour,
which is illustrated in Table 7.9; at high concentrations the cation
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transport number decreases rapidly to zero, then becomes negative.
This is in marked contrast to the behaviour of the transport number
of zinc in its perchlorate!?® which may be taken as typical behaviour
for a normal 2 : ] electrolyte at higher concentrations; the explan-
ation of the anomaly is that the metal ion is to a large extent present
as a complex negative ion, believed to be mainly an ion of type
ZnX;-, a view which is supported by measurements'?” of the
vapour pressures of ZnX,—KX mixtures. Though no quantitative
treatment of the effect can be given, it would appear (p. 112) that
to give a negative apparent transport number for the metal ion, the
complex negative ion must have a higher mobility than the normal
(hydrated) metal ion. This is quite possible since the bivalent
cations are known to be strongly hydrated.

CONDUCTIVITIES IN NON-AQUEOUS SOLVENTS

There is a substantial body of experimental data for conductivities
in non-aqueous solvents. Such solvents frequently have a much
lower conductivity than pure water, with the result that measure-
ments can be made at lower concentrations without serious loss of
accuracy; on the other hand they are more difficult to purify, and
may require careful protection from atmospheric moisture, while
simple salts are often only slightly soluble in them, with a consequent
restriction of the concentration-range which can be studied. The
theoretical interpretation of the results is at present hampered by
a severe shortage of reliable transport numbers in non-aqueous
solvents. It is to be hoped that the centrifugal cell method of
MaclInnes will soon be developed to a point where this difficulty is
overcome; in the meantime a valuable start has been made by
Gordon and his collaborators who have obtained accurate moving-
boundary transport number measurements in anhydrous methanol
solutions of sodium and potassium chlorides. These, together with
their direct-current conductivity measurements in the same sol-
vent(?®), provide the most precise information we have on the
transport properties of ions in non-aqueous solutions. The results
of their measurements are summarized in Table 7.10. Both cation
and anion transport numbers were measured in several cases, the
sum being within 0-0003 of unity; this provides a valuable check
on the results.

GoRrDON’s school(2® have also made measurement of transport
numbers and conductances for lithium, sodium and potassium
chlorides in anhydrous ethanol. Owing to the low solubilities, (the
maximum concentration used was 0-0025 N), and to the occurrence
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION
of ion-association, only their limiting ion conductivities are given in
Table 7.10.
First, examining the limiting ionic conductivities, we see that for
both anions and cations the A° values increase as the crystal radii

Table 7.10
Transport Numbers in Methanol at 25°

c 1, (NaGl) 1, (KC)
0 (0-4633) (0-5001)
0-003 0-4603 —
0-005 0-4595 0-5007
0-007 0-4588 0-5009
0-01 0-4582 0-5013
0-02 — 0-5012

¢ in mole/litre
From Daviss, J. A, Kav, R. L. and Gorpon, A. R., 7. chem. Phys., 19 (1951) 749

Equivalent Conductivities, A, in Methanol at 25°

¢ x 108 .
mole/l LiCl NaCl NaBr KCl KBr K1
0 (92-20) | (97-61) | (101-76) | (104-78) | (10895) | (115-15)
1 89-74 — 99-19 — 106-34 112-52
2 88:70 94-11 98-11 101-16 105-26 111-43
5 86-65 92-09 96-04 99-07 103-10 109-29
10 84-52 89-87 93.80 96-72 100-71 106-94
20 81:74 86-91 90-86 93-56 97-51 103-74
30 79:73 84-84 88-80 91-24 95-19 101-50
50 76-73 81-80 85-66 87-79 91-80 98-16
70 — 79-43 — 85-28 — —
100 — 76:71 —_ 82-32 — —_

BuUTLER, J. P., Scurrr, H. 1. and Gorpbon, A. R., J. chem. Phys., 19 (1951) 752;
Jervis, R, E Murr, D. R., BuTLER, J. P. and’ RDON, A. R., 7. Amer. chem.
Soc., 75 (l953) 2855

Limiting Ionic Conductivities in Methanol and Ethanol at 25°

Ion Li+ Na* K* Cl- Br- I-

A°(MeOH) 39-82 4522 52-40 52-38 56-55 62:75
A*(EtOH) 1705 20-31 23-55 21-85 - -
r(A) 0-60 0-95 1-33 1-81 1-95 2:16

tncrease, though the anion and cation values do not fall on the same
curve. This is a slightly more regular situation than prevails for
the same ions in water, where for anions the order of increasing
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mobilities bears no relation to the crystal radii. It is unlikely that
any of the anions carries a permanent solvation sheath in methanol,
but the increase in mobility with size may be due to decreased
interaction of the larger ion with the solvent dipoles. Since the
molal volume of methanol is about 41 cm3, the ‘radius’ of a methanol
molecule must be substantially greater than that of a water molecule,
so that the conditions for the validity of Stokes’ law are far from
realization with these small ions. One may perhaps picture the ion
as causing some rotation of solvent dipoles as the ion passes the
molecule, which will result in a dissipation of energy and will there-
fore increase the effective resistance; this interaction will increase
rapidly with reduction of the ion-to-dipole distance, as required by
the observations. Such an effect might well be more important in
methanol than in water, where the ‘structure’ of the solvent is more
definite. The possible existence of this effect requires further
investigation.

The variation with concentration of the transport number of
potassium chloride in methanol is scarcely significant, as is required
by the theory for cases where the limiting transport numbers are
nearly 0-5. That of sodium chloride may profitably be examined
by the theory. For methanol at 25°, the viscosity is 0-005445 poise
and the dielectric constant 31-52*; these give for the values of the
constants in equation (7.36):

B = 05188 x 108, B, = 0-9004, B, = 156-2; or in the trans-
port number equation (7.39), the constant B, = 156-2 and xa =
0-5188 x 108 ay/c. The equation:

4522 — 78-1+/¢/(1 + 3-064/¢)
h = g781 = 156-24/¢/(1 + 3:06+/¢)
reproduces the observed transport numbers up to 0-01 N within
0-0001. The ion size corresponding to kg = 3-064/c is a = 59 A,
a rather large value unless the sodium ion at least is solvated, but
about the value one would expect if the ions approach until
separated by one methanol molecule only.

In this medium, of dielectric constant 31-52, a considerable
amount of ion-pair formation is to be expected even with 1:1
electrolytes, since the Bjerrum critical distance is 8-9 A. We have
remarked before that ion-pair formation in a symmetrical electrolyte
will affect the transport numbers only by a sort of ‘dilution’ effect.
The equivalent conductivities on the other hand, will be reduced in
nearly direct proportion to the amount of ion-pairing; they are
much more sensitive to it than are transport numbers. It is therefore

* A more recent value is 32:63.
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not surprising to find that the conductivities of the alkali halides in
methanol conform rather too closely to the Onsager limiting law.
For sodium chloride, for example, the limiting law becomes:

A = 97-61 — 244-14/¢

which at 0-001 N gives A = 89-89 in agreement with the observed
value A = 89-87. Since the value of (xa) must be at least 0-03, this
agreement is too close for a fully ionized electrolyte. In general, the
conductivities at higher concentrations lie above the limiting law
values, but not as much as they should for fully dissociated electro-
lytes. The values cannot be accurately represented by equation
(7.36); a value of @ = 3-2 A for sodium chloride gives a rough fit,
within about 0-5 in A, but this value of the ion size is inconsistent
with that needed for the transport number equation.

Liquid hydrogen cyanide is of great interest as an electrolytic
solvent, having a dielectric constant of about 160 at 0° and 120 at
18°, so that ion-pair formation should be less than in water. It has
also a much lower viscosity than that of water, the values at 0°
being 0-00232 poise for hydrogen cyanide and 0-01787 poise for
water. Coatres and TayLor®® studied a number of alkali-metal
salts in this solvent at 18°, and LanGe, BErGA and Konoprik®V
have made measurements at 0° on some potassium and some tetra-
substituted ammonium salts. The 18° measurements were all at low
concentrations (0-0001-0-0025 mole per litre) and conform to
relations of the type:

A= A®—A4d+/c
with A® and A4 values given in Table 7.11. These linear relations
hold over the whole of the concentration-range studied (up to
0-002 or 0-003 N in most cases) except for lithium chloride, nitrate
and thiocyanate and sodium nitrate. These show a downward
curvature, most marked in the case of lithium thiocyanate, and
probably indicative of ion-pair formation. The limiting conductiv-
ities are reasonably consistent with the Kohlrausch principle, as
shown by the nearly constant differences:

Akx — Afax ~ 196

The range of A° values is noticeably more restricted than in water,
and there are indications that there is less actual solvation of ions
than occurs in water. The values of the slopes (4) of the A versus
a/¢ curves do not agree any too well with the theoretical limiting
result, which for hydrogen cyanide at 18° becomes:

A = A% — [0:1271A° + 233]+/c
164



CONDUCTIVITIES IN NON-AQUEOUS SOLVENTS

Since the electrophoretic term is here much larger than the relaxa-
tion term, all the theoretical slopes are much the same, lying in the
range A = 259-269. In the cases where the curvature of the plots
suggests ion-pair formation, the observed slope in the most dilute

Table 7.11
Conductivities of Salts in Hydrogen Cyanide Solution at 18°
A=A*— 4v/c

A° V] A° A
LiCl 345-4 335 Na Picrate 266-9 195
LiBr 3469 270 KCl 363-4 280
Lil 348-0 258 KBr 363-2 248
LiNO, 336-6 402 . Kl 3639 235
LiClO, 336-9 230 KNO, 3539 253
LiCNS 340-6 400 KCIO, 353-3 275
NaBr 3438 243 KCNS 3580 243
Nal 3449 238 RbCl 363-2 195
NaNO, 333-8 250 CsCl 368-2 200
NaClO, 3355 235 N (Et), Picrate 282-3 215
NaCNS 337.7 230

The A values given are the experimentally observed slopes; theoretical values
of 4 lie between 259 and 269.
CoOATEs, J. E. and TayLor, E. G., J. chem. Soc. (1936) 1245

region is considerably steeper than the theoretical, which is reason-
able; but the remaining presumably ‘normal’ salts appear to give
straight lines lying above the theoretical slope. This is most noticeable
with the picrates and rubidium and caesium chlorides, which have
large ions. For the salts such as sodium bromide, where the points
lie only slightly above the limiting-law lines, the introduction of the
factor (1 + xa) into the denominator, as required by the more
complete theory, gives a satisfactory account of the results. In this
solvent at 18°, « = 0-2703 X 1084/¢ and for sodium bromide the
value 2 = 5-1 A in the equation:

(0-1271 A° 4 223)

A= A°— 0+ xa) Ve

is adequate and reasonable. Caesium chloride, however, requires
a = 28 A, which is quite absurd in view of the not greatly different
limiting conductivities, which imply ions of comparable size to
those of sodium bromide, but the concentrations are rather too low
to permit an accurate evaluation of the parameter a.
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The measurements at 0° in hydrogen cyanide are rather more
interesting, as they extend to concentrations high enough to make
a significant test of equation (7.36) involving the ion-size correction.
Data for potassium iodide solutions®3!), interpolated to round concen-
trations, are given in Table 7.12. For this solvent at 0°C, the viscosity
(m) is 0-00232 poise, and the dielectric constant (&) is 161. (The
latter figure is by no means well established, however.) These
values give the following values of the constants in equation (7.36):

| = 0-0890, B, = 169:6, B = 0-240 x 108

Now if the ions of potassium iodide are unsolvated in hydrogen
cyanide solution, the distance of closest approach may be estimated

Table 7.12
Conductivities of Potassium lodide in
Hydrogen Cyanide at 0°

(2 Aobl. Aclle.

0 (310-3) (310:3)
0-001 304-4 304-2
0-002 3018 301-8
0-003 300-2 300-0
0-005 297-3 297-1
0-007 2949 294-9
0010 292-1 292-1
0-015 288-1 288-4
0-02 2849 285-4
0-05 269-6 273-2
010 252-2 261-0

¢ in mole/litre a=2353A

Data from Lange, J., Berca, J. and Konorik, N., Monatsh., 80 (1949) 708

from the crystal radii as a ~ 1:33 + 216 ~ 3-5A. Taking the
limiting value of the conductivity as A® = 310-3, we then have for
this solution from equation (7.35):

197-24/¢
1 + 0:844/c

The values of Ay, given by this equation are included in Table
7.12; the agreement is quantitative up to 0-01 N and satisfactory
up to 0-02 N, after which the calculated values are increasingly
high.

On the whole, the conductivity measurements in hydrogen
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Table 7.13

Limiting Conductances in Amide Solvents. A® in cm? )2 equiv=1; 1 in poise
Solvent Teme- | 4 ¢ HI Nal KI GI | MeNI | EtNI | Bu,NI
1
Formamide (32) 25 0-0330 109-5 27:4 26-8 293 — — -~ P235
N-methy! formamide ’
(33) 25 | 00165 182:4 — 444 450 472 — 90 | -
N-N-dimethyl form-
amide (33, 34) 25 0-00796 36-7 - 82-0 82:6 — 91-0 87-5 ;77T
~ N-methyl acetamide ( Lil ) I
(35, 36 40 0-0302 165-5 23.7 22:8 23-0 21-2 266 262 | 224
N-N-dimethyl
acetamide (37) 25 0-00919 378 - 676 67-1 —_ —_ 745 64-6
N-methyl propion-
armde (gO°-60°)
30 0-0457 164-3 —_ 13-4 13-7 —_ _ — —_
N-methyl butyramide
(30°-60°) (38) 30 | 00747 1247 - (1‘;:3():1 - - - -~ -
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Table 7.13—Contd.

Solvent Temp- | Me,PhNI | KQ KBr (Pi':r‘; o) KSCN KNO, | KPhSO, KCIO,
Formamide (32) 25 27-3 29-8 — — — — 234 —
N-methyl form-

amide (33) 25 — 419 437 353 — — — —
N-N-dimethyl form-

amide (33, 34) 25 — — 84-1 — 90-3 88-1 — 82:8
N-methyl acetamide

(35, 36 40 24-8 19-9 2]2 20-2 24-5 22-9 18-7 25-2
N-N-dimethyl

acetamide (37) 25 70-1 - 68-5 56-8 74-1 71-6 56-3 68-1
N-methyl propion-

amlde (g 0°-60°)

30 — 11-6 12:4 — —_ — —_ —

N-methyl butyramide

(30°-60°) (38) 30 —_ 6-5 - — — —_ - —




CONDUCTIVITIES IN NON-AQUEOUS SOLVENTS

cyanide thus tend to support the theory; but there are some
anomalies which clearly call for further investigation. Determina-
tions of transport numbers, verification of the dielectric constant,
and studies of the effect of solutes on the viscosity would all be of
great value.

The amides of the lower aliphatic acids and their N-methyl
derivatives form a class of liquids with extremely high dielectric
constants (Appendix 1.2), the most striking case being that of N-
methyl formamide H.CO.NH(CH,) which has ¢ = 182-4 at 25°.
Comprehensive studies of conductances in these solvents have
recently been made by Sears and Dawson and co-workers and by
French and Glover. In the case of formamide, an approximate
measurement of the limiting transport number by the Hittorf
method has also been made, giving tE® = 0-406 at 25°, so that
individual ionic mobilities in this solvent are known. In the other
solvents of this class no measured transport numbers are yet avail-
able, but reasonable estimates have been made on the basis of the
behaviour of very large ions in relation to solvent viscosity. The
original data are too extensive to present in detail, but Table 7.13
gives a summary of the major results. For compactness we have
given A? values only of iodide ion with various cations and of potas-
sium ion with various anions; these do not necessarily represent
salts actually studied in the original work, but in some cases have
been obtained by the application of the Kohlrausch principle to
measurements on related salts.

A noteworthy feature is that the A° values for strong acids are
similar to those for salts; evidently the hydrogen ion has no special
transport mechanism available in these solvents, as it has in water
and the lower alcohols.

The general pattern of concentration-dependence of the conduc-
tance is, as might be expected, one of approach to the Onsager
limiting law from above; but in the di-N-methyl amides, which
have dielectric constants about half that of water, the results lie close
to the limiting-law curve, and with some salts actually fall below it,
indicating a slight degree of ion-association.

Most of the other commonly used non-aqueous solvents have
lower dielectric constants than methanol, and the conductivity of
solutions in these appears to be so strongly influenced by ion associa-
tion that little progress can be made by attempting to treat them
as strong electrolytes. The extensive researches of Kraus and his
collaborators have done much towards elucidating the behaviour
of ion-aggregates in these solutions, and are discussed more fully in
Chapter 14.
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION

APPENDIX TO THE THEORY OF THE ELECTROPHORETIC
EFFECT

EVALUATION OF THE INTEGRAL §,(xa) OF EQUATION (7.5)

This integral takes an elementary form only for the case n = 1,
when it becomes:

«© e—Ka

1
Si(xa) = ;J. e~ dr =
a

Ka

For n > 2 it involves the exponential integral function Ei(x) defined
by:

-]
Ei(x) =J. ey ldy
T
(y being merely a variable of integration). This function is available

from tables®®® for various values of x.
Forn=2

Sg(rca) = J; me"’"r'l dr = J; me"”"(2xr)“d(2xr) = Ei(2«a)

For n > 2 it is necessary to perform successive integrations by
parts until the integral reduces to an exponential integral function.
Thus one obtains:

S3(xa) = e~ — 3xaEi(3ka)
Sy(ca) = e~} — 2xa) + 8(xa)?Ei(4xa)

and in general for n > 2:

s 1 (— n«xa)
Salxa) = e [n 2t e =3
(— nxa)?® (— nxa)"-3
te e -m-n Tt (r.z—z)!]
+ S_:__"K_a):‘j Ei(nxa)

n—2)1

there being (n — 2) terms in the series enclosed in the square
bracket. If the theory is taken only as far as the ‘self-consistent’
approximation, only S,(xa) and Sy(«a) are involved, and the latter
appears only in the theory of diffusion for symmetrical electrolytes.
The higher-order terms have been computed to facilitate the inves-
tigation of questions of convergence.
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EQUATIONS FOR CONDUCTIVITY AND TRANSPORT NUMBERS

SUMMARY OF EQUATIONS FOR CONDUCTIVITY AND
TRANSPORT NUMBERS

1 = cation, 2 = anion

g = 2125 =l for symmetrical valence-types
(lal + 1z (128 + |zal)) 2 (7.10)
4ne? 8xNe?

K2=;k_7_(nlz§+n'z§) =m—7-_l ....(4.]2)

where I = ionic strength = }Z¢,2% (¢ in mole/litre.)

= 50-29 x 108(cT)-V2 /1
Equivalent Conductivities
2:801 X 10%2,25JgA° | 41-25(|z1f + |24)
— 0o __
R = awerype | V!

....(7.29

(Onsager limiting law for extreme dilutions).
2:801 x 10%2,25|qA° | 41-25(|| + |z)] v/
T+ V) G
....(7.36)

(valid for moderate concentrations with suitable choice of g,
especially for 1 : 1 electrolytes).
Formulae reduced for the case of 1 : 1 electrolytes:

A = A°® — (ByA® + B,)+/¢ (Onsager limiting law.)

A = A® — (ByA® + B,)/¢/(1 + Ba+/¢c)

C— A+ (ByA + By)/c ....(7.36)
1 + (Ba — B,)+/¢

(for moderate concentrations).

For values of B, B, and B, for aqueous solutions, see Appendix
7.1. In other solvents:

B = 50-29(¢T)~¥2 x 108
B, = 8204 x 105(eT)-32
B, = 82-5/[n(eT)¥?] with 5 in poise, T in deg. K

A=A°—[

or A

Transport Numbers (using first order electrophoretic terms only) :

— A — HalBsvI(1 + xa) (7.39)
VA — §(|z| + (2D BevI[( +ka) TN
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION
which reduces for 1 : 1 electrolytes to:

. _ M — Bavel(l + Bav)

1™ A® — B,+/c/(1 + Bay/c)

with B, B, as given above.
Limiting law for transport numbers, valid at extreme dilution:

....(7.40)

B
h=8+ 55 [zl + |2)8 — |allv]
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THE MEASUREMENT OF CHEMICAL
POTENTIALS

THE determination of the chemical potentials of the components of
an electrolyte solution usually resolves itself either into a measure-
ment of the activity of the solvent and the calculation of the activity
coefficient of the solute by using the Gibbs-Duhem equation or vice
versa. The methods in general use are therefore conveniently
discussed under two headings:

1. Methods depending on measuring the activity of the solvent.

(4) Vapour pressure methods.

(z) The static method
(#) The dynamic method
(i#i) The isopiestic method.
(B) Determination of the depression of the freezing point.
The elevation of the boiling point is similar in principle
but has not been studied to the same extent.

2. Methods which measure the activity of the solute, usually by
measuring the potentials of suitable cells with or without
liquid junction.

In addition there are some methods which, because of difficulties
of technique or for reason of limited application, have not come into
widespread use:

(a) Osmotic pressure measurements

(&) Solubility measurements

(¢) Measurement of the solute vapour pressure

(d) Distribution of solute between two solvents

(¢) Sedimentation in an ultracentrifuge.

THE MEASUREMENT OF VAPOUR PRESSURE BY THE
DIRECT STATIC METHOD

In its essentials this method is a direct manometric measurement.
Figure 8.1 shows an apparatus due to GiBsoN and Apams'?), simple
in construction but capable of high accuracy if a few precautions
are observed. One of the features of their apparatus is the use of
n-butyl phthalate as the manometer liquid; its vapour pressure is
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THE MEASUREMENT OF VAPOUR PRESSURE

even lower than that of mercury, but as its density is 1-0418 at 25°,
its use results in a displacement in the manometer arms many times
that which would be given by mercury and consequently greatly
increased accuracy of measurement. However, some precautions
have to be observed in its use and SHANKMAN and GORDON? prefer
Cenco Hyvac pump oil (density at 25°: 0-895) as the manometer

@ﬁ}g@%

)

w H HW

Figure 8.1. From Gisson, R. L.,
and Apams, L. H., 7. Amer.
chem, Soc., 55 (1933) 2679

liguid. Thorough outgassing of the solution is essential and this is
accomplished by repeated solidification and melting whilst the
flask is evacuated through the stopcock §. The flask is then con-
nected to the manometer set up at C. The solvent is treated in the
same way but, once outgassed and connected to the manometer, is
left permanently in position. The solvent is then connected by the
three-way stopcock 4 to one arm of the manometer, the other arm
being connected to the vacuum line by stopcock B. The resulting
displacement of the manometer fluid gives the vapour pressure
of the solvent. By turning both stopcocks, the solution can be
connected to one arm of the manometer, the other being connected
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8 THE MEASUREMENT OF CHEMICAL POTENTIALS

to the vacuum line so that the vapour pressure of the solution can be
measured. Finally, suitable manipulation of the stopcocks connects
both solution and solvent to the manometer so that the difference
in vapour pressure between solution and solvent can be measured.
When stopcock B is opened the manometer arm is filled with vapour
by evaporation from the solution; this results in a slight cooling
and the equilibrium pressure is only reached slowly. To overcome
this trouble, the subsidiary flask W containing solvent is provided.
Opening its stopcock for a short time fills the manometer arm with
vapour after which stopcock B can be opened and only a small
amount of vapour is condensed on the solution before equilibrium
is reached. Because of the loss of solvent from the solution during
the outgassing process, it is necessary to analyse the solution after
completing the measurements.

Although minor fluctuations in temperature may result in appre-
ciable changes in the vapour pressure of solvent and solution, this
apparatus gives remarkably concordant values of the water activity,
In one experiment Shankman and Gordon quote values p° = 3611,
p=207-45 and Ap = 153-75 mm of pump oil for the vapour
pressure of the solvent, the solution and the differential lowering
respectively, so that three values of the water activity p/p® = 0-5745,

P — 4y 4 . .
o— = 05742 and Py 0-5743 can be derived depending

on which two of the three measurements are used in the calculation.
Twenty-four hours later they recorded p° = 360-1, p = 206-7,
Ap = 1534 mm giving a value of 0-5740 for the water activity.
Therefore, although the individual readings changed by about one
part in three hundred, the water activity changed by only three
parts in fifty-seven hundred.

THE MEASUREMENT OF VAPOUR PRESSURE BY THE
DYNAMIC METHOD
In principle this method is extremely simple: if a dry inert gas is
passed in succession through (1) water, (2) a desiccant to absorb
water, (3) an aqueous solution, and (4) a second desiccant then, if
the proper experimental conditions are observed, the amount of
water absorbed in the first desiccant is proportional to the vapour
pressure of the solvent and the amount absorbed by the second is
proportional to the vapour pressure of the solution. A modern
apparatus constructed by BEcHTOLD and NEwTON® uses successive
layers of barium perchlorate and magnesium perchlorate as desic-
cants, air is passed at a rate kept constant by a manostat relay, being
bubbled through five saturators and then passed over the liquid
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THE MEASUREMENT OF VAPOUR PRESSURE

surface in a final saturator in order to equilibrate the air stream
with the solvent; after absorption of the water vapour by the
desiccants, the air stream is saturated with water vapour at the
pressure over the solution by passage through a similar set of
saturators containing the solution. The total pressure over the pure
solvent is somewhat greater than that over the solution because
there is a decrease in pressure owing to the resistance offered by the
packed desiccants; it can easily be shown that if the total pressures
at the outlet ends of the two series of saturators are P? and P and
the water vapour pressures are p® and p, then:

P wP

P° WP — w0 + wp®
when w® and w are the weights of water vapour absorbed by the
two desiccants. It is clearly desirable to maintain constant the
pressures P® and P in. order to avoid a series of tedious pressure
readings during the course of an experiment with the consequent
errors introduced by a process of averaging. For this reason a
second manostat is introduced at the point where the air stream
leaves the final saturator. From the data given by Bechtold and
Newton for solutions of calcium chloride and barium chloride, the

method seems to give water activities with a probable error of the
order of 0-0001 in a,.

THE MEASUREMENT OF VAPOUR PRESSURE BY THE
ISOPIESTIC METHOD

Introduced by BousrieLp™ in 1918 and improved by SINCLAIR!®,
this is a comparative method depending on the principle that two
solutions of non-volatile solutes will distil from one to the other
until their concentrations are such that the solutions have equal
vapour pressure. The comparative nature of the method is a dis-
advantage in that the vapour pressure—concentration curve of
some one ‘reference’ electrolyte must be known with accuracy but,
apart from this drawback, the method is one which gives results
rapidly and with an accuracy limited only by the accuracy with
which the data for the reference electrolyte are known.

Let X and 7 be two solutions initially at the same temperature,
the vapour pressure of X being initially greater than that of 7" and
let them be connected by a path through which vapour can pass.
Then solvent will distil from solution X to solution 7, resulting in a
cooling of X and a heating of 7 from the heat of vaporization
generated during the process. Because of these temperature changes,
the vapour pressure of X decreases and that of ¥ increases and, if
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8 THE MEASUREMENT OF CHEMICAL POTENTIALS

perfect thermal insulation could be maintained between the two
solutions, a steady state would be set up with a temperature differ-
ence between the two solutions sufficient to equalize the vapour
pressures, For example, 4 M solutions of sodium and potassium
chlorides differ in vapour pressure by 04442 mm. Hg at 25° and
a temperature difference of about 0-32° would equalize the vapour
pressures. A method based on this principle will be described later:
we are now concerned with the extreme case when perfect thermal
contact is offered between the solutions and heat can flow back
from solution ¥ to X. The distillation of solvent can now continue
with a concentration of X and a dilution of ¥, the vapour pressure
of X decreasing and that of ¥ increasing as a result, not of a temper-
ature difference, but of a concentration difference. Equilibrium
will occur when this concentration difference suffices to equalize
the vapour pressure. For example, starting with two solutions each
containing one gram of water and sufficient sodium and potassium
chloride respectively to make each solution 4 M, the distillation of
61 mg of water will concentrate the potassium chloride solution to
4-260 M and dilute the sodium chloride to 3-770 M at which con-
centrations the vapour pressures are equal.

The attainment of equilibrium is greatly accelerated by evacua-
tion of the container to the vapour pressure of the solutions; another
critical feature of the experiment is the thermal communication
between the solutions. This is secured by containing the solutions
in metal dishes of high thermal conductivity such as siiver, although
platinum or stainless steel dishes can be used with corrosive solu-
tions. Seamless spun circular dishes about 4 cm in diameter, with
hinged lids, are convenient. The dishes rest on a thick copper block
(about 2:5 cm thick) and the upper surface of this block and the
base of each dish should be as flat and smooth as possible. Thermal
contact is further improved by a film of solution between each dish
and the copper block. If it were desired to measure the vapour
pressure of a sodium chloride solution with respect to a potassium
chloride solution, sodium chloride would be weighed accurately
into each of two dishes in amount sufficient, with between 1 and 2
ml of water (which need not be known with any accuracy) to give
approximately the concentration of sodium chloride at which it is
desired to study the vapour pressure. Alternatively, between 1 and
2 ml of sodium chloride solution could be weighed out, provided
that its concentration was known accurately. In a similar way,
a potassium chloride solution is introduced into each of another
pair of dishes. The four dishes are placed on the copper block
which rests in a glass desiccator which is then evacuated by a good
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filter-pump. The desiccator is placed in a thermostat and rocked
slowly to agitate the solutions gently. The time required for equilib-
rium to be attained depends on the concentration of the solutions.
Generally speaking, for solutions above 1 M, twenty-four hours
should suffice; below this concentration, the time required increases
and at 0-1 M three or four days may be necessary. Equilibrium
having been attained, the dishes are reweighed and the concentra-
tions of sodium chloride and potassium chloride calculated. These
solutions have equal vapour pressure and are called ‘isopiestic’.
The solutions can now be diluted, the experiment repeated and the
concentrations of another pair of isopiestic solutions found. Alter-
natively, the inclusion of a fifth dish containing a more concentrated
solution will give a pair of isopiestic solutions higher in the concen-
trationscale. Itis possible to have a simple wire device attached to the
inlet tube of the desiccator so that, at the end of a run, the lids of the
dishes can be closed before air is admitted to the desiccator, thus
diminishing error due to evaporation of the solutions or introduction
of grease particles. Itis also possible, with a slight modification of the
apparatus'®, to introduce the solutions out of contact with air;
measurements can then be made on electrolytes such as ferrous
chloride which are readily oxidized on exposure to the atmosphere.
The apparatus has been modified to permit the microdetermination
of molecular weights using three to seven milligram samples‘¢a),

Measurements are made more easily in concentrated solution and
the only limit is the saturation of one of the solutions. At the other
end of the concentration scale, about 0-1 M is the lower limit at
which measurements are practicable although, by taking extreme
precautions, GORDON!? has used the method down to about
0-03 M. From a series of measurements at different concentrations
we can construct a curve of the isopiestic ratio against the molality
of either electrolyte. The isopiestic ratio is defined by:

R=‘BTE e (80)
Yoo
where mp is the molality of electrolyte B in solution X and m the
molality of electrolyte C in solution Y. B is the reference electrolyte,
the vapour pressures of whose solutions are known over the necessary
concentration range. It is usually convenient to plot R against mg.
The condition of equal vapour pressure is given by:

vgmpbp = vcmede
or ¢c = Rég ....(82)
Thus ¢ can be derived from R and ¢ 5.
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The accuracy of the method therefore depends on two factors:
(a2) R depends on the accuracy of weighing the dishes and can easily
be measured with an accuracy of 0-1 per cent; with care the error
can be reduced even further; () assuming that ¢ is also known
within 0-1 per cent (and this is a problem to which we shall have to
return later) then ¢, can be determined to this degree of accuracy.

From ¢ the activity coefficient yo can be calculated by some
modification of the Gibbs-Duhem equation® as, for example
equation (2.27):

—-lnyc=hc+-‘. chlnmC ....(8.3)
0

where ho = (1 — ¢). The alternate forms of the integral,
2fho/v/mg . dy/mg and fho[me . dmg can be used in many instances.
If the activity coefficient of the reference salt is known then another
method of calculation is available. For:

— 55:51dIna, = vgmgdInmgyg = vgmydInmeye

where the subscript B refers to the reference electrolyte and the
subscript C to the electrolyte whose activity coefficient is being

determined.
Then

vBde]n ¥YB + l’Bdelnt = chCdln Ye +vaGdlan
dlnys+dinmg=Rdlnyy + RdInmy

=dlnyg+dinmg + (R — 1)dInygmg
and

m m
Inyg=lnyg +f d Inmg/me +f (R = 1)dInypmg
] ]
whence remembering that:

Lt myfmg = volvg

m,-»O
my R — 1
Iny.=1In +lnR+2L dva ....(8.4
Yc VB \/a B (8.4)

and the last term can be evaluated either graphically or by tabula-
tion, the equivalent form f(R — 1)/ag.dap being sometimes easier
for numerical computation, especially for very concentrated solu-
tions. Isopiestic measurements do not usually extend below 0-1 M;
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for many 1 : 1 electrolytes the curve used in evaluating the integral
in equation (8.4) can be extrapolated to zero with considerable con-
fidence, provided that the reference salt B is also a 1 : 1 electrolyte.
In such cases the method gives the absolute value of y¢, i.c., values
relative to yo = 1 at m = 0. With higher valency types, however,
the extrapolation is longer and less certain since the curve of R
versus m often has a minimum below the experimental lower limit
of 0'1 M, and a variety of methods have been tried to fix the values
of y at 0-1 M. GuccennemM and Stokes!®® have recently proposed
amethod for 2 : 1 and 1 : 2 electrolytes based on the fact that the
isopiestic method gives absolute values of the osmotic coefficient ¢.
If y is given by a Debye-Hiickel expression {assumed valid to at
least 0-3 M):

—lny=—al/—'n——2bm ....(8.4a)
1 4+ BVm
the corresponding expression for ¢ is:
«Vm
¢p_l——-—a(ﬂ\/—)+bm ....(8.4b)
(See p. 34.) The function:
P=1- “‘/m o(BV'm)

is tabulated for several values of the parameter in Appendix 2.3. A
value of g is chosen such that (¢ — ¢?) is directly proportional to
m for m = 0-1 to 0-3, the proportionality factor being the other
parameter b. Insertion of these parameters in Equation (8.4a) for
m = 0-1 gives the required value of y4;. The y values for 2 : 1 and
1 : 2 electrolytes in Appendix 8.10 have been adjusted to this new
basis wherever practicable.

THE MEASUREMENT OF VAPOUR PRESSURE BY THE
METHOD OF ‘BITHERMAL EQUILIBRATION’

We have already mentioned that if two solutions are connected by
a vapour path but are thermally insulated, a steady state is set up
in which the initial difference in vapour pressure between the two
solutions is eliminated by the creation of a temperature difference.
Stokes!® has described a method depending essentially on this
principle. Water is maintained at a fixed temperature, ¢, in vapour
contact with a solution at 25°; distillation continues until the
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concentration of the solution is such that its vapour pressure at 25°
is equal to that of water at the lower temperature f. A knowledge
of the vapour pressure of water at ¢, and an analysis of the solution
when the steady state has been set up suffice to give the vapour
pressure at 25° of a solution at a known concentration. Thus, with
the water at a temperature 9-972° below that of a solution of sodium
hydroxide at 25°, it was found that the latter changed in concentra-
tion until it reached 9-150 M. The vapour pressure of water at 25°

L
A 1 1 J I
¢ 5 10 cm 75

wlinorri,
SN

Figure 8.2, From Stokes, R. H., 7. Amer. chem. Soc., 69 (1947) 1291

is 23:753 mm and at 15-028° it is 12-807 mm whence it follows that
the water activity of the solution is 12:807/23-753 = 0-5391. If the
temperature difference were 9-977° the vapour pressure would have
been 12-803 mm and the water activity of the solution 0-5390 so
that to secure an accuracy of + 0-0002 in the water activity, the
temperature difference between the two liquids must be controlled
to within £+ 0-005°. The apparatus used by Stokes is shown in
Figure 8.2. The copper domes A were soldered to brass rings B, the
lower faces of which were turned and lapped to fit the flat copper
plates C. The resulting ‘bells’ were connected to the thin-walled
copper tube D so that each leg could be put in a separate thermostat.
The horizontal part of this tube carried a side tube for evacuation
and a lever L, by means of which the apparatus could be rocked.
The interior of the apparatus was heavily silver plated. The
thermostats were equipped with special thermoregulators® de-
signed to control the temperature within + 0-001°. The tempera-
ture difference between the two thermostats was measured by a
100-junction copper-constantan thermocouple. To start a run, a
silver dish, similar to that used in the isopiestic method and con-
taining solution, was placed on one of the plates C, and another dish
containing water was placed on the other plate. The ‘bells’ were
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sealed on with stopcock grease and the apparatus evacuated for an
hour on a filter pump followed by ten minutes evacuation with a
Hyvac pump with a phosphorus pentoxide tube between the
apparatus and the pump. A minimum of twenty-four hours of
gentle rocking in the thermostats was necessary, after which air was
admitted to the apparatus and the solution removed and analysed.
‘The method is capable of high accuracy, but is a cumbersome one;
it was developed for the specific purpose of making possible a choice
between two alternative sets of data for the vapour pressure of
sulphuric acid, one obtained by the static manometric method by
SHANKMAN and Goroon!®, and the other derived from electro-
motive force measurements by HARNED and Hamer!)). The re-
sulting independent measurements led to the adoption of a standard
set of vapour pressure data for sulphuric acid solutions in close
agreement with those of Shankman and Gordon; these have been
used as a basis for isopiestic measurements on numerous other
concentrated electrolyte solutions.

THE DEPRESSION OF THE FREEZING POINT

The condition for ice to be in equilibrium with pure liquid water at
the freezing point T, is that the molal free energy shall be the same
in each phase:

el Ao
Gieery = GA(ry

A solution has a lower freezing point, T (we are dealing with
solutions which freeze out the pure solvent phase and not a solid
solution) and the condition for equilibrium is now given by:

@‘ee(r )y = @A(T’) = @AO(T ) + RTF ln aA

(G3 AT, — (1|ce(T )] is the increase in free energy on the fusion of a
mole of ice to pure liquid water at Tp. Call it AGT 1 it will be a
function of 7. From the Gibbs-Helmholtz equation:

3 (AG L

T\T) " " T2
where L is the latent heat of fusion of a mole of ice, it follows that:
MGy, (% L

=—| "Zdar

—RIna, =
4 Tr r, T°

since AG = 0 at T,
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The latent heat of fusion can be written as a function of the
temperature:

L=L+J(Tp— Ty

where L, is the latent heat of fusion at T, and J is the difference
of the molal heat capacities of liquid water and ice. In most work,

J can be assumed to be independent of temperature. Then:
| 1 1 J. T,
—Ina, =R (Lo —JTy) (?-F —-—770) +iln?p ....(8.5)

It is convenient to eliminate T by introducing the lowering of the
freezing point, 8 = (T, — Tp), when equation (8.5) approximates
to:

62
RT’ o+ [RT. 2R| T2

At 0° the latent heat of fusion of ice is 1435-5 cal mole~! whilst the
" heat capacities of ice and liquid water are 0-5026 and 1-0081 cal
deg~? gram~1 respectively!®_ For aqueous solutions equation (8 6)
becomes:

—lna, = %=

....(86)

— log a, = 0-0042076 + 2-1 x 10-%6%

In making this approximation, expansions in powers of 6/T, have
been introduced and taken only as far as the second power of
0/T,. In very accurate work it may be necessary to consider higher
terms, but, if this is done, consideration should also be given to the
possible variation of J with temperature. The water activity a
obtained from these formulae is of course that at the temperature
Tp. An alternative way of evaluating a,, which is especially
convenient for concentrated solutions, is as follows: values of the
vapour pressures of ice and supercooled liquid water are available
at various temperatures below 0°C. Then since at the temperature
T 5 the solution is in equilibrium with ice, its vapour pressure is
bice and the water activity of the solution is therefore:

84(Tp) = ics(r,)/Pwatext,)

For example, if the freezing point of the solution is — 10°, its water
activity at — 10° is a, = 1-950/2-149 = 0-9074.
As the solution becomes more dilute:
a,+>Ny4(=1-—9Ng) and —Ina, ~vNp
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so that we can write:

0 RT: W,
Lt (—)—v Ay e (8.7
nso\m) =7 T, 1000 ©7
RT?
The quantity. 4 = ——Tit_’é is called the molal lowering of the
1000 L,

freezing point. For water as solvent it has the value of 1-860.

CALCULATION OF THE ACTIVITY COEFFICIENT FROM
FREEZING POINT RESULTS

If a, is independent of temperature, the calculation of the activity
coefficient of the solute is a simple matter because, by the Gibbs-
Duhem equation:

dlngn — JO0OL, do 2000 0d0
"= W, RT: m " W,RT:|T,
d 6do
5._

where ¢ is a parameter independent of 6. The relative magnitudes
of these terms can be seen by substituting the values for water as
solvent, giving: ¢ = 0-00054 whilst 4 = 1-860 so that the first
term is by far the more important.* The integration is facilitated
by introducing a function defined by:

10
J " ymld
Then

dé . .

;m_}:=_d"+(l —f)dInm

dlny = —dj-—jdlnm+$?—d—0
0
lny—-1+f Jdlnm—éf 0d0 ....(8.8)

The last term is equivalent to Hf (I — 7)d0, the integration being
0

made over the range of 0 corresponding to the range of m from zero
to the molality in question. The j function is therefore used in
much the same way as the % function in computing vapour pressure

* £ is very sensitive to the values selected for the heat capacities of ice and liquid
water: we have used the data of Wasusurn, E. W., quoted by Dorsey®),
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results; indeed, they would be identical if the £ term were zero.
For most 1 : 1 electrolytes, at least, this £ term contributes only a
few units in the fourth decimal place of log y.
Table 8.1
Calculation of the Activity Coefficient of Sodium Chloride at the Freezing Point

m 7 First term Second term Third term — logy
(1] 0-0663 0-0288 0-0753 0-0002 0-1039
0-2 00785 0-0341 0-0971 0-0003 0-1309
03 0-0843 0-0366 0-ll14 0-0004 0-1476
0-4 0-0876 0-0380 0-1222 0-0006 0-1596
05 0-0895 00389 0-1308 0-0007 0-1690
06 0-0904 0-0393 0-1380 0-0009 01764
07 0-0907 00394 0-1442 0-0010 0-1824
08 0-0902 0-0392 0-1491 0-0011 0-1872
09 0-0896 0-0389 0-1539 0-0013 0-1915
10 0-0884 00384 0-1578 0-0014 0-1948
m
First term = 0-4343;, Second term =fo jdlogm.

Third term = 0:4343 Efo 8d9

Table 8.1 illustrates the calculation of the activity coefficient of
sodium chloride from freezing point measurements’®, From this
table we can see that the third term is almost negligible, and that
it is the second term which dominates. Care must therefore be
exercised in the tabular or graphical evaluation of this integral
especially in the region of low concentrations. Equation (8.6) is
written for aqueous solutions:

vmAp = (1 4+ 49 x 10-49)0
and then using a procedure similar to that outlined on p. 181, we
get:
(1 + 49 X 10-46)6 — vAmp® = vibm?

so that a graph of the left hand side against m? should give a straight
line whose slope determines the parameter b and hence the activity
coefficient at 0-1 M by an equation similar to (8.4a). GUGGENHEM
and TurGEON® have made such calculations for a number of 1 : 1
electrolytes with 8 = 1 in equation (8.4b).

CALCULATION OF ACTIVITY COEFFICIENTS AT
TEMPERATURES OTHER THAN THE FREEZING POINT

If, as is usually the case, a, does vary with the temperature, the

correction from the freezing point T to some other temperature
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Tg is a more complicated matter. It will often be necessary to
calculate an activity coefficient at Tg = 298:16°, a temperature at
which measurements by other methods are more frequently made.
For this purpose we write:

I-’A = zA(T”) + jA(T - TS)

L, being the relative partial molal heat content at the variable
temperature T, L Aty its value at the fixed temperature Tg, and
J , the relative pa.rtlal molal heat capacity of the solvent, which can
usually be assumed independent of the temperature. L, and J,

are to be distinguished from the L, and J terms used before; unlike

the latent heat of fusion, L, and J, are partial molal properties of
the solution and are concentration dependent. By the Gibbs-
Helmholtz equation:

dlna, L,
( =T ) = -5 .. .(2.34)
whence:
aA(Ts) _ 8 LA - (TS - TF)
04(1',) B L' rr2d7 =~ Lar RT4Ty
L (T Ts=Te 1 Ty
4\R Ty, R"T,
a - -
or lOgZA(_Ts)= —LA(T,)J+JAz=xA
A(Tp)
Ty — Tr _ 1, Ts
where 2T03R_T;TF and Z = Ts] —_ El()g—ﬁ

The functions y and z have been tabulated for a range of Ty
values(11b, 14 and the calculation of a r,) at, say, 25° from its value
at the freezing point is not difficult. Since:

vmaanL’=—l£—o—Oal Gary
’r, W, ATy
it follows that:
1000 [™dx
log yr, = log yr, — W) ™ ....(8.9)

the integration to be carried out over the range of y and z values
corresponding to the molality range from zero to the value at which
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yr, is to be calculated. yj, is obtained by the methods already
outlined. Equation (8.9) can easily be transformed into:

X
log yr, = log yr, + —f

where xp is defined in terms of the relative partial molal heat
content and heat capacity of the solute:

Xg = —ZB)‘I‘jBZ

We can illustrate this by reference to sodium chloride (Zable 8.2),
the activity coefficient of which has been determined at the freezing
point by Scatchard and Prentiss.

Table 8.2
Calculation of the Activity Coefficient of Sodium Chloride at 25° from Freezing
Point Data
m ~— log ¥z, Ly I sy 2J, — log yuee
0-1 0-1039 102 50 0-0069 | 0-0055 0-1051
02 0-1309 90 70 0-0062 | 0-0064 0-1308
03 0-1476 62 87 0-0043 | 0-0082 0-1456
0-4 0-1596 28 10-0 0-0020 0-0097 0-1557
05 0-1690 — 10 111 — 0-0007 0-0111 0-1631
06 0-1764 — 48 12-2 — 0-0035 0-0124 0-1684
0-7 0-1824 -85 132 — 0-0063 | 0-0139 0-1723
08 0-1872 — 120 14-1 — 0-0090 0-0152 0-1751
09 0-1915 — 156 149 — 0-0119 0-0164 01773
1-0 0-1948 — 188 15-8 - 00145 0-0179 0-1786

The heat content and heat capacity data are from the paper of GULBRANSEN,
E. A. and Rosinson, A. L., 7. Amer. chem. Soc., 56 (1934) 2637, the interpolation
of the heat content data having been made by Harnep, H. S., and Owen, B. B,,
‘The Physical Chemistry of Electrolytic Solutions,” Reinhold Publishing Corp.

(1950) p. 541; the heat capacity data are represented by J, 5 = 158y/m,

The determination of freezing points with the necessary accuracy
is no easy matter; equation (8.8) shows that, if log y is to be
determined within 0-0001, then j must be known within 0-0002;
to secure this at a concentration of 1 M, the depression of the
freezing point must be measured within 4 0-0007°. The permissible
error decreases proportionally to the molality. Scatchard, after a
careful consideration of the accuracy attainable with modern
thermocouple technique, concluded that freezing point depressions
could be measured within about two hundred-thousandths of a
degree and that a concentration of 0-001 M was about the lowest at
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which measurements could profitably be made. Thus at 1 M
concentration the thermometric errors are negligible, but at 0-001 M
an error of 2 X 10-% in the temperature measurement corresponds
to an error of about 0-005 in j and about 0-002 in log . Successful
measurements therefore call for highly skilled experimental work,
and Scatchard and his co-workers have obtained valuable results on
26 salts. Their data are given in Appendix 8.7 as values of the
activity coefficients quoted to three significant figures; the original
papers give log y to four significant figures and should be consulted
if four-figure activity coefficients are required.

In their work all temperature measurements were differences
between the temperature of ice in equilibrium with pure water and
ice in equilibrium with a solution. Two gold plated silver containers,
8 cm in diameter and 20 cm deep were used. They were divided
into three compartments, the centre one being 4 cm wide and the
two outer ones comparatively smaller. The central compartment
was used to hold the ice and, by means of a pumping system, the
solution was forced through the ice from each of the outer com-
partments. Silvered Dewar flasks were used to contain the vessels
in order to secure as nearly as possible adiabatic conditions; since
nitrogen has only half the solubility of oxygen in water, dissolved
air which would affect the freezing point was removed by passing
a stream of nitrogen through the solutions. The temperatures were
measured by a 48-junction copper-constantan thermocouple and
the concentration of the solution after coming to equilibrium with
the ice was determined by finding the specific conductivity at 10°
of an aliquot removed from the equilibrium mixture.

THE ELEVATION OF THE BOILING POINT

The theory of this effect is very similar to that of the freezing point
depression, but the molal elevation of the boiling-point, if water is
the solvent, is only 0-513°, about one-quarter the molal depression
of the freezing point; thus boiling points must be measured with
nearly four times the accuracy of freezing points to give activity
coefficients of the same accuracy. Moreover, the experimental
difficulties seem to be much greater. This is unfortunate because
the boiling point elevation could give most useful information at
temperatures where other methods fail. Unlike the freezing point,
the boiling point is markedly susceptible to the pressure and, by
making experiments at a series of reduced pressures, data over a
temperature range could be acquired. Very little attention has
been given to this method in recent years apart from the outstanding
contribution of SMITH!!® whose paper may well be read by anyone
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considering developing the technique: Smith considers that his
results are consistent within 4 0-0002°: this corresponds to an
accuracy of 4 0-0001 in the osmotic coefficient at a concentration
of 2 M—Na(Cl, but only 4 0-004 at 0-05 M. Results, summarized
in Appendix 8.8, have been obtained for sodium chloride and
potassium bromide between 60° and 100°.

ACTIVITY COEFFICIENTS FROM CONCENTRATION CELLS
WITHOUT TRANSPORT

If a faraday of electricity passes through the cell:
Ag, AgCIHCI (m") |[H,(Pt) — (Pt)H,JHCI (m)|{AgCl, Ag

(the positive current flowing from right to left through the potentio-
meter circuit outside the cell), the cell reactions are:

AgCl + ¢~ — Ag + Cl-(m)

1H, - H+(m) 4 ¢

H¥(m') + ¢~ — {H,

Ag + Cl~(m') = AgCl + ¢~
The net reaction is:

HCl(m') - HCl(m)

and the increase in free energy is:

- ynl
AG = Gyoym — Groimy = 2RT In Y

where ', y are the mean ionic activity coefficients at m’, m respec-
tively. The (reversible) potential of the cell (assuming that the
hydrogen gas is at the same pressure at each electrode) is given by:

EF = — AG
2:303RT . y'm’ y'm'
or E=2"F—log — =2klog=—— ....(8.10) -
F 8 o 8 o (8.10)

The expression, 2:303RT/F, occurs so frequently that it is con-
venient to abbreviate it to the symbol k; this is not likely to be
confused with Boltzmann’s constant. Values of 2:303RT/F are
given in Appendix 8.1 for temperatures between 0° and 100°.
From equation (8.10) we can determine the activity coefficient at
one concentration relative to that at another. In practice it is found
easier to measure the potential, E, of the half cell:

(PO H,JHCI(m)|AgCl, Ag
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Let E? be the (standard) potential of the half cell

(Pt)H,|HCl|AgCl, Ag

in which the acid is present at unit activity in its standard state.
Then

E = E* — 2klog ym ... (801

and the problem reduces to one of finding the standard potential E°,
The simplest way is to plot the quantity E' = [E 4 2k log m]
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Figure 8.3. Extrapolation to give E°® for the cell: H,|HCI|HgCl, Hg

against some function of the concentration, say the square root.
Then the limiting value of E' as m — 0 is E°. This extrapolation is
shown in Figure 8.3 for the potential of the analogous cell:

H,|HCI|HgCl, Hg

on which very careful measurements have been made recently by
Hiis and Ives®, [t is easy to see that E? is not far from 0.2680,
but the accuracy of the work justifies something better than this.
We therefore seek a deviation function and find (see Chapter 9)
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that the Debye-Hiickel theory gives for the activity coefficient in
very dilute solutions:
log y &~ — A+/(mdy)

where 4 &~ 0-5 mole~t I} and the density of water, d,, is introduced
because the theory gives the activity coefficient expressed in terms

0-268k=— Dtbye “Hicke! topm, 09007 y;
£ 'n/
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Figure 8.4. Extrapolation to give E® for the cell: Hy|HCI|HgCl, Hg

of molarities (strictly the activity coefficient on the mole fraction
scale, but the difference is inappreciable in dilute solution). Then
we can write:

E' = E + 2k logm — 2kA+/(md,)

and plot this against the molality. This is shown in the lower curve
of Figure 8.4. Over the same concentration range, the extrapolation
function now covers only a range of 0-002 V as against 0-007 V in
Figure 8.3. This is sometimes called the Hitchcock method®”. The
abscissa in Figure 8.3 is y/m; but in Figure 8.4 it is m, because the
+/m term has been incorporated in the extrapolation function, and
deviations from the Debye-Hiickel formula should be approximately
proportional to m.

An even easier extrapolation can be made by using a fuller form
of the Debye-Hiickel equation, corresponding to equation (9.7):

A/ (mdo)

l0g ¥ ~ — [ Bav/(mdy)

i.e., we plot the function:
E' = E + 2k log m — 2kA+/(mdg)[]1 + Ba+/(mdy))
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against the molality, selecting a reasonable value of «, the mean
diameter of the ions. The upper curve of Figure 8.4 shows this,
using @ = 4 A. The function covers a range of only 0-0003 V and
no doubt this could be reduced still further by using an a value
somewhat higher. As it is, the extrapolation can be made easily,
giving E® = 0-26796 V. Once E° is known, a potential measure-
ment at a given molality suffices to give the activity coefficient at
that molality by equation (8.11).

An extensive series of measurements of the cell: Hy|HCl|AgCl, Ag
covering the concentration range 0-003 to 4 M and the temperature
range 0° to 90° has been made(!®). Another study®®® has extended
the measurements up to about 16 M over the range 0° to 50°. The
analogous cell:

H,|HBr|AgBr, Ag

has been measured?® between 0-0001 and 0-004 M at 25° and
between 0-001 and 1 M over the temperature range 0° to 60° to
give the activity coefficient of hydrobromic acid(®?. An independent
check'?? of the standard potential of this cell has been made.
Another method of arriving at the standard cell potential is due
to OWEN'®, It will be shown in Chapter 12 that the potential, E,,
of the cell:
H,y|HA(m), NaA(m), KCl(m)|AgCl, Ag Cell I

where HA is a very weak acid (in this work, boric acid) and, for
simplicity, the molalities of the three components have been put
equal to one another, is:

E, = Efq —klogK—klogyc;—m—klogm
A-

K being the ionization constant of the acid; yg-, ¥a-, ionic activity
coefficients; and yg, the activity coefficient of the undissociated acid.
Cells of this type have been used extensively to determine the
dissociation constants of weak acids, the standard potential, Efq,
of the cell:

H,|HCl|AgCl, Ag

being known. But there is no reason why the procedure should not
be reversed: if K is known, then this cell could be used to determine
E%¢. This particular standard potential is already well known but
that of the cell containing hydriodic acid is not, so that the cell:

H,|HA(m), NaA(m), KI(m)|Agl, Ag Cell 11
where the last activity coefficient term may be slightly different
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from the former, can be measured at a series of values of m and the
quantity E + klog (mK') extrapolated to infinite dilution to give
Ef;.

It is even easier to make parallel measurements on both cells I
and II together, when:

E1 - Ea = Eﬁcn - Eﬂll

an equation which will be accurate except for the slight difference
in the activity coefficient terms. By taking the concentrations low
enough, say m = 0-003, this term will be less than 0-01 mV and
therefore beyond the experimental error. Thus measurements are
made in solutions dilute enough for the activity coefficient term to
be negligible and yet in a buffered solution of sufficient concentra-
tion to yield stable potentials.
By using flowing amalgam cells of the type:

Ag, AgX|MX(m')|MHg|MX(m)|AgX, Ag

the activity coefficients of a number of alkali halides have been
determined. Among the salts studied are lithium chloride!2#,
sodium chloride!*”, potassium chloride!®®, caesium chloride!®,
lithium bromide!®#, sodium bromide!®”, potassium bromide(24),
sodium iodide!3® and potassium iodide!%5!,

A combination of hydrogen and amalgam electrodes will give the
activity coefficient of the hydroxides:

(PtyH,|MOH (m)|M,Hg|MOH (m) |H,(Pt)

The theory of the cell is slightly more complicated because the
solvent takes part in the cell reaction:

MOH(m’) + H,0 - MOH(m) + H,0

with the distinction that the water of the left-hand side of the
equation disappears from the right half of the cell and reappears as
water in the left half and allowance has to be made for the change
in water activity so that:

_ ym’ %
E = 2k log - +kloga;

We shall deal with the general question of cells in which the solvent
participates in the cell reaction on pp. 196-197. Cells of this type
have been used with lithium®?, sodium®?, potassium®? 33 and
caesium(2® hydroxide as electrolyte.
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If the electrolyte is polyvalent, allowance must be made for the
multiple charge on the ions, For example, the potential of the cell:

In|Iny(SO,)4(m)|Hg,SO,, Hg
has been measured®®. The reversible working of the cell involves

the reactions:
2In — 2Int++ 4 6e-

3Hg,SO, + 6¢~ — 6Hg + 350;-
The electrical work per mole of indium sulphate would be 6EF and

RT
E=E° — "éi In a[n.(so‘).

S5R7 -
— —_——— 5
= E° oF In ¥/108my,,

because: 1a480,, = Yia¥do,mtamdo,
= 5 (2m)?(3m)® = 108m®y}

¥, being the mean ionic activity coefficient. In general, for an
electrolyte dissociating into », positive and », negative ions, where
(»y + vs) = v, and n electrons are involved at the electrodes for
each molecule reacting and m is the stoichiometric molality of the
electrolyte,

vyRT
E= B~ in () Vmy,]

The cells:
Zn amalgam|ZnSO,|Hg,SO,, Hg

and Cd amalgam|CdSO,|Hg,SO,, Hg

are two examples of systems which give reproducible potentials,
stable over a long interval of time; if the amalgams and solutions
are saturated, the cells are the standard Clark and Weston cells.
The former has been measured 3% over a concentration range whilst
a variant®® of the second cell:

Cd,Hg|CdSO,|PbSO,, Pb,Hg

has been used to give the activity coefficient of cadmium sulphate.
The chlorides, bromides and iodides of both zinc and cadmium
have been studied by combining zinc or cadmium amalgam elec-
trodes with the appropriate silver-silver halide electrodets”. The
barium amalgam electrode seems to work satisfactorily in solutions
of barium chloride®® or barium hydroxide!®® and the strontium
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amalgam electrode in solutions of strontium chloride® but it is
doubtful if the calcium amalgam electrode gives true reversible
potentials. The cell:

Na,Hg|Na,SO,|PbSO,, Pb,Hg

is suitable for determining the activity coefficient of sodium
sulphate? and a similar cell has been used with lithium and

tassium sulphate®), Finally, mention should be made of two
cellst1?, 43);

(Pt)Ho|H,SO,|Hg,SO,, Hg
and (Pt)H,|H,SO,|PbSO,, PbO,(Pt)

which give the activity coefficient of sulphuric acid. The cell
reaction of the latter is:

H, + PbO, + H,SO, - PbSO, + 2H,0

so that the formula for the cell potential will include a term for the
water activity, and we may now consider the generalized treatment
of such cells*®, A complete concentration cell can be written:

Electrode A|Solution (mye)|Electrode B|Solution (m)|Electrode 4
and the cell reaction as four processes:

(a) A loss of one molecule of electrolyte at concentration m from the
right-hand solution.

() A gain of one molecule of electrolyte at concentration mg in
the left-hand solution.

(¢) A loss of r molecules of water from the left-hand solution.
(d) A gain of r molecules of water in the right-hand solution.
The increment in free energy per mole of electrolyte reacting is:

AG = [Gpieery — Grim)] + [Cuotmy — Gustren)]

where the subscript B refers to the solute. If 2 electrons are involved
in the reaction:

nEF = — AG = [Gpumy — Cppery) + [Guxrery — Guom)
or anE = d@B(m) —_— Td@w(m)
= RTdInag —rRTdIna,

= - RTiﬂfldlnaw —rRTdInga,

= — RTS—————S.Slm-,_ m dlna,
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TRANSPORT IN NON-AQUEOUS SOLVENTS

therefore
4 _F; n nm
In Gorets . RT J,, (55-51 T rm) dE
. nm
Defining m' = 5551 &
ay F ™,
o8 oty ~  2303RT ), ™

In every case so far examined it has been found that a simple
deviation function, * = E 4 f(m') can be defined, in such a way
that x varies by only a few millivolts over a concentration range
where E varies by several hundred millivolts. The form of f(m’)
is decided by trial: a logarithmic form, x = E + alogm’, is
usually applicable below 1 M, whilst at higher concentrations the
form x=E 4+ bVm or x=E +om’ may be more suitable. In
any case:

Jm' dE = fm' dx — fm'[df(m'}/dm")dm’

The second term on the right is a simple analytical integral and the
first term may be obtained by graphical or tabular integration.
Since the first term contributes only a few per cent to the total value
of fm’ dE, it is readily evaluated with all the accuracy inherent in
the electromotive force determinations. This accuracy is not
obtained if the direct integration of m’ with respect to E or of m
to log y is attempted. Alternatively the Gibbs-Duhem equation
can be used to eliminate G,, instead of G, and the activity coeffi-
cients of the solute computed without successive approximations.

Concentration Cells without Transport in Non-Aqueous Solvents

Many measurements have been made of the potentials of cells con-
taining hydrochloric acid in non-aqueous media or in mixed solvents
of which water is one component. Harned and his co-workers!45}
have made an intensive study of water-dioxan mixtures, that con-
taining 82 per cent by weight dioxan having a dielectric constant
of about 10. Measurements have also been made in solvents such
as pure methanol®, 47 ethanol®, 4, 50 and formic and acetic
acid®? and in aqueous solvents to which were added methanol4?; 52,
ethanol®, 8, 838} n.propanol(®), iso-propanol!3. 548) acetone!s®),
glycerol(®: 888) glycolst®s, 588) olucose!s?, fructose!s™ or sucrose!s®,
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8 THE MEASUREMENT OF CHEMICAL POTENTIALS

EXPERIMENTAL MEASUREMENTS

The H,|HCHAgCI, Ag cell usually takes the form of an H-tube,
one arm of which holds the platinum electrode around which bubbles
hydrogen. The hydrogen may be obtained from a cylinder, in
which case it should be freed from any traces of oxygen by passing
it over heated copper; it can also be made by electrolysis of a
strong solution of sodium hydroxide. The gas should be passed
through a saturator containing the same solution as the cell so that
the passage of gas through the cell does not result in a change of
concentration by evaporation. The platinum electrodes may con-
veniently be of 0:5 cm by 2:5 cm size, coated with platinum black
by electrolysis of a chloroplatinic acid solution (a solution con-
taining 0-5 g of platinum per 100 ml has been recommended with
a current density of about 200 mA/cm? for 10 min.: the amount of
platinum black should be reduced by plating for shorter times, say
one minute, if the electrode is to be used in very dilute acid solution,
because heavily plated electrodes are sluggish in coming to equi-
librium in very dilute solution).

The normal potentials as tabulated assume that the hydrogen is
at a partial pressure of one atmosphere. In practice there will be a
small correction because of barometric variations and the vapour

pressure of the solution in the cell:
In the cell:

H, (pressure P — p)|HCIl|H, (] atm.)

where P is the total pressure and p the vapour pressure, the reaction
is:
H, (pressure P — p) — H, (1 atm.)

and the free energy change per mole is:

—RTIn (P —p)

R
so that the potential of the cell is 2—;- In (P — p) and the observed
potential is to be corrected by subtracting 4k log (P — p).

With proper precautions, the glass electrode gives results as accur-
ate as the hydrogen electrode: CovingTon and PrUE? have used
cells with and without transport to get precise activity coefficients
and transport numbers of hydrochloric, perchloricandnitricacid. An
important study ® has been made of the glass electrode in methanol-
water mixtures from which it is concluded that accurate pH measure-
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ments can be made provided that (i) the electrode is stored in and
equilibrated with solvent of the composition which is to be used in
the pH measurement, (ii) the electrode is standardized with a buffer
in the same solvent and (iii) a small correction is made for the liquid
junction potential.

Silver-silver chloride electrodes of several types have been tried.
What is sometimes called the Carmody type!s? is a piece of platinum
gauze about 1 cm square, plated with silver by electrolysis in a
solution of potassium silver cyanide. It is important not to use the
excess of potassium cyanide which is common in ordinary silver
plating; instead, a salt twice recrystallized from water is used. A
current of 8 mA for 8 h has been recommended. The electrode is
washed thoroughly for several days in running water and is then
chloridized in a hydrochloric acid solution for one hour at 3 mA.
It is well to do these operations with the electrode protected from
direct lighting.

A variant of this electrode is used!®? in cells with transport. The
dimensions are very much reduced by using a 1 cm length of
platinum wire, 0045 cm in diameter, silver-plated by electrolysis
for 2-6 h at 2-0-5 mA in a solution from which excess cyanide has
been removed by adding a small amount of silver nitrate until
opalescence occurs. After washing, the electrode is chloridized in
0-1 N hydrochloric acid for half an hour at 2 mA.

GUNTELBERG'® used a platinum wire spiral filled with silver
oxide, the oxide being converted to metal by heating to 450°-500°
and the spiral then immersed in crystalline silver chloride made by
evaporating an ammoniacal silver chloride solution over sulphuric
acid. In a third type'® the oxide is converted to metal as before
but the chloride layer is formed by electrolysis in normal hydro-
chloric acid solution at 2 mA/cm? for 2 h. Itis well to avoid rubber
stoppers, sulphur compounds in which cause the formation of silver
sulphide and dissolved air should be removed from the solutions,
especially if they are dilute.

The calomel or mercury-mercurous chloride electrode has
received more attention lately after being unfashionable for many
years. HiLrs and Ives'®® prepared their calomel electrolytically
and coated their electrode vessels with a hydrophobic reagent
(Dow-Corning Silicone Fluid No. 200 deposited from 1 per cent
carbon tetrachloride solution). The excellent consistency of the
results they obtained with solutions of hydrochloric acid as dilute
as 0-0016 M is shown by the graph in Figure 8.4.

Silver—silver bromide electrodes are prepared rather more easily.
A mixture of 90 per cent silver oxide and 10 per cent silver bromate
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8 THE MEASUREMENT OF CHEMICAL POTENTIALS

is ground in an agate mortar, made into a paste with water, fed
into a platinum spiral and heated at 650° for about 7 min®,

For studies on alkali halide solutions it is not possible to use the
pure alkali metal as one electrode, owing to its irreversible reaction
with water. Instead a very dilute (~ 0-01 per cent) alkali metal

Figure 8.5. From Harnep, H. S., J. Amer. chem. Soc., 51 (1929) 417

amalgam is used; in order to avoid the problems introduced by
variation of the amalgam composition, a complete concentration
cell such as:

Ag, AgQIKCI(m")[K,Hg — K, Hg|KCl(m)|AgCl, Ag

is employed, the amalgam being dropped in a fine stream through
the solutions from a common reservoir. Cells of this type have been
perfected and studied extensively by Harned and his collaborators.

Figure 8.5 shows a simple design of cell®® for alkali metal halide
solutions. A and C are silver-silver halide electrodes, DD are inlet
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tubes through which solutions could be fed into the cell compart-
ments, the solutions having been previously boiled in vacuo. The
amalgam is made by electrolysis of an hydroxide solution to give
about 0-1 per cent amalgam; the amalgam is dried in vacuo and
allowed to stand until the impurities have risen to the surface, after
which the clean amalgam is run off through an outlet in the base
of the container into mercury and diluted to about 0-01 per cent.
Using vacuum technique the amalgam is introduced into B and by
manipulating the stopcocks /-J the amalgam flows through the
capillary tubes of the dropper B, through the solutions at a rate of
about 1 cm? in 20 sec. During the flow of amalgam, the stopcocks
§-§ are manipulated to remove the amalgam through 0-0 and as
many potentiometer readings as possible are made whilst the supply
of amalgam is flowing. The apparatus is designed so that a new
dropper can be introduced, solutions rejected through 0-0 and the
cells filled with fresh solutions. The elimination of oxygen is essential
to the proper working of these cells.

AGCTIVITY COEFFICIENTS FROM CONCENTRATION CELLS
WITH TRANSPORT

A paper from the Rockefeller Institute in 1935 forms a good intro-
duction to this subject!®®; this work was a natural corollary of the
study of transport numbers which had been undertaken in the same
laboratories and it made rapid progress in elucidating activity
coefficients in more dilute solutions (up to 0-1 N) because, once the
transport number has been found as a function of the concentration,
the activity coefficient is given by measuring the potential of a
comparatively simple cell. Thus in the case of sodium chloride one
type of electrode only is needed, the silver-silver chloride electrode,
and the difficult technique of the sodium amalgam electrode is not
required. The method is limited, however, to salts towards at least
one of whose ions there is known to be an electrode capable of
nearly ideally reversible behaviour, and it is not surprising that the
method has so far been applied almost exclusively to a series of
chloride electrolytes. The cell:

Ag, AgCl|NaCl(m')|NaCl(m)|AgCl, Ag

is one in which, for each faraday of electricity passing, an equivalent
of chloride ion is liberated at the lefi-hand electrode and formed
at the right, whilst ¢, equivalents of sodium ion pass from left to
right across the junction between the two solutions and ; equivalents
of chloride pass in the opposite direction. The net result is the loss
of ¢ moles of sodium chloride in the left-hand solution and a
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8 THE MEASUREMENT OF CHEMICAL POTENTIALS

corresponding gain of ¢, moles at the right. Considering first the
case when m’ = m 4 dm the potential is:

dF, = — 2kt,d log ym ....(8.12)
or, should the transport number be dependent on the concentration,
as in practice is the case, then for a finite difference:

™m
E, = —-2kj 4d log ym

where the integration is to be carried out from the conditions
prevailing in the left-hand solution up to those in the right-hand
solution. The experimental side of the work is not difficult: using

f 4

Figure 8.6. From HorNiBrOOK, W. J., JANZ, G. J. and Gorpon, A. R.,
J. Amer. chem. Soc., 64 (1942) 513

silver-silver chloride electrodes based on the Carmody model but
of much smaller dimensions*® and forming the liquid junction in a
manner similar to the ‘sheared boundary’ of the transport number
experiment, very stable and reproducible potentials can be measured.

In subsequent work the electrodes were modified and the ‘sheared
boundary’ method discarded because it introduced traces of grease
into the solutions. Figure 8.6 shows a simple design of cell used by
GORDON!" and very similar to the Rockefeller Institute cell. The
platinum electrodes are much heavier and the boundary is formed
by filling each electrode compartment and the side tubes with
solution, after which the intervening compartment is filled with the
heavier solution. The junction is, therefore, at one of the side tubes.
Provided that no appreciable heat of mixing is involved at the
junction, experience and theory agree that the potential is indepen-
dent of the sharpness of the boundary region.

Some of the published methods of manipulating the experimental
data from such cells in order to give the activity coefficients necessi-
tate a series of approximations. The following method is more
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convenient. The experimental data consist of a series of values of
the electromotive force, E,, of a cell with transport, the molality on
one side being kept fixed at some known value m’. The potential
is related to the transport number and the activity coefficients by
equation (8.12), i.c., by:

dE,
—-d lOg (7’") 2kl

07|

N
0 01 02 [

VI —
Figure 8.7. Values of log y[y’ against +/m from the data of JaNz and Gorpon
Jor sodium chloride. m’ = 0-1

Io_q;i,', —

3
Q
X

[7

Now ¢, usually varies only slightly with m, so that if we define a
quantity x by the equation:

+ x

=) -
-] —

where 4, is the transport number at m’, x will be only a small fraction
of 1/t;. Hence:

—d log (ym) = 1 ( tll dE, + xdE,)

and, ¢ being a constant, this can be integrated between m and m’

to give, since £, = 0 when m = m’:
m _E 17
—log o = 2 T L,“dE*
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m’ E, 1 (™
or logy = logy’ + log; - ﬂ_:; =~ % J‘m‘xdE.
(Care must be taken to give E, the correct sign.)

The part of this expression involving the integral is now quite
small and can easily be evaluated graphically or by tabulation
without loss of accuracy. The activity coefficient y’, at the fixed
concentration m’, is now determined as follows, using the fact that
as m -0, y = 1 by definition.

In Figure 8.7 a plot of log y/y’, against 4/m taken from the data
of Janz and GorDON(®} for sodium chloride is extrapolated to zero

o172
o111
g[8 /
Y
S
3[E om
Siw
+
Al
e 0-109 it
0108, 73 o1
m e—s
Figure 8.8. Plot of [Iog iy’ + ]_O-I% against m_for sodium chloride

value of m and the intercept gives — log ¥’ as approximately 0-11.
A more accurate extrapolation can be made by assuming the validity
of the Debye-Hiickel equation (8.4a).

0-5107+/m
1 + 1-:3504/m
in Figure 8.8 and find that the intercept is — log ' = 0-1088 and
values of log ¥ at other concentrations follow immediately.

In recent years the Rockefeller Institute workers'®, ) have
obtained data on hydrochloric acid, sodium chloride, potassium
chloride, calcium chloride and lanthanum chloride. It should be
noted that their results are expressed on the molarity concentration
scale and their activity coefficient, f, is the mean molar activity
coefficient. The Toronto school(®, ¢, 7 have studied only three
salts, sodium chloride, potassium chloride and calcium chloride,
but they made measurements over the temperature range 15-45°.
More recently an extensive study of the chlorides of lanthanum,
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cerium, praseodymium, neodymium, gadolinium, samarium, euro-
pium, erbium and ytterbium and the bromides of lanthanum,
praseodymium, neodymium, gadolinium, holmium and erbium up
to about 0-03 M has been published!?V).

When measurements have been made on the same salt by inde-
pendent workers, the agreement has usually been most encouraging;
thus, for potassium chloride, Hornibrook, Janz and Gordon found
y = 0-8172 and 0-7697 at 0-05 M and 0-1 M respectively compared
with Shedlovsky and Maclnnes’ values of 0-8172 and 0-7701. For
sodium chloride the Toronto school found y = 0-7784 at 0:-1 M in
exact agreement with the earlier measurements of Brown and
Maclnnes, although a recomputation by Shedlovsky, using a
different modification of the Debye-Hiickel equation, has given
y = 0-7744. For calcium chloride, McLeod and Gordon found
y = 0-5769 at 0-05 M compared with 0-5835 (since recomputed as
0-5826) from the Rockefeller Institute: the difference, however,
arises from the transport numbers rather than the electromotive
force measurements. We give in Appendix 8.9, the activity coeffi-
cients of some electrolytes at concentrations below 0-1 M, most of
which have been determined in recent years by this method.

THE OSMOTIC PRESSURE

The osmotic pressure of a solution is determined by the condition
that, for equilibrium across a semi-permeable membrane, the
chemical potential of the pure solvent on one side of the membrane
must be equal to the chemical potential of the solvent in the solution
on the other side where it is subjected to a hydrostatic pressure equal
to the osmotic pressure. Under this pressure the chemical potential
of the solvent in the solution, @, = G% + RT In a, becomes G% +
VI + RT In a, using equation (2.36) and neglecting the com-
pressibility. Since this must equal the chemical potential of the
pure solvent, we have P, /T = — RTIna, and as the osmotic
coefficient is defined by:

ymW
Inay= — 1000445 ... .(2.16)
it follows that:
RT ymW ,
="y, 1000 ¢

A considerable amount of experimental skill was expended in the
first fifteen years of this century in devising apparatus to measure
osmotic pressures and to overcome the numerous experimental
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difficulties which seem to beset this subject. The effect is large: for
example, a one molar solution of sucrose has an osmotic pressure
of about 27 atm. at 25° and therefore the pressure should be measur-
able with accuracy at small concentrations of the solute; against
this is to be put the difficulty of preparing truly semi-permeable
membranes and the necessity, at least for data pertaining to con-
centrated solutions, of making allowance for the variation of P,
with concentration and with pressure. Very few accurate results
have been obtained in spite of the spirited attack which was made
on this problem early in the century. We can illustrate the accuracy
by reference in Table 8.3 to the osmotic coefficient of sucrose derived

Table 8.3
Osmotic Coefficient of Sucrose Solutions at 0°
m IT (atm.) Fit P )
1-651 43-84 1-182 1-179 1-185
2-373 67-68 1:259 1-262 1273
3273 100-43 1-354 1-351 1-369
4120 134-71 1-437 1433 1-459

¢V Derived from vapour pressure measurements.

$» From osmotic pressure measurements, allowing for variation of V7, with
concentration and pressure. _

¢ From osmotic pressure measurements, putting ¥, = 7% = 18:01 ml/mole.

from direct vapour pressure measurements using the dynamic
method and from osmotic pressure measurements allowing for the
compressibility of the solution!?. Accurate measurements of solu-
tions of simple electrolytes (as distinct from polyelectrolytes) are not
extensive. For calcium ferrocyanide both osmotic pressure and the
vapour pressure have been measured at 0° (the latter by the
dynamic method) and give the following values of the osmotic
coefficient:

m 1-075 1-353 1-469 1-617 1-711
IT (aumospheres) 41-22 70-84 87-09 112-.8¢  130-66

¢ (from osmotic pressure) 0-557 0-756 0-853 0-995 1-086
¢ (from vapour pressure) 0-562 0-759 0-854 1-004 1-100

THE POROUS-DISC OSMOMETER

The limitation of osmotic pressure measurements in the study of
simple electrolytes arises from the difficulty of preparing membranes
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permeable to solvent molecules but impermeable to ions which may
be little different in size from the solvent molecules. An elegant
solution to this problem is provided in principle by the ‘porous-disc
osmometer’, in which the ‘membrane’ consists of a path of solvent
vapour, and is therefore perfectly impermeable to ions. In this
method, which has been highly developed by WiLLiaMsoN("®), the
drop in the chemical potential of the solvent brought about by the
presence of the solute is matched by applying a nregative pressure to

|

Figure 8.9. The porous-disc osmometer.
From WiLLiamsoN, A. T. Proc. Roy. Soc.,
195 A (1948) 98

the pure solvent. This is achieved by having a column of the
solvent under tension, the intermolecular cohesive forces preventing
the column from breaking. The principle of the method is indicated
in Figure 8.9. The solution in the vessel 4 is equilibrated via the
vapour phase with the pure solvent in the inner vessel B, which is
held by capillary forces in the porous glass diaphragm against the
tension due to the hanging column of solvent.

Owing to the enormous magnitude of osmotic pressures as com-
pared with other colligative properties, and to the practical difficulty
of establishing a column of liquid under a tension corresponding to
more than a few decimetres in the height of the solvent column, the
method is confined to solutions of very low molar concentration,
and was in fact developed for the study of high polymers. It is,
however, a method of great potential value for extremely dilute
electrolyte solutions. A major experimental difficulty lies in the
necssity for extreme uniformity of temperature in the equilibration
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vessel, which can be illustrated by the following figures: a one-
thousandth molar solution of an ideal non-electrolyte solute in
water at 25° would have an osmotic pressure equivalent to approxi-
mately 25 cm height of water. The vapour pressure lowering of
such a solution would be approximately 0-0004 mm Hg; since the
vapour pressure of water changes by approximately |1 mm/degree
at 25°, a temperature difference of 0-0004° between the solvent and
solution would wipe out the free energy difference which results in
the osmotic pressure mentioned. In order to obtain quantitatively
useful data for solutions of this concentration, the temperature must
be uniform within 5 X 10 of a degree. Williamson has described
the elaborate precautions necessary to ensure such constancy.

SOLUBILITY MEASUREMENTS

‘The condition for saturation of a solution is that the chemical
potential of the solute is the same in the solid state and in the
saturated solution:

Gona = G% + vRT In (Qmy,)

If there is another electrolyte present the solubility of the first
electrolyte may be different but will still be determined by the
condition: _ _

Geona = G} + vRT In (Qm’y},)

where Q is the factor tabulated in Appendix 2.1. Thus the ratio
of the solubilities in the absence and in the presence of another
electrolyte measures the influence of the added electrolyte on the
activity coefficient of the first:

m Yy

’

m oy,

The method is a powerful one for studying the variation of the
activity coefficient of a sparingly soluble salt in a mixed electrolyte
solution; the accuracy of the method depends mainly on the
analytical accuracy with which the solubility can be determined;
hence the coordinated ammines of cobalt compounds have proved
favourite electrolytes for such measurements because of the ease and
accuracy with which the ammonia content can be measured. Table
8.4 gives some results for the solubility of oxalotetramminecobaltic
diamminodinitrooxalocobaltiate!?#

[Co(NH;),C;0 ]+ [Co(NHj),(NO,);C,0,}~
in sodium chloride solutions at 15°. The solubilities being expressed
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as molarities, it is convenient to express the activity coefficients on
the molar scale. What results is a set of activity coefficients relative

Table 8.4
Activity Cocefficient of [Q)(NH:)c_CaO.u[,CO(NHa)a(NOa).CaOJ' in
Sodium Chloride Solution at 15°

Molarity Solubilit , C o
NaCl (m molefi) log yly logyly’ + 0-0115 )

0 0-4900 0 00115 0974
0-0003 0-4935 0-0031 0-0146 0967
0-001 0-5000 0-0087 0-0202 0-954
0-005 0-5220 00275 0-0390 0914
0-01 0-5396 0-0419 0-0534 0-885
0-02 0-5646 0-0615 0-0730 0-845

to the value at a concentration corresponding to the solubility in
the absence of sodium chloride, i.c., at 4-9 X 10~¢ mole/l in this
case. By plotting log y/y’ against the square root of the total ionic

002

log ‘z/ b

/
%

[ o1
VI —

=]

Figure 8.10. Calculation of activity coefficients from solubility measurements

strength (Figure 8.10) a straight line can be drawn extrapolating to
— 0-115 at I = 0. This is added to each value of log y/y’ to give a
set of activity coefficients relative to unity at infinite dilution.

MEASUREMENTS OF SOLUTE VAPOUR PRESSURE

Just as the solvent vapour pressure of a solution determined relative
to its value for the pure solvent measures the solvent activity, so the
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vapour pressure of a solute measures the activity of the solute. Very
few electrolytes have vapour pressures large enough to make this
method feasible—the halide acids are well-known examples(?®,
Even with these it is only in comparatively concentrated solu-
tions that the solute vapour pressure is appreciable enough to be
measured and hence the results have to be expressed relative to an
arbitrarily assigned activity coefficient at one concentration, unless
the value at this concentration can be obtained by some other
method.

DETERMINATION OF ACTIVITY COEFFICIENTS BY THE
‘SOLVENT-EXTRACTION’ PROCESS

Although this method has not been much used, it holds promise for
some special studies and can be described by reference to the work
of GLueckaUF, McKay and MatHieson®, Through a series of
six tubes, filled with aqueous solutions of uranyl nitrate and sodium
nitrate in different proportions, a dibutyl-ether solution of uranyl
nitrate was forced under slight pressure from a container, The
ethereal solution entered at the bottom of the first tube, percolated
through the first tube and passed through a side tube into the
bottom of the second tube whence it percolated through the second
solution and so on through all six solutions. Provided that sodium
nitrate is insoluble in the ether and that water and ether are
practically immiscible even in the presence of uranyl nitrate, the passage
of the ethereal solution through the aqueous solutions will result in
the addition to or removal from the aqueous solution of uranyl
nitrate according as the chemical potential of this electrolyte is less
than or greater than that of uranyl nitrate in the ether solution.
No transfer of sodium nitrate or of water from one tube to another
can occur if the solubility conditions already mentioned hold. If
sufficient ethereal solution is percolated and equilibrium is reached,
each of the six aqueous solutions is in a state where its uranyl nitrate
activity is equal to the activity of this salt in the ether, that is to say,
uranyl nitrate is present at the same activity in each of the six
aqueous solutions; if mg is the molality of uranyl nitrate and m,
that of sodium nitrate in any one tube, the activity of the uranyl
nitrate is mg(2mg + mc)®y3 and this must have the same value in
each aqueous solution. Just as in the isopiestic method it is the
water activity which becomes equal in all the solutions because it
is water which is the transportable component, so in this method
it is the uranyl nitrate activity which becomes equal in all solutions
because this is the component which can be moved by means of the
ether solution.
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ACTIVITY COEFFICIENTS BY SEDIMENTATION IN AN
ULTRACENTRIFUGE

In discussing the measurement of transport numbers we noted that
on subjecting a solution of uniform composition to a centrifugal
field, an electromotive force is found between two electrodes at
different points in the field. No concentration gradient is set up in
these experiments (unless the centrifugal field acts for longer times
than are usual in such transport number measurements). The
system is, however, not one in equilibrium and if sufficient time is
allowed, or better, if an ultracentrifuge is used, a concentration
gradient is set up and the electromotive force falls to zero, i.e., the
centrifugal field is now compensated by a concentration gradient
and not by an electrical potential gradient. The heavier particles
are preferentially removed to the outer parts of the centrifuge tube
but, in the case of an electrolyte solution, the oppositely charged
ions cannot move independently, governed only by their individual
masses, but must proceed as partners because no appreciable charge
separation is permitted.
If we replace the EF term in equation (5.4) by — AG we get:

L 4

yRT In %—:— = 2n20i(r] — ) (Wg — pPp)

where y’, m’ refer to the point at a distance 7, and y, m to a point r,.
The ultracentrifuge, however, introduces very high pressures in
the tube and it is no longer permissible to take pPp as independent
of the position in the centrifugal field. Instead, we write:
’

m  2mi? 4w [
lny’=ln}'+ln;+m—7~('§_'?)w3 —m:r pVdef

If the point r, corresponds to the open end of the tube, this equation
gives the activity coefficient 9’ at atmospheric pressure and at a
molality m’ relative to y at m; p and Py are functions of r but V5
must be taken as the partial molal volume at the selected value of m'.

Whilst the general theory has been known for several years and
some experimental work has been done'??), the method has recently
been advanced in a way which suggests that it is going to be of
widespread use. JoHnsoN, Kraus and Younc!"® used an ultra-
centrifuge at about 30,000 r.p.m. and measured the concentration
gradient by following the change in the refractive index. The time
required to attain equilibrium varied from three to ten days. For
cadmium iodide they obtained results over the concentration range
02 to 0-8 M in remarkably good agreement with those already
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known from electromotive force measurements whilst, although the
data for uranyl fluoride did not coincide with earlier freezing point
measurements, the difference was reasonable in view of the 30°
difference in the temperatures at which the two sets of measurements
were made.

THE EFFECT OF TEMPERATURE ON THE ACTIVITY

COEFFICIENT
Since 3T = ~IRT: ....(2.30)

and Ly can be expressed as a function of temperature within the
accuracy of experimental work by:

Lp=Lpry+Jg(T—T)
where T, is a selected reference temperature, then the activity

coefficient should be represented as a function of temperature by
an expression of the form:

17

4
logy = —-—7%+A;—A§log7'

where A;, A; and 4; are parameters characteristic of the electrolyte
and its molality. There are few electrolytes for which measurements

Table 8.5

Activity Coefficient of Sodium Chloride at 1 M calculated from :
logy = 11-4326 — 535-45/T — 3-9679 log T

Temperature Yobs. Yeale.
Freezing Point 0639 0634
0° 0638 0-638

15° 0-65¢4 0-653

25° 0-658 0-658
40° 0-655 0-660

° 0-655 0-654

70° 0-648 0-648
80° 0-641 0-640
90° 0-632 0-631
100° 0622 0621

have been made over a sufficient temperature range to test this
equation thoroughly; sodium chloride is one such electrolyte!™
and Table 8.5 illustrates the concordance between the observed
activity coefficients at 1 M and those calculated by this equation,
putting 4; = 11:4326, 4; = 535-45 and 4; = 3-9679

COMPARISON OF ACTIVITY COEFFICIENTS
The isopiestic vapour pressure method has the drawback of being
only a comparative method; it measures the vapour pressure of a
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solution relative to that of another solution or the vapour pressure
may be expressed as an osmotic coefficient, still, however, based on
a set of values for some selected standard or reference electrolyte
and, of course, any actvity coefficients calculated from the data are
still relative. On the other hand, a comparative method has some
advantage in that it enables two sets of osmotic coefficients to be
compared directly and it can examine consistencies between various
sets of values. Experience has shown that four electrolytes are useful
as reference solutes in the isopiestic method: potassium chloride,
sodium chloride, sulphuric acid and calcium chloride; in addition
sucrose is useful for work with non-electrolytes. Potassium chloride
is obtainable in good quality, is easily recrystallized and is not
appreciably hygroscopic; it is, however, saturated at about 48 M
at 25° and hence its use as a standard is limited to solutions of a
water activity of 0-85 or more. Sodium chloride is a somewhat more
hygroscopic salt but, having a solubility in the region of 6 M, it
can be used for water activities down to 0-76. The vapour pressures
of the aqueous solutions of these salts are known with considerable
accuracy. For solutions with a water activity below 0-76, the
position is not so happy; sulphuric acid is one reference electrolyte
with water activities as low as 0-07 at 20 M which can be made
from pure material and analysed accurately by weight titration.
Unfortunately, because of intermediate ion (HSOj7) formation, its
solutions show complex behaviour and the isopiestic ratio of
sulphuric acid solutions with respect to other electrolyte solutions is
seldom one which can be plotted with ease. If a reference electro-
lyte can be found such that the isopiestic ratio can be plotted against
the concentration to give a curve of simple form, measurements at
an excessively large number of concentrations can be avoided.
Calcium chloride can often be used to advantage in this way when
other 2 : 1 salts are being measured. Although its solubility is
7-4 M at 25° it easily supersaturates and can be used to equilibrate
with solutions down to a water activity of 0-18. It is advisable
to prepare the stock calcium chloride solution from good
grade calcium carbonate and hydrochloric acid and then, as a
precaution, check its isopiestic ratio against a sodium chloride
solution.

THE OSMOTIC AND ACTIVITY COEFFICIENTS OF SODIUM
AND POTASSIUM CHLORIDE

To derive mean values for these coefficients we shall use the results
of three different techniques, direct vapour pressure measurements,
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freezing point determinations and experiments on the potentials of
concentration cells. The first of these is capable of precision but
only at high concentrations, and it is doubtful if any results at
concentrations below | M can stand comparison with those obtained
by indirect methods. On the other hand, precise freezing point
measurements have seldom explored the region of concentration
above 1 M, whilst electromotive force measurements have to be
treated with some caution in concentrated solutions because of
troubles such as electrode solubility.

We may first consider the activity coefficient of sodium chloride
at 0-1 M because it is a good illustration of the agreement that can
be reached by different workers. BRown and MACINNEs!®® using
a cell with transport and availing themselves of the transport
number measurements of LONGSWORTH'®® found — log yn.q
= 0-1088. ArLrLcoop and GorDON®!) made an independent deter-
mination of the transport number, although by essentially the same
method, whilst Janz and Gorpon(®® repeated the cell measure-
ments; the combination of these results gave exactly the same
value, — log ynacn = 0-1088. HARNED and Cook'®? studied cells
without transport containing amalgam electrodes and by fitting
their results to an extended Debye-Hiickel equation a figure of
0:1085 ensued. A similar investigation!?® 97,6 of potassium
chloride at 0-1 M has given three values of — log ygq: 0-1134,
0-1137 and 0-1141. The isopiestic ratio of potassium chloride to
sodium chloride is known even below 0-1 M and can be extrapolated
back to zero concentration with some confidence, enabling us to
calculate that at 0-1 M, log (yxac/YEc1) Should be 0-0048: the
activity coefficients of potassium chloride can now be translated into
values for sodium chloride to give — log Yy = 0-1086, 0-1089,
0-1093. We have used the results of four different laboratories and
four different techniques to give six determinations of the activity
coefficient of sodium chloride in 0-1 M solution at 25°: the average
value of — log ynacy is 0-1088 and the maximum deviation is only
0-0005.

At higher concentrations, up to 1 M, we rely more on amalgam
cells; those containing sodium chloride give the activity coefficient
directly; others containing potassium chloride!?®, sodium bro-
mide®) or potassium bromide!?#, require a knowledge of the iso-
piestic ratios between sodium chloride and these salts. Such ratios
have been measured. In addition, we have accurate freezing point
measurements on sodium chloride solutions and sufficient heat
content and capacity data to calculate the temperature correction.
As a result of this work, five separate determinations on sodium
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chloride are available and the agreement between them is satis-
factory: the average deviation from the mean values is 0-0014 in y.

Above 1 M it is better to assess the data in terms of the osmotic
coefficient. Both NEecus'®), using the technique of LoVELACE,
Frazer and SEase®®, and Orynyk and GORDON have made
direct vapour pressure measurements up to high concentrations:
furthermore, GiBsoN and Apams®’ have measured the vapour
pressure of the saturated solution at 20-28° and the correction to
25° is small. Similar determinations using potassium chloride(®#,
barium chloride!® and sulphuric acid solutions® 8¢ have been
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] .11, iati i bic coeffic di loride at 25°.
P 1, i et o
O Negus—sodium chloride
@ Olynyk and Gordon—sodium chloride
X Lovelace, Frazer and Sease—potassium chloride
B Harned and Cook—potassium chloride
O Bechtold and Newton—barium chloride
A Gibson and Adams—sodium chloride
+ Grollman and Frazer—sulphuric acid
A Shankman and Gordon—sulphuric acid

made and the isopiestic ratio of each with respect to sodium chloride
has been measured carefully®:3?" so that the vapour pressure
measurements on these electrolytes can be used to give three sets of
data for the vapour pressure (or osmotic coefficient) of sodium
chloride. Actually two series of results are available for sulphuric
acid, originating in different schools of chemistry, whilst the
potassium chloride measurements were made at 20° and needed a
special determination of the isopiestic ratio of sodium to potassium
chloride at this temperature and a small correction of the calculated
vapour pressures of sodium chloride solutions over a 5° interval.
The amalgam cell work of Harned and Cook on potassium chloride
gives the activity coefficient but from the potentials the solvent
activity can be calculated by the method outlined on pp. 196-197.
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Combining this with isopiestic data a new vapour pressure curve for
sodium chloride solutions results. The collection of all these calcula-
tions is presented in Figure 8.11 as a graph of (¢ — 0-07m) against
molality, from which the osmotic coefficient at round concentrations
can be read. The activity coefficient follows as a matter of computa-
tion and further, since the isopiestic ratio of potassium chloride and
sodium chloride has been the subject of much research, the osmotic
and activity coefficients of potassium chloride are obtained, again
as the result of fairly simple computation. In Appendix 8.3, we
present a set of values of the water activity, osmotic coefficient,
activity coefficient and relative molal vapour pressure lowering for
these two salts which, we think, represent the best values. The data
are supported by some recent measurements®® by the dynamic
method at 30° for 0-7 — 4 M potassium chloride and 3-7 — 5 M
sodium chloride which, after a small correction is made to convert
the data to 25°, show an average deviation from the values recorded
in Appendix 8.3 of only 0-0008 in ¢. The water activity of potassium
chloride has also been measured!®® by a method in which the pure
solvent vapour is isolated from the solution at 25° by a sensitive
bellows pressure gauge and the temperature of the solvent lowered
until the vapour pressures of solvent and solution are equal. The
results for more concentrated solutions are particularly important;
they agree with those in Appendix 8.3 within 0-0010 in ¢.

THE WATER ACTIVITY OF SULPHURIC ACID SOLUTIONS

As we have already mentioned, sulphuric acid could be a most
useful reference electrolyte for the isopiestic method because of its
purity, ease of analysis and the wide range of water activity covered
by its solutions with, however, the expensive disadvantage of
needing platinum dishes. Unfortunately, the question of the vapour
pressure of its solutions has not yet been finally settled. HarRNED
and HAMER'Y contrived two cells each of which gives the activity
coefficient of the acid and each can be used to give the water
activity by using some form of the Gibbs-Duhem equation. One
cell, containing hydrogen and lead dioxide—lead sulphate elec-
trodes, could be used to 7 M whilst the other cell, with hydrogen
and mercury—mercurous sulphate electrodes, gave good results up
to 17 M, Over the concentration range common to both there was
excellent agreement between the water activities calculated from
cach cell; for example, at 7 M the figures of ap = 0-5453 and
0-5458 show the widest difference in the two series and at other
concentrations the agreement is even better. The direct vapour
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pressure measurements of SHANKMAN and Gorpon'® give values
somewhat different; thus, for example, a,, was found to be 0-5497
at 7 M. The vapour pressure results agree with the electromotive
force method at 2 M and 3 M, they are higher at concentrations up
to about 8 M, but at higher concentrations still it is the vapour
pressure figures which are the lower. Expressed in terms of ay; the
differences may appear large but the differences should not be
over-emphasized; put in terms of a cell potential, and this is what
Harned and Hamer measured, a difference of one or two millivolts
accounts for most of the discrepancy. Since there seemed little use
in merely repeating what was clearly very careful work, Stokes®
devised the method with the lengthy title of ‘bithermal equilibration
through the vapour phase’ which has already been discussed. As
sulphuric acid was too corrosive to be used in his apparatus, he
measured the vapour pressure of sodium hydroxide solutions
between 5 M and 14 M and also made a few measurements on
sodium chloride and on calcium chloride solutions. The last were
valuable in showing that the method was working properly, his
value of ap; = 0-7464 for 3-033 M calcium chloride comparing well
with ap = 0-7458 by BecHToLp and NEwTON'® who used the
dynamic method. Stokes’ values for the vapour pressure of sodium
hydroxide solutions must, therefore, be treated with considerable
confidence and, the isopiestic ratios of this base to sulphuric acid
having been measured with care, we arrive at a new determination
for sulphuric acid. The concentration range 5-14 M for sodium
hydroxide is equivalent, in the isopiestic sense, to the range
4-11-5 M for sulphuric acid and it is over this range that comparison
with the work of Shankman and Gordon can be made. Whilst
Stokes’ results seem to be about 0-0008 in ay, above those of Shank-
man and Gordon, this difference is only about twice the repro-
ducibility of either set of measurements and gives strong support to
their data. Stokes concluded that the ‘best’ values for sulphuric acid
were probably to be calculated from the sodium chloride—sulphuric
acid isopiestic ratios up to 3 M acid; between 3 and 11:5M the
choice between his own results and those of Shankman and Gordon
was difficult (though the difference was not significant in view of
the likely experimental error of either method) but he preferred his
own data because they gave a somewhat smoother vapour pressure
curve. Above 11-5 M, of course, we rely entirely on the work of
Shankman and Gordon with, however, the confidence inspired by
the good agreement in the range where comparison is possible.
Further measurements have been made®® in solutions 24 M and
over by a method similar to that of STOKEs!® except that the pure
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solvent at the lower temperature was replaced by a solution of sul-
phuric acid more dilute than the one at 25° with which it was equili-
brated. The data for sulphuric acid are collected in Appendix 8.4;
they have been substantiated recently!®®! by direct vapour pressure
measurements at 13-88, 18-51 and 27-74 M giving g, = 0-2016
(0-2016), 0-0993 (0-0996) and 0-0260 (0-0258) respectively, the
figures in parentheses being interpolated from Appendix 8.4.

THE OSMOTIC AND ACTIVITY COEFFICIENTS OF CALCIUM
CHLORIDE

These depend on isopiestic measurements against sodium chloride
and sulphuric acid solutions®®, They are anchored at 0-1 M by
the osmotic and activity coefficients of McLEop and Gorpon(™®
and one check at 3-033 M referred to above. Appendix 8.5 contains
data for this salt.

THE OSMOTIC AND ACTIVITY COEFFICIENTS OF SUCROSE

The isopiestic ratio of this solute to either sodium chloride or
potassium chloride has been measured 2 number of times(5 9 o
that its osmotic and activity coefficients can be calculated with
confidence (see Appendix 8.6).

GENERAL CONSIDERATION OF THE ACTIVITY
COEFFICIENTS OF ELECTROLYTES

Appendix 8.10 contains extensive data for the osmotic and activity
coefficients of electrolytes at 25° from 0-1 M upwards. Figure 8,12
illustrates the variation with concentration of the activity coefficients
of a few electrolytes.

We may now make a few remarks about the behaviour of the
activity coefficients with changing concentration.

1. In dilute solutions, the activity coefficient decreases with
increasing concentration; for many but not all electrolytes, the
curve of the activity coefficient plotted against concentration shows
a minimum and at high concentrations the activity coefficient may
reach a very high value. An extreme example is found in uranyl
perchlorate with y = 1457 at 55 M. An extreme example in the
opposite sense is found in cadmium iodide with y = 0-0168 at
25 M. In general we can recognize three kinds of behaviour;
activity coefficients rising to very high values, which will be inter-
preted in the next chapter as evidence for extensive hydration of the
ions; moderately low activity coefficients which are explained by
Bjerrum ion-pair formation; very low activity coefficients resulting
from complex ion formation.
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2. Electrolytes with polyvalent cations usually have much higher
activity coefficients than electrolytes of analogous valency type con-
taining a polyvalent anion. Lanthanum chloride and potassium
ferricyanide are a contrast in this respect. The explanation is
thought to be found in the extensive hydration of the cations and
the absence of hydration in large polyvalent anions.

3. The order of the activity coefficient curves is Li > Na > K
> Rb > Cs for the chlorides, bromides, iodides, nitrates, chlorates

” uo,(cmz (!ot!l.z
) / i
/ i/

/

! / ’
b/ - '/
- \\ )/ ///
\ 5?*:21" _1=- NaCL
N D s '-/{
N Gy 1~ Low
\‘~--_ Na, S0,

[— === =700,
0 7 2
vm —

Figure 8.12. The variation with concentration of the activity coefficients
of some electrolytes at 25°

and perchlorates. The order is reversed with the hydroxides,
formates and acetates.

4. The order of curves is I > Br > Cl for lithium, sodium
and potassium halides but is reversed for rubidium and caesium
halides.

5. The potassium salts of the oxy-acids, like the nitrate, chlorate
and perchlorate, have low activity coefficients and probably form
ion-pairs. By contrast the perchlorates of bivalent metals have very
high activity coefficients.

The last appendix of this chapter (8.11) contains values of the
sulphuric acid, calcium chloride or sodium hydroxide concentra-
tions (expressed as molalities and weight percentages) of solutions
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with round values of the water activity!™). The appendix also gives
the water activity of a number of saturated solutions which are
useful in setting up controlled humidity chambers.
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9

THE THEORETICAL INTERPRETATION
OF CHEMICAL POTENTIALS

THE problem of accounting for the thermodynamic properties of a
solution is best regarded as that of finding a theoretical expression
for the non-ideal part of the chemical potential (of either com-
ponent) as a function of composition, temperature, dielectric
constant and any other relevant variables. Once this is obtained,
all the colligative and thermal properties of the solution are readily
calculable. In practice, the activity coefficient of the solute is
usually more convenient to handle than the chemical potential, and
the problem accordingly becomes one of finding a theoretical
expression for the activity coefficient.

The features peculiar to the activity coefficients of electrolytes are
most readily grasped by comparison with those of non-electrolytes.
In Figure 9.1 the logarithm of the rational activity coefficient is
plotted against the mole fraction for three simple non-electrolytes
in aqueous solution. It will be seen that the activity coefficient may
increase or decrease with rising concentration, but in both cases
log f5 approaches zero in a linear manner, i.c.,

dlog fr

— constant as Ny — 0
oNg B

From the Gibbs-Duhem equation for a non-electrolyte:
23, 26,
NAWB_-NBTB (90

or, introducing the activity coefficients and remembering that

(N + Ng) = L

dlnfy [odlnfp Ny
ANg [ Ng 1 — Ny

it follows that as Ng — O either:

dlnf, dInfy
N, -0 or Ny - — 0
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9 THEORETICAL INTERPRETATION OF CHEMICAL POTENTIALS

As GucGENHEIM'!! points out, statistical theory requires that long-
range forces between the solute particles must operate if the second
alternative is found to occur. But non-electrolytes are characterized
by short-range forces between the solute particles, and consequently
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Figure 9.1. A comparison of the activity coefficients of electrolyles and non-clectrolytes
as a function of concentration

the first alternative applies so that, if In f, is expressed as a power

series in Ng
Infy=ANE+ ANE+. ..

there can be no term lower than the second power of Ng. In this
case the logarithm of the activity coefficient f of the solute must,
by equation (9.1), be represented by a power series commencing
with the first power of N and consequently, in very dilute solution,
a plot of log fp against N will approximate closely to a straight
line as is, indeed, the case for the three non-electrolytes, sucrose,
glycine and glycolamide, illustrated in Figure 9.1. But should there
be long-range forces acting, the behaviour must be different. In an
electrolyte solution it would be expected that long-range electro-
static attractions and repulsions obeying the inverse square law
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ACTIVITY COEFFICIENT CURVES

would be found, in addition to short range Van der Waals forces,
ion-dipole interactions, etc. But if In f is represented by a series:

Infp=aNg + bNg + cNd+ . . .

where 7 is any fraction between zero and unity, (9 In f5/d/Ng) must
approach infinity as Nz — 0. This is exactly what is found.

Figure 9.1 includes the curves of the activity coefficients of three
electrolytes of different valency types (in this graph the abscissa is

N
Iu \\.b

2
dec,
25
N-01 Lk
2 N RN
2
\Myc 7 \\
\\ f—
097 0F 039 OF 05 06 07 04 09 70
m,m"’w'mys—-
Figure 9.2. The activity coefficient of sodium chloride plotied against different powers
of the molality
the ‘mole fraction’ of the electrolyte calculated on the basis of the
. 3m .
total number of solute ions, e.g., Ng = 555 1 3m for calcium

chloride of molality m; this is a departure from our definition 2.21,
but it seems the fairest basis for comparison with the non-electro-
lytes). The curves for the electrolytes show the infinite negative
gradient as zero concentration is approached, which is a consequence
of the long-range forces. At higher concentrations, the curves may
flatten out and then rise more or less linearly, or may continue to
fall. In this region the effects of short-range interactions become
important and finally dominate the behaviour.

If the leading term of a power series expansion of log f involves
a fractional power of the concentration, one would expect log f5
to approach linearity in that fractional power at low concentrations.
In Figure 9.2 log y, for sodium chloride is plotted against m, m!/?
and m!' respectively. It is evident that the slope approaches
constancy in a very satisfactory manner when m!? forms the
abscissa, though in the experimental region the slope is also nearly
constant when m!3 is used. It is easy to see why a linearity in the
cube root might be expected: imagine the solute to form a regular
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O THEORETICAL INTERPRETATION OF CHEMICAL POTENTIALS

ionic lattice in the solution. Its electrical potential energy can then
be calculated by the methods used in the case of crystals, with the
introduction of a dielectric constant (in the limit, that of the pure
solvent) into the denominator of the expression for the coulomb
energy of the crystal. This electrical energy will vary inversely
with the distance between an ion and its nearest neighbours, and
hence directly with ¢'/3, or for dilute solutions with m/® (where ¢ is
moles per litre and m is molality). In point of fact, if one identifies
this electrical potential energy with 2RT Iny, and uses the
Madelung constant of the sodium chloride lattice, one obtains the
expression for water as solvent:

log y, = — 0-29¢1/3

The slope of the uppermost curve in Figure 9.2 is — 0-26 in the
region 0-001-0-05 M. Similar calculations for calcium chloride
likewise lead to a slope of log y, versus ¢!/3 which is in fair agreement
with that observed at moderate dilutions.

Such a lattice-model is obviously inadequate, since it takes no
account of thermal disturbance of the lattice; it assumes, in fact,
that the forces are sufficiently large to maintain a regular structure.
If this were the case, it would be difficult to explain why the solute
ions do not pull themselves together again to form a crystal.
Clearly, at high enough dilutions, the interionic energy must
become smaller than kT, and in these circumstances the famous
treatment by DEBYE and HutickerL'® of the combined effects of
Brownian motion and interionic forces becomes applicable. Further-
more, it leads, as will shortly be shown, to the result that the slope
of log £, against the square root of the concentration becomes constant
at extreme dilution, and accounts quantitatively for the observed
limiting slopes.

A complete theoretical account of the thermodynamic properties
of electrolyte solutions must deal with both the long-range interionic
forces and the short-range interactions between ions and solvent
molecules, and this appears to be a formidable task. One can see
intuitively, in a qualitative way, that the net effect of interionic
attractions and repulsions will be to decrease the free energy of the
solute as compared with uncharged particles and hence to decrease
the activity coefficient, while the forces between ions and solvent
dipoles will tend to hold the solvent in the solution, with a con-
sequent decrease in the solvent vapour pressure from the ideal value,
and a corresponding increase in the activity coefficient of the solute.
The form of the curves in Figure 9.1 suggests that these opposite
effects are often of comparable magnitude at concentrations of the
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IONIC INTERACTIONS AND THE FREE ENERGY

order of one molal. The short-range effects, however, depend
approximately linearly on concentration, while the interionic eflects
approach linearity in the square root of concentration. There must,
therefore, be a region where only the latter make any significant
contribution to the non-ideality of the solution; we might tenta-
tively expect that at one-thousandth molal, say, the long-range
effects would exceed the short-range ones by a factor of the order of
4/1000, which would mean in practice that the short-range effects
could be ignored, within the limits of experimental error, below this
concentration. Theories dealing with the long-range interionic
forces only can therefore be adequately tested by comparison with
experiment for very dilute solutions. Though accurate thermo-
dynamic data in this region are not easily obtained, there are some
electrolytes for which reliable experimental studies have been made.
We shall now consider the contribution which ion-ion interaction

theory has to make to the thermodynamics of dilute electrolyte
solutions.

THE CONTRIBUTION OF IONIC INTERACTIONS TO THE
FREE ENERGY

The potential, y,, at a distance r from a selected j-ion is:

Y= Tira 7 .o (4.13)
But an isolated ion of valency z; in a medium of dielectric constant
& gives rise to a field of which the potential at distance r is given by:

. _ %€
v =" e (9.2)
By the principle of the linear superposition of fields the total
potential at r, given by (4.13) may be treated as the sum of the
potential, ], due to the central ion and another potential, yj, due
to all the remaining ions:

vi=v+9
Therefore by (9.2) and (4.13):
;e
lp,=; me '—l] ....(9.3)

This equation holds for all 7 down to 7 = g, i.e., for the region in
which equation (4.13) applies. Within the distance r < 4, no other
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9 THEORETICAL INTERPRETATION OF CHEMICAL POTENTIALS

ions can penetrate and the potential due to the spherically sym-
metrical distribution of these other ions is therefore constant for all
r < a and equal to its value at r = g, which from (9.3) is given by:

v (9.4)

Thus the effect on the potential of the central ion of the resultant
field of all other ions is the same as if the latter were distributed
over a spherical surface at a distance (a 4+ 1/k) from the centre.
The net charge on this surface would of course be equal and opposite
to the charge of the central ion. The quantity « is sometimes des-
cribed as the ‘reciprocal thickness of the ionic atmosphere,” but it
should be noted that this description is only accurate if the ‘thickness’
is measured from the distance r = a. In very dilute solutions 1/«
is large compared to a and the discrepancy is unimportant but if we
consider a 1 M aqueous solution of a 1 : 1 electrolyte, 1/k is approxi-
mately 3 A, which is less than the normal distance of closest approach
of two ions. The application of the Debye-Hiickel treatment to
concentrated solutions is sometimes criticized on the grounds that
1/« becomes less than the ionic radius and therefore the model is
inapplicable since the ‘ionic atmosphere’ is inside the ‘ion.” Equa-
tion (9.4) shows that this is not the case, since the ‘ionic atmosphere’
is always outside the sphere r = a.

The electrical energy of the central ion itself is therefore reduced
by the product of its charge z;e and this potential (9.4) due to its
interactions with its neighbours. However, if we applied this argu-
ment to every ion in the solution, we should in effect be counting
each ion twice: once as the central ion, and once as part of the
surroundings of other ions. The change AG; in the electrical energy
of a j-ion due to ionic interactions is therefore:

get  «
26 | + ka

The same result is obtained by an imaginary charging process in
which the distribution of ions is kept fixed and their charges are all
simultaneously built up gradually from zero to their actual values;
or from the theorem of electrostatics that the mutual energy of a
system of charges is one-half the sum of the products of the charges
of each and the potentials due to the others.

If the linearized equation (4.8) is taken for p,, as is done in deriving
(4.13), the different hypothetical charging processes proposed by
DEeBYE and GUNTELBERG' give the same result for AG;, but this is
no longer the case if the non-linear expression (4.6) is retained for p;.
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FORMULA FOR THE ACTIVITY COEFFICIENT

THE DEBYE-HUCKEL FORMULA FOR THE ACTIVITY
COEFFICIENT
The contribution of the electrical interactions with other ions to the
free energy of a single j-ion being given by equation (9.5), it follows
that the corresponding quantity for one mole of j-ions is:

ge:tN

AG, (el) = — 2% 1 + «a

....(96)

In obtaining this result the j-ion has been treated as a sphere of
diameter a. If we now make the assumption that a solution of these
entities would exhibit ideal behaviour in the absence of interionic
forces, we may write the partial free energy of a mole of j-ions as:

G, = G, (ideal) + AG (el)
or @)+ RTInf + RTInN;=G) + RTIn N + AG (e))

N; being the mole fraction and f; the rational activity coefficient of
the j-ions and G) referring to the hypothetical standard state.
Hence
AG; (el) i
Infi=—RT = " 2ekTT+ra

This gives the individual ionic activity coefficient of the j-ions, a
quantity not separately determinable by experiment. The mean
rational activity coefficient f, of an electrolyte dissociating into »,
cations of valency 2, and », anions of valency z, is given by: (see

p- 28) \ —_
_ . & ,_x " T ¥eds
Infe = — &t l+xa( » 7 )

which, upon eliminating the #s by means of the relation
¥1Z; = — ¥4, becomes:

XA L
Infe = — 9T T T wa
. . - 8mNe® \12 .
Upon replacing « by its definition « = (m) +/1 this result
takes the form:
Alziz4| VI
logfy = — 1T Bav/ T Bay/i e (9.7)
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9 THEORETICAL INTERPRETATION OF CHEMICAL POTENTIALS

where the constants 4 and B involve the absolute temperature and
the dielectric constant of the solvent, as follows:

4 _Jz?v e 1 18246 x 108
TN 1000 2:303k32 (eT)¥:  (eT)32
mole-1/2 |V/2(deg K)3¥2 ....(9.8)

g (BTNe\ 1 5029 x 108
=\10008) (eT)2 = " (eT)
cm-1 mole-V2 12 (deg K)V/2 .. ..(9.9)

Values of 4 and B for water at various temperatures?® are given in
Appendix 7.1.

It is important to note that (B4/[) is the fundamental quantity
x of the interionic attraction theory; Appendix 7.1 and equation
(9.9) therefore also have applications in the theory of transport
processes.

THE LIMITING LAW OF DEBYE AND HUCKEL

Equation (9.7) contains, in addition to functions of temperature and
concentration, the parameter a defined as the ‘distance of closest
approach’ of the jons. Inasmuch as this is not known a priori (except
as to order of magnitude), the formula for the activity coefficient
is not expressible solely in terms of measurable quantities. However,
it is clear that at very low values of /], i.e., in very dilute solutions,
the term (Ba+/I) will ultimately become negligible compared to
unity, and (9.7) will approach the form:

logf, = — dlazl|vI .r..(9.10)

This is the Debye-Hiickel limiting law according to which log f,
approaches linearity in the square root of the concentration at high
dilutions. It is not to be expected that it will be obeyed accurately
at any usual experimental concentration, since the product (Ba) is
in practice always of the order of unity. This means that even in a
one-thousandth molar solution of a 1 : 1 electrolyte, the factor
(1 + xa) or (1 + Ba4/I) is about 1-03, and the value of — log f,
according to (9.7) is therefore 3 per cent different from the limiting
law value. Nevertheless, the form (9.10) is an extremely useful
guide to the behaviour of activity coefficients at high dilutions.
For many aqueous solutions the expression (9.7) is capable of
representing the observed activity coefficients with very good
accuracy by simply choosing a value of the parameter a, independent
of concentration, and of a physically reasonable magnitude. This
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THE LIMITING LAW OF DEBYE AND HUCKEL

often holds up to an ionic strength of about I = 0-1, when the ions
are separated on the average by no more than about 20 A. Here
their mutual energy would be expected to be of the same order as
kT; it appears, therefore, that the simple distribution-function used
in deriving the equation (9.7) is fairly adequate.

The derivation of equation (9.7) is such that the numerator of
the right-hand side, — 4]z,2,|1/1, gives the effect of the long-range
coulomb forces, while the denominator (1 4 Ba+/I) shows how
these are modified by the short-range interactions between ions,
which are represented by the crudest possible model, taking the ions
to be non-deformable spheres of equal radii. In any actual solution,
there will also be the short-range interactions between ions and
solvent molecules to consider, as well as other types of short-range
interactions between ions, which cannot be adequately represented
by the rigid-spheres model. As was mentioned earlier, these are all
likely to be of a type giving an approximately linear variation of
log f, with concentration. Consequently they can be included, in
a highly empirical fashion, by adding to (9.7) a term linear in the
concentration, thus:

A| 2320l V1

Ingi=_l+Ba\/I+bI L (9.11)

where now b as well as ¢ is a constant adjustable to suit the experi-
mental curve. Equations like (9.11) are widely used for the analyti-
cal representation of activity coefficients, especially for the non-
associated 1 : 1 electrolytes, where they are usually capable of
fitting the data within the experimental accuracy up to at least one
molal.

A simpler form of equation (9.7) is due to GUNTELBERG'® who
writes for aqueous solutions:

Alzyzg|v/ 1
logf, = ——:—_1;!17‘;- ....(9.12)

that is to say he puts a = 3-04 A for all electrolytes at 25°. Although
this equation has no adjustable parameters, it gives a fair repre-
sentation of the behaviour of a number of electrolytes up to I = 0-1;
it is certainly superior to the limiting law as represented by equation
(9.10). It can be greatly improved, however, by adding a term
linear in the concentration:

A 1
logfi=—llz+'|\/\;-+b1 .(9.13)

a form which is due to GuGcGeNHEIM'®), b being an adjustable
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parameter. Table 9.1 illustrates how equations (9.12) and (9.13)
can be used to represent the data for sodium chloride.

Table 9.1
Activity Coefficient of Sodium Chloride at 25°

—logf —logf — log f —logf

m (obs.) Eq. (9.10) Eq. (9.12) Eq. (9.13)
0-001 0-0155 0-0162 0-0157 0-0155
0-005 0-0327 0-0362 0-0338 0-0330
0-01 0-0446 0-0511 0-0465 0-0449
0-05 0-0859 0-1162 0-0933 0-0853
01 0-1072 0-1614 0-1227 0-1067

b = 0-16 L.mole-!

Davies‘® has modified equation (9.13) by putting b = 0-1]z,2,|;
in this form it is useful as a guide to the behaviour of the activity
coefficient of an electrolyte when no experimental measurements are
available. Table 9.2 shows how the activity coefficient of calcium
chloride can be represented.

Table 9.2
Activity Coefficient of Calcium Chloride at 25°
vm 0-04 012 020 028
£ (obs.) 0-864 0-694 0-596 0535
7 (Eq.9.13) 0-862 0-682 0-579 0-519

b = 02001 mole-?

THE DEBYE-HUCKEL EQUATIONS FOR SOLUTIONS
CONTAINING MORE THAN ONE ELECTROLYTE

Equations (9.7) and (9.10) have been deduced for the special case
of a single electrolyte in solution, i.c., for a solute one mole of which
dissociates into ¥, moles of cations of valency z; and ¥, moles of
anions of valency z,. The consideration of the case of an electrolyte
solution containing more than one species of electrolyte (for
example, a mixture of hydrochloric acid and calcium chioride)
introduces only one difficulty. By following through the derivation
of the limiting law (9.10) it is easy to show that this is equally valid
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MORE EXACT TREATMENT OF FREE ENERGY

for one electrolyte in a mixed electrolyte solution provided that «
is defined correctly in terms of Y n,z}, i.c., I is taken as 3X(c,2%).

3
Thus, in a solution of hydrochloric acid and sodium chloride, each
0-005 N at 25°, the mean activity coefficients of hydrochloric acid
and sodium chloride as given by the limiting law are 0-889.

But in a solution of hydrochloric acid and calcium chloride, the
former at a concentration of 0-004 mole/l and the latter 0-002
mole/l, we still have 7 = 0-01, but the activity coefficients of the
two electrolytes are no longer equal because fgg = 0-889 and
Jeaey, = 0:790. Moreover, it should be noted that if| as in the above
example, the two electrolytes have an ion in common, the common
ion is allowed for in both activity coefficients; thus fgg is an average
activity coeflicient for the hydrogen ions and all the chloride ions,
those derived from the calcium chloride as well as those derived
from hydrochloric acid.

Similarly, equation (9.7) is also appropriate for a mixed electro-
lyte solution provided attention is paid to the proper meaning of
Z1, 23 and I, although we may have some difficulty in giving a
meaning to the quantity a.

A MORE EXACT TREATMENT OF THE FREE ENERGY DUE TO
ELECTRICAL INTERACTIONS

The treatment of the previous sections, leading to equation (9.7)
for the mean activity coefficient, regards the electrical free energy
of the system of charged ions in the solvent as belonging exclusively
to the partial molal free energy of the electrolyte. In reality, a small
part of the electrical free energy belongs to the solvent; we may
think of this part as being the free energy of the solvent in the elec-
trical field of the ions. This originates in ion-dipole interactions,
which appear in the Debye-Hiickel treatment in the form of the
dielectric constant of the solvent. ‘

In a more detailed consideration of the thermodynamics of an
imaginary charging process in which the ionic charges are simul-
taneously built up from zero to their actual values, FowLER and
GucGENHEIM'? show that the total electrical energy of the whole
system is given by:

ZJ‘Z‘zez
G = — " k7 (xa) ....{(9.13a)
3¢
where s, is the number of i-ions in the system of total volume V,
o et ot
kT V
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and the function r(xa) is defined by:
(x) = ;3_3 fn (1 + x) — x + x2/2)
It is also convenient to introduce the function ¢ (x) defined by:

0(3):% l+x—l—_l|—_—x—21n(l+x)]

3 [* x \*
== — ) dx
[ ()
which is tabulated in Appendix 2.2.
From (9.13a) one obtains by differentiating partially with respect
to 54, remembering that variations in s; affect ¥, the result:
Nztet &« P;. kT
Gt = — 4
I 2 1+ «xa + 24n a®

(xa)® a(xa)  ....(9.13b)

where P, is the molar volume of the j-ions. This differs from the
previous value (9.6) by the term in ¥; and leads to:

_ Zf’ez K Vf 3
Inf; = 2ekT T T na + TN (xa)® o(xa) ce e (9.13¢)

whence for a single electrolyte:

_ |31€zlez K VB/" 3
Infy= — kT T ra T 2amNas ) 0lxa)

The second term is insignificant at values of xz small compared to
unity, for then o(«xa) approximates to unity and (xq)? is very small.
At high concentrations, it is doubtful whether the theory is valid,
but if we grant that it is, we may note that even atka =2 (asina4 N
solution of a 1 : 1 electrolyte) (xa)a(xa) ~ 1-2. Ignoring electro-
striction, by putting V5 =~ ma®»NJ6, we find that the factor Vgf
(24mNa®y) ~s 1/144, so that the second term of (9.13c) alters £, by
less than | per cent. It is therefore justifiably ignored in nearly all
applications of the theory.

The solvent activity, a,, may be obtained either by integration
of the Gibbs-Duhem equation using equation (9.7) or directly from
(9.13a) by partial differentiation of G** with respect to the number
of solvent molecules in the system. Here the differentiation leads
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to a term containing the partial molal volume, P 4> of the solvent,
and one finds:

| 1
lnaA=lnNA+8 N3[1+x—l_+__2ln(l+x)]

24ZN - (xa)® & (xa) ....(9.13d)
where N, is the mole fraction of the solvent. Here the second term
on the right is evidently of comparable magnitude to the corres-
ponding term in (9.13c), but it can no longer be neglected since it
represents the whole of the deviation of the solvent activity from
ideality. The solvent activity is rather insensitive to non-ideality,
since it is present in large excess relative to the solute. For this
reason, the more sensitive osmotic coefficient, ¢, is usually used to
represent the solvent behaviour. We have for aqueous solutions of
single electrolytes, using (9.13d):

¢ = — (55-51/vm) In a,,

=]nNA+

5551 In 5551 55-51 (a)’ (ka)

=T Towm 55-51 4+ vym ym 241-rN 3 @ g lKa
22,2,

(2> l —EEk—T KO (Ka)’

the last step requiring several approximations valid only for dilute
solutions.

THE ION SIZE PARAMETER a

If the limiting law (9.10) is compared with experimental data, it is
found that for fully dissociated strong electrolytes such as the alkali
and alkaline-earth metal halides the observed values of log f lie
above the straight line of slope — A4|z,2,] when plotted against /1,
the deviations increasing with concentration. The more complete
form (9.7) shows the reason for this; the ion size parameter ¢ must
be positive, and this leads to values of log f greater than those given
by the limiting law. Up to ionic strcngt.hs of about 0-1, it is often
possxble to fit the data very accurately using a values of the order
of 4 A in equation (9.7). The g value giving the best fit is, however,
apt to vary somewhat with the concentration-range fitted, which
suggests that at the higher concentrations equation (9.7) is inade-
quate, and the parameter a is being forced to take care of other
short-range effects than those it was intended for. A change in a
does produce, in dilute solutions, changes in log f which are ap-
proximately linear in concentration, and could thus compensate for
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small short-range effects. This can be seen by differentiating (9.7)
partially with respect to a, giving
AB|2,24|0a
dlogf = (l+Ba\/I)2I ...(9.14)
As long as the solution is dilute enough for the denominator of (9.14)
to be constant within 10 per cent or 20 per cent, the effect is roughly
linear in I.

Table 9.3
Activity Coefficients of Sodium Chloride at 25°
- log/. 4avi
I(=0 %87 8 Vi 1+ BaV1 |—logfy| 10s
m =c¢ A eq.
@.11) | 8lesf

Ex i = ==
( &dues) 18 A 4:)A

(i) @ 3) # | G| ®) ™ ® )
0-001 {0-000997( 0-0155 | 0-0155/0-0162| 0-0154 | 0-0155 | 0-0154 | 0-1
0-002 | 0-001994| 0-0214 | 0-0214|0-0229| 0-0214 | 0-0216 | 0-0214 0
0-005 { 0-004985 0-0328 | 0-0327{0-0361( 00325 | 0-0330 | 0-0327 0
0-01 |0-009969| 0-0447 | 0-0446|0-0510| 0-0441 | 0-0451 | 0-0445 | ©
0-02 [0-01993 | 0-0602 | 0-0599]0-0722| 0-0590 | 0-0609 | 0-0598 | ©
0-05 |0-04981 { 0-0866 | 0-0859|0-1142| 0-0844 | 0-0882 { 0-0855 | 0
1
2
0
1

1 [0-09953 ( 0-1088 0-1072{ 0-1614] 0-1077 { 0-1140 | 0-1085
2 |0-1987 | 0-1339 0-1308{ 0-2280| 0-1338 | 0-1437 | 0-1328
5 104940 | 0-1668 0-1593} 0-3595| 0-1703 | 0-1868 | 0-1596
0 {09788 | 0-1825 0-1671) 0-5060{ 0-1974 | 0-2198 1 0-1660
0 [1-921 0-1755 0-1453} 0-7089| 0-2222 | 0-2510 | 0-1453 0
0 |3-696 0-1061 0-0477{ 0-9831| 0-2435 | 0-2786 | 0-0753 2

0 |5305 0-0060 |— 0-0789| 1-1780| 0-2539 | 0-2922 | 0-0004 7

In calculating the values in column (8) equation (9.11) was used with the
parameter ¢ = 4-0 A, b = 0-055 L.mole?, i.c.,
05115V T

-} 0055/
14+ 1-316V7 +

logf, =

Consequently it is not necessary to interpret changes in the q
value giving the best fit as real changes in effective size of the ions
with concentration. It is probably better in determining 2 to use
equation (9.11) over a somewhat greater concentration range; this
ensures that the a parameter will not have forced upon it some of
the responsibility for a term linear in concentration. At the same
time, it does demand accurate experimental data and careful curve-
fitting. The concentration range should still not be unduly extended,
for there are good reasons for supposing that the linearity in con-
centration of the short-range effects is itself limited to moderately
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dilute solutions. To illustrate these points, and to give some idea of
the effectiveness of these formulae for the activity coefficient, the
case of sodium chloride at 25° in water will be considered in some
detail. The experimental activity coefficients are given in Table 9.3
in the form of log f, ; the data below 0:1 M are derived from very
precise measurements of transport numbers and of the potentials of
cells with transport by Brown and Maclnnes recalculated with
modern values of the constants by SHEDLOVSKY(?. At and above
0-1 M, they are those computed by RoBinson(® as best values from
a number of reliable sources. Columns (1) and (2) give the molality
and the corresponding ionic strength in mole per litre units; col-
umns (3) and (4) give the molal and rational mean activity coeffi-
cients (it will be noted that these are considerably different at the
higher concentrations). Column (5) is the value predicted for
— log f,. by the Debye-Hiickel limiting expression 9.10.

As has been said, this expression is not accurate within the experi-
mental error even at 0-:001 M, and is some 300 per cent out at 1 M.
Columns (6) and (7) are calculated from equation (9.7) using
respectively 2 = 48 A and a = 40 A. The value 4-8 A results in
a moderately good reproduction of the experimental values up to
0-1 M, but the deviations then change sign, and are not propor-
tional to the concentration at higher concentrations. The value
4-0 A gives an almost perfect fit up to about 002 M, and thereafter
the deviations are fairly well proportional to the concentration. As
a result, equation (9.11) with a = 40 A and b = 0-055, fits the
data quite well up to 2 M, as shown in columns (8) and (9). There-
after, the experimental activity coefficients lie increasingly above
the calculated ones. It is clear that by altering the parameters a
and b in equation (9.11) expressions could be obtained which would
give a slightly better fit over a smaller range, or a slightly worse one
over a greater range. In the absence of perfect experimental values,
it is therefore not possible to decide the exact value of a, but it is
clear that a value in the range 4-0-4-8 A is appropriate.

Even better reproduction of the data can be obtained by adding
to the expression for log f further arbitrary terms in higher powers
of the concentration, or its logarithm, etc.; the parameters in these
more complex equations are.even more elastic, but they usually
give a values close to those required for equation (9.11) over
moderate ranges.

In the derivation of equation (9.7), a was defined as the distance
from the centre of an ion, within which the centre of no other can
penetrate. When two ions meet (especially if they are of opposite
sign) one can well imagine that this distance will be somewhat
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variable, depending on the Brownian velocity of the ions along their
line of centres. Sometimes this may be sufficient to cause penetra-
tion some distance into the hydration sheath, In general, therefore,
one would expect that the average distance of closest approach
would be greater than the sum of the crystallographic radii of the
bare ions, though not necessarily by the thickness of a whole number
of layers of water molecules. This is usually so: with sodium
chloride, for instance, the radius-sum is 0-95 + 1:81 = 2-8 A, as
against 4-0 to 4-8 A for a; with calcium chloride, 2:8 A as against
5A; and with lanthanum chloride, 3-0 A as against 6-7 A. As
might also be expected, the difference between the radius sum and
a is greater for strongly hydrated than for weakly hydrated ions.
This suggests the possibility of computing a from estimates of ionic
hydration.

When the quantity a was introduced, it was with the assumption
that it was the same for all ions. If the cation, say, were larger than
the anion, there would be a region round each ion into which anions
but not cations could penetrate; this would somewhat modify the
formulae for the separate ionic activity coefficients and for the mean
activity coefficients. Actually it is doubtful whether these calcula-
tions are justifiable; it is not easy to see whether they satisfy the
requirements of the linear superposition of the ionic fields. In
general it seems reasonable to say that since encounters between ions
of opposite sign will be more frequent than those between ions of
the same sign, the parameter a is likely to be nearly the same for
anions and cations.

THE INFLUENCE OF JON-SOLVENT INTERACTIONS ON THE
ACTIVITY COEFFICIENT

We have seen in Chapters 3 and 6 that there are good grounds for be-
lieving that the kinetic unit of the solute in many electrolyte solutions
is an ion with several relatively firmly attached water molecules;
further evidence for this state of affairs is provided by a comparison
of the ionic size parameters, a, necessary in the Debye-Hiickel
equation (9.7), with the dimensions of the bare ions. This suggests
that the activity coefficient predicted by the Debye-Hiickel treat-
ment is actually the mean rational ionic activity coefficient of the
hydrated ions. It is, however, the invariable practice in computing
activity coefficients, from whatever experimental data, to calculate
the composition of the solution in terms of the number of moles of
anhydrous solute in a fixed mass of solvent (molality), or in a given
total number of moles of solute and solvent (mole fraction) or in a
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given volume of solution (molarity). It will be noted that if the
molarity scale is used, the figure expressing the concentration of the
solution is the same whether the solute is treated as solvated or not;
this is an advantage of using the molarity scale, but one which is
outweighed by the disadvantage that the molarity of a solution of
given composition changes with temperature.

In the case of the molality and mole fraction scales, the figure
expressing the composition will be different if the solute is con-
sidered as a solvated species. Furthermore, the chemical potential
of the solute considered as a solvated species will be different from
its value when considered as unsolvated. However, the total Gibbs
free energy, G, of a fixed amount of solution is fixed, regardless of
the method used for expressing its composition; and the chemical

potential of the solvent, G, being defined by G, = (;Tc) rp
4/ ng,
is therefore likewise unaffected by the method of expressing n —
it is the free energy gain on adding one mole of solvent to an infinite
amount of solution, regardless of whether part of the added solvent
actually combines with the solute or not. These considerations
provide a simple method of finding the relation between the
rational activity coefficient of the solvated solute and the conventional
activity coefficients computed with disregard of solvation. This
method of deriving the required relation is more straightforward
than that given by the authors in their original paper on the
subject® and more fundamental than earlier treatments of the
same subject by Bjerrum™® and by HARNED?), Consider a quan-
tity of solution containing one mole of anhydrous solute, B, dis-
sociated into ¥, moles of cations and », moles of anions, dissolved in
§ moles of solvent 4. We now calculate the fixed total free energy
of the system, G, in two ways: (a) considering the solute as un-
solvated; (b) considering that a total of & moles of solvent are
combined with the » moles of ions (divided, if we wish, into 4, moles
of water combined with the », moles of cations, and 4, moles of
water combined with the », moles of anions). We denote the solvent
by a subscript 4, and distinguish chemical potentials and activity
coefficients calculated on the basis of the solvated ions by primes:
G, f', ee.
We have, in view of the arg'uments in the preceding paragraphs:

and G = (S —nG,+ G + G,
whence, introducing for each chemical potential its expression in
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terms of the appropriate mole fraction and activity coefficient, and
rearranging,

(G2 — GO)RT + v,(G — GP)/RT + hG%YRT + hlna,

S4+v—h , ,
—S_I_—w+wllnfl+w21nf,=vllnfl+v,,lnf2
«...{9.15)

Now as § — o (i.e., at infinite dilution) all the activity coefficients
become unity and a, becomes unity, so that all the logarithmic
terms are zero and hence the sum of the first three terms on the left
of (9.15), involving the chemical potentials in the standard states,
is also zero. We therefore have, introducing the mean ionic activity
coefficients instead of the sums of the separate ionic ones:

S+v—=h
S+

+vln

lnf;=lnft+glnaA+ln ....(9.16)
(In arriving at this result we have implicitly assumed that the value
of  in the actual solution is the same as at infinite dilution.) This
result is in practice more useful in terms of the conventional mean
molal activity coefficient y, and the molality m; using the relations
S = 1000/(W m), where W, is the molecular weight of the
solvent, and f, = y,(1 + 0-00ly W m), (eq. 2.22) we obtain:

h
Inf, =Iny, + ;ln ay + In[l + 0-001 W (v — kym] ....(9.17)

Or, putting In a4 in terms of the osmotic coefficient

1000
¢ = - ij In ay
Inf, = lny, — 0001 W hm -}- In {1 4 0-001 W (v — k)m)

....(9.18)

Since ¢ or a, can be calculated if y, is known over the range of
composition up to that considered, or alternatively y, calculated if
¢ or a, is similarly known (see Chapter 2) we have in equations
(9.17) and (9.18) a method of expressing the rational mean ionic
activity coefficient of the solute, assumed solvated with & moles of
solvent per mole of salt, in terms of the conventional activity
coefficients.

The only extra-thermodynamic assumption used in deriving
equations (9.17) and (9.18) has been that the value of 2 is unchanged
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on proceeding to infinite dilution; this means that in applying the
equations to actual solutions, we are limited to cases where there
are plenty of solvent molecules to go round among the solute
particles, and where the forces between solute and solvent are at
least approximately of a saturable nature. For example, if the
aqueous copper ion consisted of a definite complex Cu4HO++ of
high stability, we would be able to use the equation with confidence
up to molalities approaching 55-5/4, provided no other solvating
ion were present. While the forces between jons and water molecules
are at least mainly electrostatic, and therefore are not strictly
saturable in the same way as ‘chemical’ binding forces, there is, as
we have seen, strong reason to believe that water molecules in
direct contact with the ion are subject to much greater forces of
attraction than subsequent layers, and there is a geometrical limit
to the number of such closest molecules. Consequently, we may
reasonably expect the assumption of an 4 value independent of
concentration to apply up to moderately high concentrations. In
practice, as we shall see, the limit is often reached when about a
quarter of the solvent molecules are combined with ions.

We propose to use equation (9.16) in combination with the
Debye-Hiickel equation (9.7), taking the latter to refer to the
solvated ions. In effect we shall use equation (9.7) to deal with
interionic forces, and equation (9.16) to deal with the ion-solvent
forces; instead of assuming that the solution of the unsolvated ions
would be ideal but for the interionic forces, we assume that the
solution of the solvated ions would be ideal but for the interionic
forces. Apart from the obvious advantage of using a model which
certainly comes closer to the physical reality, this procedure will go
a long way towards justifying another assumption implicit in the
derivation of equation (9.7), viz., that the dielectric constant ¢ is
that of the pure solvent. The work of Hastep, RrrsoN and
CoLLIE!® has shown that nearly all the observed lowering of the
bulk dielectric constant by ionic solutes arises from effects in the
first layer of water molecules round the ion. If this layer is reckoned
as part of the solute particle and if other ions do not penetrate into
it, the dielectric constant of the liquid outside may fairly be taken
as that of the pure solvent. .

The same conclusion is reached in a recent theoretical study by
BuckingHAM(¥), from a detailed calculation of the energies of the
ion-dipole and quadrupole interactions of water molecules in the
first layer with one another and with the ion; beyond this first shell,
the effect of dielectric saturation is found to be negligible.

The question whether the ion-solvent forces are adequately dealt

241



9 THEORETICAL INTERPRETATION OF CHEMICAL POTENTIALS

with by this model is hard to answer, the chief difficulty arising over
the value to be given to the parameter 4, the number of moles of
‘bound’ water per mole of solute. If this could be determined
unequivocally by other means, without reference to the activity
"data, the position would be better; but we have seen that the
determination of accurate hydration numbers is a very recalcitrant
problem.

Some guidance can be obtained from the study of non-electrolyte
solutions. For a detailed account of the theory of these we refer to
the texts of HiLDEBRAND and ScotT®® and of GUGGENHEIM19);
here we merely summarize the main types of behaviour:

(@) Ideal solutions, in which log f, =log fp =1, are rare;
approximation to this behaviour occurs with chemically similar
molecules such as benzene and cyclohexane. There is no volume
or heat change on mixing the components and the entropy of mixing
per mole of mixture is:

AS™(ideal) = — R(N4In N, + Ngln Np) ....(9.19)

(b) Athermal solutions resemble ideal solutions in having zero
heat of mixing, but the entropy of mixing is not that given by equa-
tion (9.19). Their departure from ideality is ascribed to the differ-
ences of size and shape between the solvent and solute molecules.
The entropy of mixing may be calculated on the assumption of a
lattice-like structure for the solution, a solute molecule occupying
several lattice-points whilst a solvent molecule occupies only one.
In the simplest case the entropy of mixing is:

N, rNg
Ny + rNp + NBlnNA + NB]
where r is the ratio of the molal volume of the solute to that of the
solvent. Anotherinterpretation regardsr as theratio of ‘free volumes’
rather than molar volumes. Equation (9.20), along with AH¥ = 0,
leads to the following equation for the molal activity coefficient:

0-001 W r(r — I)m
1 + 0001 W, rm
which, for small m, approximates to:
Inyp ~ 0001 W, r(r — 2)m
or Infp ~ 0001 W, (r — 1)%m.

(¢) In regular solutions the entropy of mixing is given by the
ideal expression (9.19) but there is a non-zero heat of mixing. The
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molal and rational activity coefficients (with standard states chosen
so that 5 and fp — | at infinite dilution) are:

b 1
Inys = p7 [(1 F 0001 Wym)®

1] —In (1 + 0-001 W, m)

b I
1 = — - 1. e (9
"B =Rt [(1  0-001 W gm)? l] (9:22)
Approximation for small m leads to:
Infp~ — 0001 W, (2 bm)[{(RT) ....(9.23)

In a mixture of two liquids, the quantity b (if independent of tem-
perature) is the heat of mixing one mole of either component with
a large amount of the other; heat evolved in the process corresponds
to negative values of b, and in this case the activity coefficient will
increase with concentration.

If the interaction between the components is fairly strong, it may
be possible to treat it in terms of the formation of a definite complex-

B + h A = B4,
with
K = ap,,/(ag al)

If the concentration of B is small, the solvent activity, a,, differs
little from unity and the ratio of complex to free B is nearly constant.
A good approximation to the actual behaviour may then be obtained
by using equation (9.18) taking & as an average for the free and
complexed solute and assuming the mixture of solute, solvent and
complex to be ideal. Equation (9.18), with fi = I, becomes:

Iny = —kln (1 — 0001 W, hm)
4+ (h—1) In[1 + 0001 W (1 — k)m] ....(9.24)
~ 0-001W, (2k — 1)m for small m.

Comparing (9.23) and (9.24) we sce that in dilute solutions a
regular-solution behaviour with a heat of mixing (ART) affects the
activity coefficient to the same extent as would the solvation of
each molecule of solute with 2 molecules of solvent.

There are thus a variety of causes—solvation, heat of mixing and
molecular size and shape—which have the effect of causing In /3 to
increase approximately linearly with concentration. Any or all of
these may be present in electrolyte solutions and we need to consider
their relevance to aqueous solutions. Table 9.4 gives the activity
coefficients of aqueous sucrose and glycerol solutions at 25°, along
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with the results calculated for (a) ideal solutions, (5) regular solu-
tions with the b parameter indicated, (¢) solutions in which the
solute is present as a hydrated form carrying 4 water molecules, the
mixture of hydrated solute and ‘free’ water behaving ideally and
(d) athermal solutions, using either an arbitrary value of r in equa-
tion (9.21) selected to give agreement at 1 M or the ratio of the
molal volumes of solute and water.

In the case of glycerol, which departs only slightly from ideality,
all the theoretical expressions give a fair reproduction of y, except
equation (9.21) with r as the ratio of molar volumes of solute and

Table 9.4

Representation of Activity Coefficients of Aqueous Non-clectrolytes
at 25° by equations 9.21 t 9.24

Molality 01 05 1-0 2:0 3-0
Viteat (f=1) 0998 | 099 | 0982 | 0965 | 0949
Sucrose
Yeaptr'? 1017 | 1085 | 1-188 | 1-442 | 1-751
y(eq. 9.22, b = — 54 RT) 1018 | 1092 | (1-188) | 1397 | 1628
Y(eq. 9.24, h = 5) 1017 | 1087 | (1-188) | 1-449 | 1-822
y(eq. 9.21, r = 4-38) 1019 | 1094 ! (1-186) | 1368 | 1:545
(eq. 9.21,r = ;'! =12) 1-235 | 2638 | 5800 | 1926 | 4582
4
Glycerol
Veestt' 1003 | 1-014 | 1027 | 1-050 | 1-071
yzeq. 9.22,b =— 1-2RT) 1003 | 1013 | (1-025) [ 1048 | 1-069
Y(eq. 9.24, h = 1-2) 1003 | 1013 | (1-026) | 1-053 | 1-081
y{eq. 9.21, r = 2:6) 1003 | 1-014 | (1-026) | 1-048 | 1079
p(eq. 9.21,r = V" 4) 1015 | 1072 | 1-141 | 1276 | 1403
4

solvent. For sucrose, the simple interpretation as an ideal solution
of a pentahydrated solute by equation (9.24) gives representation
considerably better than the other equations; equation (9.21) using
the ‘volume fraction statistics’ is poor even when r is interpreted as
a ‘free volume ratio’ chosen for best fit, and its failure when r is put
equal to the ratio of molar volumes of solute and solvent is spectacular.

The statistical mechanical methods used in the derivation of
equation (9.20) for the entropy of athermal mixing are applicable
when the molecules are long chains. The equation does not, how-
ever, correctly describe the entropy of mixing of approximately
spherical molecules and Hildebrand has recently presented increas-
ingly strong experimental evidence that the ideal entropy of mixing
given by equation (9.19) is more correct in this case. In particular,
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his studies'® of solutions involving the very large non-polar and
nearly spherical molecule octamethyl-cyclotetrasiloxane, (CH,),
Si,O,, (V5 = 312 mi/mole) are of great interest.

It would thus seem likely that the best course for dealing with
moderately concentrated electrolyte solutions would be to use the
Debye-Hiickel expression (9.7) to give the electrical contribution to
the free energy of the solvated ions, equations (9.21) and (9.22) to
give the effects which would exist if the solvated ions were in the
solution but uncharged, and equation (9.17) to relate the activity
coefficient of the solvated ions to the conventional activity coefficient.
This would involve the use of no less than four arbitrary parameters,
vZ., a, the ion size parameter; kA, the solvation number; r, the
free-volume ratio; and b, the heat of mixing of the solvated ions
with the solvent in the imagined absence of interionic effects. With
four parameters at our disposal, it would be possible to fit almost
any experimental data, and some attempt must clearly be made to
determine some of them in terms of others, or in terms of other
measurable properties of the solution, before the adequacy of such
a treatment can be gauged.

ScaTcHARD1? in 1932 gave a theory for the activity coefficient
of concentrated electrolytes, having some of the features just
indicated. The non-electrolyte type of interactions, for instance,
were dealt with by an expression similar to equation (9.22) above,
and the treatment of ion—ion interactions was given by the Debye-
Hiickel expression, though with allowance for the variation of
dielectric constant with composition. The ion-solvent interactions
were, however, treated in a very different manner, in terms of an
clectrostatic salting-out effect. The solvated-ion model which we
are proposing to use has some advantages in simplicity, for, as has
been remarked, the dielectric constant may more reasonably be
taken as constant, and the ion-solvent interactions are represented
in a manner easier to grasp.

The simplest treatment of the effect of ionic solvation on the
activity cocfficient would, as suggested above, be simply to combine
equation (9.17) with the Debye-Hiickel expression, taking the
latter to give the activity coefficient of the solvated ions, log f,.
This course is consistent with the fact that the 2 values of the
Debye-Hiickel expression correspond to the dimensions of solvated
ions. The resulting expression is:

_ _AlaalvI _k
logy, = — 1+ BayI ™~ log a,
—log [1 4+ 0001 W (v — B)m] ....(9.25)
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This expression contains only two parameters, & and a, the ‘non-
electrolyte’ contributions involving the parameters 7 and b (equa-
tions 9.21 and 9.22) being ignored.

Equation (9.25) has been extensively tested®® for aqueous solu-
tions and is remarkably successful with the non-associated electro-
lytes. The values of the parameters, a and 4 for thirty-six 1 : ]
and 2 : 1 electrolytes at 25° are given in Table 9.5.

Table 9.5
Constants of the Two-parameter Equation (9.25) Giving Best Fits to the Experimental
Activity Coefficients
a a
Salt h (Angstroms) Salt h (Angstroms)
HCl 8-0 447 Rbl 0-6 3-56
HBr 86 5-18 MgCl, 137 5:02
H1 10-6 569 MgBr, 17:0 5-46
HCIO, 74 5-09 Mgl, 19-0 6-18
LiCl 71 4-32 CaCl, 12-0 4.73
LiBr 7-6 4-56 CaBr, 14-6 5-02
Lil 9-0 5-60 Cal, 17-0 5-69
LiClO, 8-7 5-63 SrCl, 10-7 4-61
Na(Cl 3-5 3-97 SrBr, 127 4-89
NaBr 42 424 Srl, 15:5 5-58
Nal 55 4-47 BaCl, 77 4-45
NaClO, 2:] 4-04 BaBr, 10-7 4-68
Ka 1-9 3-63 Bal, 15-0 544
KBr 2-1 3-85 MnCl, 11-0 474
KI 2-5 4-16 FeCl, 12-0 4-80
NH,CI 1-6 375 CoCl, 13-0 4-81
RbCl 1-2 3-49 NiCl, 13-0 4-86
RbBr 09 348 Zn(ClO,), 20-0 6-18

From Stokes, R. H. and Rosinson, R. A., 7. Amer. chem. Soc., 70 (1948) 1870,

Examination of this table reveals the following points: (a) The
values of a lie in the range 3:-5-6-2 A, i.c., they are much the same as
those determined from simpler forms of equations such as equations
(9.7) and (9.11). () The values of & for 1 : 1 chlorides lie in the
order H > Li > Na > K > Rb which is just the reverse of the
order of the radii of the bare ions. The same cation-order holds
for the 1 : | bromides and iodides. The alkaline earth metal cations
show a similar decrease in hydration number with increasing
crystallographic radius. This behaviour is consistent with what is
known of the hydration of these cations from other sources (except
possibly in the case of hydrogen ion which will be taken up later).
(¢) For a given cation, the % values decrease in the order
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I- > Br- > CI-. This implies that the largest anion is the most
solvated, a conclusion at variance with both reasonable expectation
and other experimental indications, and it is a serious weakness of
the simple equation (9.25). (d) The solvation numbers /4 are not
additive for the separate ions, e.g., hyasg — hgci = 1'6, but
hyxa1 — kg1 = 3-0. It is thus not possible to ascribe a single value
of & to each ion, but different values must be allowed depending on
the nature of the companion ion. (¢) The low A values for potassium,
ammonium and rubidium salts indicate that the chloride, bromide
and iodide ions can be little hydrated so that where high values of
h are found most of the hydration must be attributed to the cation.
This is quite reasonable since the anions considered are all large
(~2A radius) and therefore have low surface charge. The
resulting cation hydration numbers do, however, seem rather large.
In particular, if one estimates the radius of spherical cations con-
taining such amounts of bound water, one finds that the sum of this
radius and the crystallographic radius of the anion exceeds the
required a value by about 0-7 A for the 1 : 1 salts and 1-3 A for
the 2 : 1 salts. This rather unsatisfactory situation was dealt with
in our original paperl® by assuming that when the anion and
cation met, the anion could penetrate into the hydration sheath of
the cation by these distances; the greater penetration when the
cation is divalent (1:3 A against 0-7 A) arising from the greater
attraction it has for the anion.

Using the concept of a limited penetration of the anion into the
hydration sheath of the cation, it proved possible to obtain a relation
between the parameters £ and a, of sufficient accuracy to permit
the calculation of the activity coefficients of the chlorides, bromides
and iodides of the alkali and alkaline earth metals and hydrogen
with quite good accuracy (better than 1 per cent) up to ionic
strength often as high as I = 4. The relation between 4 and a is
obtained as follows: The volume occupied by a water molecule in
liquid water at 25° is 30 A3, The volume of the hydrated cation
(taking the anion as unhydrated) is therefore (304 + V), where
¥, is the apparent molal volume of the ion in A%, It was shown
that V] could be estimated from the apparent molal volume of the
salt, Vypp, in solution by means of the formula:

Vy = Vpp — 6472,13 ....(9.26)

where 1, is the crystal radius of the anion (in A). Since V, is usually
only a small fraction of 304, it need not be calculated with great
accuracy, and in practice it is sufficient to estimate the apparent
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molal volume at about 1 M and use this value at all concentrations.
The radius of the hydrated cation, r;, is then given by:

433 = 30k + ¥, ...(9.27)
and the value of the mean distance of closest approach of the ions
is given by:

=7 ; + T, s — A
where A is the ‘penetration distance.” Since r; is 2 known function
of k, a can be calculated from % and the known crystal radius of the

anion. The resulting one-parameter equation for the activity
coefficient (for an aqueous solution at 25°) is:

0-51152, 25| v/1
3 173
1+ 0'329“”‘[E (30k + V,)] + 1y — A}

logy;t: =

h
— - log a, — log [1 — 0-018(k —n)m] ....(9.28)

It is of course not strictly a one-parameter equation, for it
involves A as well as A. However, A is constant for each class of
salt (0-7A for 1:1 salts, 1-3A for 2 : 1 salts) so that only the
parameter 4 has to be specified to give the activity coefficient of a
salt of one of these valency types. The effectiveness of equation
(9.28) is illustrated by the graphs in Figure 9.3. The limit of validity
of this equation is generally reached when the product im ~ 12,
i.e., when about one-fifth to one-quarter of the total water molecules
are bound to ions as water of hydration. Above this limit, equation
(9.28) usually predicts values which are higher than those observed,
which suggests that the hydration number is beginning to fall
owing to the effects of competition between neighbouring cations.

This treatment of solvation has been extended by GiLiespie and
OUBRIDGE2? to solutions of metal sulphates in sulphuric acid as
solvent.

Whilst there is no doubt of the success of both the two-parameter
equation (9.25) and the one-parameter form (9.28), their theoretical
basis is somewhat inadequate owing to the neglect of ‘non-electro-
Iyte’ effects and there are, as shown above, some difficulties in
accepting the & values as giving precise representations of the
formulae of the hydrated ions.

Glueckauf’s Treatment of lonic Hydration

GLUECKAUF(®!), recognizing the difficulty of interpreting the A
values of equations (9.25) and (9.28) as actual sums of hydration
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Figure 9.3. Comparison of experimental activily coefficients with those predicted by the one-

parameter equation (9.28). The full curves are calculated from equation (9.28), using the

value for the ‘hydration parameter’ k following the formula of each salt. From STokes,
R. H. and Rosinson, R. A., 7. Amer. chem. Soc., 70 (1948) 1870
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9 THEORETICAL INTERPRETATION OF CHEMICAL POTENTIALS

numbers for the ions of the electrolyte, proposed the following
modification of the theory: If k; is the actual hydration number of
an ion i, the partial molal volume of the hydrated ion P; is (4,7, +
P,) where P, is the partial molal volume of the unhydrated ion as
ordinarily defined. He then assumes that the entropy of mixing of
the hydrated ions and the ‘free’ solvent is given by an equation
analogous to (9.20), with r, = P{/P 4, i.e., he employs ‘volume frac-
tion statistics’ instead of the ‘mole fraction statistics’ which we used
in deriving equation 9.25. He also takes the total electrical free
energy of the system as given by equation 9.13a. Upon differentiat-
ing the total free energy partially with respect to the number of
moles of anhydrous solute in the system, and neglecting the second
term on the right of equation 9.13c, he obtains for the molal activity
coefficient ¥4 (as ordinarily expressed on the basis of anhydrous
solute) ;

0018mr(r +h —w)
»(I + 0-018mr)

In (1 4+ 0-018mr) — ’-'ln (1 — 0-018mh)
v

Iny, =Inf} +

h—v»
»

....(9.29)

4

This equation fits the experimental data as well as does equation
(9.25), using as parameters & and a; the quantity r, now referring
to the electrolyte as a whole, is r = (P5 + 4P 4)/P,. We have
shown(2® that a simple relation between actual volumes and effec-
tive volumes in solution enables one to dispense with a as an arbit-
rary parameter. The values of the hydration numbers required by
equation 9.29 are considerably smaller than those of Table 9.5, e.g.

hacr = 47, hyacr = 27, hger = 1'7, b0 = 11,
hCaBr, = 6'2, hB&I, = 5'5, hL&Cl, = 10-2.

Furthermore, the most serious anomaly of our earlier treatment now
disappears: the new hydration numbers become nearly additive for
the separate ions, and the hydration numbers of the ions Cl-, Br-
and I- are all about the same (k &~ 0-9).

Equation 9.29 appears to differ from equation 9.25 not merely in
the presence of terms in the molar volume ratio r, but also in the
absence of a term in In a,,. This latter discrepancy is only apparent;
we have shown!®! that it arises from the neglect of the very small
second term of equation 9.13(b) in bdoth treatments. If this is not
neglected the two treatments differ only in being based on an entropy
of mixing given by equation 9.19 in our case and on 9.20 in Gluec-
kauf’s. (In both cases the appropriate modification for an ionized
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solute is of course made.) In view of the convenience and effective-
ness of equation 9.29, it is most unfortunate that the use of ‘volume-
fraction statistics’ receives so little justification from tests on aqueous
non-electrolytes (Table 9.4).

Summary of Theoretical Treatments of Chemical Potential in Electrolyte
Solutions

The importance of ion-solvent interactions in modifying the
activity coeflicients of concentrated solutions was first recognized by
BjerruMY), who used an equation similar to (9.25) except that the
electrical term was represented less accurately by a term propor-
tional to ¢¥/3. The appearance in 1923 of the DepvE-HUCKEL®
treatment of electrical interactions shortly afterwards focussed
attention on dilute solutions, and the ion-solvent interactions were
usually treated quite empirically by adding terms linear in ¢ to the
expression for log f. HiickeL(?®, and later ScaATcHARD!?, treated
the ion-solvent interactions in terms of an electrostatic salting-out
effect arising from the fact that the electrolyte lowers the dielectric
constant; Scatchard also introduced a term corresponding to the
thermal effect described by equation (9.22). The writers!® com-
bined Bjerrum’s thermodynamic treatment of ion-solvent interactions
with the Debye-Hiickel treatment of ion-ion interactions, obtaining
equation 9.25; and GLUECKAUF(?" modified this treatment by sub-
stituting ‘volume-fraction statistics’ for the conventional ‘mole-
fraction statistics.” EIGEN and Wicke!'3 developed a treatment
similar to that of Debye and Hiickel, but employing a distribution
function modified to allow for the co-volume of the ions (Chapter
4). MAYER‘®® showed that the limiting Debye-Hiickel square-root
law could be established from a general statistical-mechanical treat-
ment of the ion-ion interactions, which avoids the self-consistency
difficulties inherent in the Poisson-Boltzmann equations, and
developed the theory for finite ion sizes; POIRIER(2®) applied the
theory to actual solutions, obtaining fair agreement with experi-
mental results. The calculations are laborious and have as yet been
applied to very few salts.

There are many salts, normally regarded as strong electrolytes,
for which the Debye-Hiickel formula requires absurdly small or
even negative values of the ion size parameter a. GroNwaLL, La
MER and SanDvED!?” dealt with these cases by accepting the non-
linear Poisson-Boltzmann equation (equation 4.2 with p given by
equation 4.6) and solving for 9 by numerical integration. This
treatment, though moderately successful, has been criticized on
logical grounds”. BjerruM’s*® theory of ion-association provides
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a more satisfying explanation of this type of behaviour; it is
developed in detail, along with elaborations by Fuoss and Kraus(#9,
in Chapter 14.
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10

THE MEASUREMENT OF DIFFUSION
COEFFICIENTS

Tue fundamental equations defining the diffusion coefficient have
been introduced in Chapter 2. Before considering the theoretical
interpretation of diffusion data, we shall discuss the various experi-
mental methods which are available for obtaining them.

EXPERIMENTAL METHODS FOR THE STUDY OF DIFFUSION
The available methods may be grouped in several ways: perhaps
the most obvious division is into steady-state methods based on the
equation:

J=-D3 o (2.53)

and other methods, based on the equation:

Y WA
3—‘-5;(05;) ... .(2.54)

Steady-state Methods

In true steady-state diffusion, a constant concentration is main-
tained at both ends of a column of liquid through which diffusion
takes place; the flux of solute ultimately becomes independent both
of time and of position in the column. When this steady state has
been reached, the flux J and the concentration-gradient g—; are
measured, giving D by equation (2.53). Almost the only results
obtained by this method are those of CLack!!, who devoted many
years to the development of suitable apparatus. The concentration
at the lower end of his column was maintained at saturation by
means of a reservoir of solid salt, while that at the upper end was
maintained effectively at zero by means of a slow flow of water;
the flux was determined analytically and the concentration gradient
was measured at any desired level by an optical determination of
the refractive index gradient. By integration of the concentration
gradient, the concentration to which each value of D referred
could be calculated; the method thus had the advantage that a
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10 THE MEASUREMENT OF DIFFUSION COEFFICIENTS

single successful run provided values of D at all concentrations up
to saturation. The experimental difficulties of establishing and
maintaining the steady state were, however, too great to encourage
widespread use of this method; chief among these were thermally
and mechanically induced convection currents. Curiously enough,
however, Clack’s results for sodium and potassium chlorides appear
to be several per cent lower than undoubtedly more reliable recent
data obtained by the methods described below.

A much more important method based on equation (2.53) is the
porous diaphragm technique introduced by NorTHROP and ANson(®
and developed by McBam®, HArRTLEY® and Stoxkes'®), The
fundamental idea of this method is to eliminate the disturbing
effects of vibration and of small temperature fluctuations by con-
fining the diffusion process to the capillary pores of a sintered glass
diaphragm; an idea excellent in itself, but one which introduces a
number of new problems:

(a) Calibration of the diaphragm—Since it is not possible to measure
the true length and cross-section of the diaphragm pores, the
effective average values must be determined. This is done by
performing diffusion experiments with a solute which has been
studied by one of the absolute methods to be described later. At
the time when the porous diaphragm technique was introduced,
however, no absolute values reliable within less than about 2 per
cent were available; this may have delayed the full development
of the method.

(b) Stagnant layers on the diaphragm—It is essential that the diffusion
process be confined entirely to the pores of the diaphragm. This
means that the reservoirs of solution on either side must be main-
tained at a uniform concentration right up to the surface of the
diaphragm. The originators of this method® approximated to this
condition by placing the diaphragm horizontally with the denser
solution in a closed reservoir above it, so that diffusion would lower
the density on the upper side, and raise it on the lower side. This
results in a gravity-induced streaming, which is easily seen by using
a coloured salt solution; but later work has shown conclusively that
a thin stagnant layer persists at the surface of the diaphragm. For
a given solute and concentration this layer behaves very repro-
ducibly, so that a precision of 0-1 per cent can readily be obtained,
but the thickness of the layer varies with the solute and the concen-
tration-gradient across the diaphragm so that systematic errors of
several per cent can occur when different solutes are compareds'.
Mechanical stirring is therefore adopted to remove this layer;
HArTLEY and RuNNICLES™ used glass balls which rolled on the
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diaphragm as it rotated in a slanting position, while Mouguin and
CaTtrcArT!® used balls which fell through the solutions as the cell
was inverted end over end. Both these methods seem inadequate
inasmuch as they do not ensure complete removal of the stagnant
layers; furthermore, the departure of the diaphragm from the
horizontal position encourages streaming of solution through the
diaphragm when large density-differences are used, leading to high

Figure 10.1. Magnetically stirred dia-
phragm-cell. From Stokes, R. H.,
J. Amer. chem. Soc., 72 (1950) 763

results. The method finally adopted by Stokes is a logical develop-
ment of that of Hartley and Runnicles. The cell is shown in Figure
10.1. The stirrers in this cell are sealed glass tubes slightly shorter
than the diameter of the diaphragm; they enclose an iron wire and
are caused to sweep over the diaphragm by a rotating permanent
magnet mounted co-axially with the cell. The weights of the
stirrers are so adjusted that the upper one sinks and the lower
floats, both pressing lightly on the diaphragm. The stagnant layers
are thus completely swept off.

(¢) Avoidance of streaming—If the pores are too coarse, transport
can occur by bulk streaming through the diaphragm as well as by
diffusion; this is more likely to occur if the denser liquid is above
the diaphragm. It can be reduced to negligible proportions by
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10 THE MEASUREMENT OF DIFFUSION COEFFICIENTS

using a diaphragm of No. 4 porosity (average pore size ~ 15 ,u)
and by placing the denser solution below the diaphragm; this is
permissible with the magnetic stirring system described above, as it
is easily shown® that above a moderate threshold rate (~ 20 r.p.m.)
the cell calibration is independent of the stirring-rate, i.c., that the
stirring is sufficient to ensure uniformity within each reservoir.

(d) Surface transport ¢ffects—A serious limitation on the use of
diaphragm-cells for the study of diffusion in electrolyte solutions
arises from adsorption effects on the large internal surface of the
diaphragm, which may be of the order of a square metre in area.
By comparing the results of diaphragm-cell measurements on dilute
electrolyte solutions with absolute measurements it has been
proved'® that below about 0-05 M the former give substantially
higher results, the error increasing as the solutions are made more
dilute; it is of the order of 2 per cent at 0-01 M. The effect appears
to arise through an enhancement of mobility in the electrical
double layer on the pore walls; this has been confirmed by MyseLs
and McBan‘? by conductivity measurements in a cell in which a
porous diaphragm is interposed between the electrodes. The double
layer is most compact at high concentrations, and then makes a
negligible contribution to the total transport. In more dilute solu-
tions it occupies a larger proportion of the capillary cross-section,
and its contribution to the transport is more marked. The result is
that the diaphragm-cell method cannot safely be used at concen-
trations below 0-05 M; it is possible that with electrolytes of higher
valency types than the 1 : 1 electrolytes this limit may be at even
higher concentrations. The method is, however, quite reliable at
higher concentrations, and with care an accuracy of 0-2 per cent
in the diffusion coefficient may be expected.

In use, the cell is filled with an air-freed solution of approximately
known concentration and one end is connected to a vacuum pump
in order to remove air from the diaphragm. After eliminating any
bubbles formed, the cell is thermostated, and the solution in the
upper end is replaced by water or by a solution of lower concentra-
tion. The cell is then run for a few hours, in order to produce a
steady state in the diaphragm; the upper solution is then replaced
by water, or by a solution of accurately known concentration less
than that in the lower end. The run is timed from this point, and
proceeds for a matter of one to three days. The compartments are
then sampled at a known time and the final solutions analyzed.
The diffusion coefficient is calculated as follows: denote the concen-
trations at the beginning and end of the run by ¢,, ¢,, ¢y, ¢, as shown
in Figure 10.2, and the volumes of the compartments and diaphragm
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pores by V,, V,, V, respectively. Let the total effective cross-section
of the diaphragm pores be A4, and their effective average length
along the diffusion path be /. It is now necessary to assume that
the diaphragm is in a steady state during the experiment, to the
extent that there is no tendency for solute to accumulate in or to be
lost from the diaphragm. Thus, at any given time, the flux of
solute across any plane in the diaphragm parallel to its surfaces is

AL A

¢ =cz //z },z cllzc.
{-~-- Xl -~~~
h— ----,=0_---W’—’s
c'=C, ¥, 4 =6
Initiat Fina/
{t=0 ft=¢/
Figure 10.2

everywhere the same. This flux will, however, vary slowly with
time, decreasing as the process of diffusion reduces the concentra-
tion-difference. To emphasize this we shall write it as J(¢).

Denoting the concentrations of the upper and lower compart-
ments by ¢” and ¢’ respectively, the rates of change of these
concentrations are related to the flux J(¢) by:

d¢’ A
@ = —J@ 7
dc” A
i J(t) 7,
d(c’ —¢") 1 1
Hence @ = J()4 (Vl' + 72) «ee(100)

We now introduce the average value of the diffusion coefficient
D with respect to concentration over the concentration range ¢’ to
¢” prevailing at the time considered; this quantity is also a function
of time, which we denote D(t):
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Then
¢ =l
D) = — f D (a—x) dx
=c, _c, ..(10.2)
. o . ce .
since J(t) = —~ D 3, s constant for all points within the diaphragm

at time {, x being the distance of the plane considered from the
Z

Figure 10.3

lower surface of the diaphragm (Figure 10.3). Combining (10.1)
and (10.2) gives:
din(c —¢") A1 1\ -
A T (VRLV,) b
Hence integrating between the initial and final conditions shown in
Figure 10.2 we obtain:

‘ cl—c,_é LAY
Py I(V,’LV) D d

We now denote by D the txme-average of D(t) (which is itself

already a concentration-average), i.e., let D f D(t) dt and also
1
write § for the cell constant (4/l) ( + ~I-,l—)
= 1 ¢ —q
Then D —Eln Py ...(10.3)

The value D calculated from the initial and final concentrations and
the time by means of (10.3) is therefore a rather complicated double
average known as the diaphragm-cell integral coefficient, which it
is not easy to convert immediately into the more fundamental
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differential diffusion coefficient D. Fortunately it has been demon-
strated‘® that a negligible error is introduced in all ordinary cases
if instead of using the exact relation:

——fD@d:

we treat the integrand as having a constant value equal to its value
when the concentrations ¢’ and ¢” are half-way between their initial
and final values; this constant value is then clearly equal to D as
defined above and given by equation (10.3), and is related to the
differential diffusion coefficient by:

- 1 Cm?
D=————fpm ....(10.4)
Co' — Cm* Jen
where Cy = il-—-;—ca and Cme = ca_-_;_c!

The problem of computing D at various values of ¢ from a set of

D values obtained in experiments using various concentrations can
be dealt with by a simple method of graphical approximation,
provided that the Nernst limiting value is known (i.e., that accurate
limiting ionic conductivities are available); otherwise, some suitable
analytical expression with arbitrary coefficients must be assumed
for D as a function of ¢, and the coefficients determined so that
equation (10.4) will fit the observed D values®.

The cell calibration to determine § may be carried out using
potassium chloride solutions, for which D is known as a function of
¢ from absolute measurements. _

The integral diffusion coefficient D corresponding to the initial
and final concentrations is most readily computed as follows: a
quantity D°(c) is defined as the average D with respect to concen-
tration over the range 0 to ¢,

= 1 [
mw:-fpa
cJo
This quantity has been computed® for potassium chloride at 25°

from the D values of HArRNED and NurraLL™ and of Gostmng!12?
and is given in Table 10.1. Then from equation (10.4) it is easily

shown that:
[D°(c ) - D°(c,,,)]/(l — -—)
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Table 10.1
Integral Diffusion Cocfficients of Potassium Chloride Solutions at 25°

¢ D ¢ D ¢ De

0 1-996 0-05 1-893 1-4 1-874
0-001 1-974 0-07 1-883 1-6 1-882
0-002 1-966 01 1-873 1-8 1-892
0-003 1-960 02 1-857 20 1-901
0-005 1-951 03 1-850 2:5 1927
0-007 1-945 05 1-848 30 1-953
0-01 1-938 07 1-851 35 1979
0-02 1-920 1-0 1-859 39 2-000
0-03 1-908 1-2 1-866

From Stokes, R. H., 7. Amer. chem. Soc., 73 (1951) 3527,

It is usually simplest to start the experiment with pure solvent on
the upper side of the diaphragm, i.c.,, with ¢; = 0. The initial
concentration ¢; on the lower side is not conveniently measurable
in the usual design of cell, since it changes during the preliminary
period of diffusion while the diaphragm is being brought into the
steady-state. It can, however, readily be calculated from ¢,, the
final concentrations ¢; and ¢,, and the volumes of the cell compart-
ments and the diaphragm pores, using the fact that the total amount
of solute in the system must be the same throughout. The volumes
are measured by weighing the cell with the various parts filled in
turn with water; the volume of the diaphragm being small com-
pared to the reservoirs, the accuracy of about 4- 0-02 ml. with
which its volume can be determined in this way is sufficient. The
small amount of solute in the diaphragm is assumed, for the purpose
of calculating ¢;, to be half at the concentration of the upper com-
partment and half at that of the lower. Thus ¢, is given by:

V, + 3V.
‘1=‘3+(‘4—‘z)ﬁ‘é

It is not, as a general rule, practicable to attempt to obtain a
differential coefficient directly by working with only a small con-
centration-difference between the two sides of the cell, as in this
case analytical errors are greatly magnified. However, if the
measurements of concentration can be made by a method which
permits the determination of concentration differences with high
accuracy (e.g., the Rayleigh interferometer) this course may be
feasible and should be seriously considered where D is expected to
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vary rapidly with ¢; for in such cases the accurate evaluation of D
from values of D referring to a wide concentration range is not easy.

It will be noted from equation (10.4) that the units in which ¢ is
expressed do not affect the value of D; thus, for example, in self-
diffusion work with radioactive tracers counting-rates may be
substituted for the corresponding ¢’s; or titration volumes may be
similarly used where volumetric analyses are made.

METHODS INVOLVING SOLUTIONS OF THE EQUATION!:

o . o
a=a—x(D5;)

In the more important absolute methods of measuring diffusion
coefficients, the experimental methods are such as to require
solution of the partial differential equation (2.54) for the appro-
priate boundary conditions. Though there are certain special cases
in which equation (2.54) can be reduced by appropriate substitu-
tions to an ordinary differential equation in a single independent
variable, a general solution cannot always be found in this way;
further, a general solution is possible only in the case where D is a
constant, This means that the experimental conditions must usually
be arranged so that the range of concentration in any one experi-
ment is small enough to justify treating D as a constant.

MEASUREMENT OF SELF-DIFFUSION USING TRACER
TECHNIQUE
Perhaps the most obvious example of a method in which this
condition is fulfilled is the ANDERsONU®Y capillary tube method for
the study of self-diffusion. A uniform capillary tube of known
length is filled with an isotopically ‘tagged’ solution, and immersed
in a much larger vessel containing an isotopically normal solution
of the same concentration, which may be gently stirred. At the
mouth of the capillary, the concentration, ¢, of the tagged form is
thus held at zero throughout the experiment. After a measured
time the total amount of tagged material in the capillary is measured
and compared with the initial amount.
The equation
oc %
3:=D5x—’ (D = constant) ....(10.5)
may be solved for this case as follows: assume that ¢ can be expressed
as a product of separate functions of x and ¢ only,

¢ = F(x) . f(¢)
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p:

d
Then 3 = Flx) g, f(t)
% dz
and 3% = f(¢) deF(x)
Hence (10.5) becomes:
1 d 1 d2

Ff(?)CTlf(t) =Fwd—;§F(x) ....(10.6)
Since the left and right sides of equation (10.6) are respectively
functions of ¢ only and of x only, the equation can be satisfied only
if each side is separately equal to the same constant. Writing — 42
for this constant we have the two equations:

S = — BDAY

d2
and 35 Pl = — BF(x) ....(10.7)

The negative sign is necessary since if the constant were positive the
solutions would lead to infinite values of the concentration as
t — co. Thus physically permissible solutions of the one-dimensional
diffusion problem must be of the form:

¢ = bexp (— k2Dt) . F(x) ....(10.8)

where F(x) is a solution of (10.7) and & and k are constants. The
most general solution is a linear combination of terms like the
right-hand side of (10.8), with coefficients to be determined from
the boundary-conditions. In the capillary-tube method, the
boundary conditions for a tube closed at x = 0 and open at x = a
are:

Att =0, ¢=¢ for 0<x<a ¢=0 for x>a

2
Att!>0, c=0 at x—a and — =0 at x=0

ox
- . . 2r + 1
These conditions can be satisfied only if £ = 27" where

n=0, 1, 2, et., since F(x) by equation (10.7) must clearly be a
sine or cosine function. The solution is therefore:

¢ =n-ZQB,. exp [~ 7%(2r + 1)2Dt[(44%)] cos’_’.(&'%.l_)x
n=0
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MEASUREMENT OF SELF-DIFFUSION
By Fourier analysis, it is found that the coefficients B,, are given by-

4c,

b= 0T

so that finally

n-=

¢ 4
a2 Ve P L 7 02Dy (4)]

7(2n + 1)x
€0§ ————"—
2a
The average concentration in the tube at time ¢ is:

1 fo
Coy = "j cdx
aJo
whence
& "S5t 8 Dt
Cav _ & o . Dt
‘o ,.Zo 7220 + 1)2 P [ 7%(2n + 1) w] ....(10.9)

A graph of the right-hand side of (10.9) against Dt/a® can be
prepared; interpolation on it at the experimentally determined

value c:—" gives Dt/a® and hence D. It will be noted that provided
0

the tube is uniform, its cross-section is not required, but only its
length a. In computing the function (10.9) for the graph, very few
terms need in practice be taken as the series converges very rapidly
for reasonably large times. The ratio of the first term (n = 0) to
the second (n = 1) is 9 exp (2#%Dt/a?). This ratio is greater than
1000 as soon as Difa® exceeds 0-24, and higher terms fall off even
more rapidly. In a tube 5cm in length, and with a diffusion
coefficient of 10-° cm?sec!, the first term of (10.9) is therefore
amply sufficient after a week, though for the shorter times which are
more practically convenient a few more terms must be taken. To
illustrate the rate of change, it may be remarked that when
Dtfa® = 0-24, the average concentration in the tube has fallen to
45 per cent of its initial value.

This method has been extensively used for determining self- and
tracer-diffusion coefficients of electrolytes, but agreement between
different workers has often been poor, discrepancies of 10 per cent
or more having been reported. In a critical study of the method,
MiLLs!®” has concluded that serious errors can arise from the mode
of stirring of the large container into which the diffusion proceeds.
Turbulent flow near the capillary mouth appears to lead to a
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‘scooping-out’ of solution from the tube. On the other hand, if the
solution is not stirred at all, a ‘cloud’ of the diffusing species may
tend to accumulate at the mouth of the tube so that the boundary
condition ¢ = 0 for x > 4 is not fulfilled. Mills has shown that
correct results (i.e., results in agreement with similar measurements
using diaphragm-cells) can be obtained by arranging for slow con-
trolled streamline flow past the capillary mouth. Another difficulty
concerns the complete removal of all the active material from the
tube at the end of the run, for radioactive counting; he overcomes
this by not removing it. Instead, he surrounds the tube by a scin-
tillation-counter crystal, making it possible to measure the decrease
in activity continuously throughout the run. These improvements
lead to a precision of a few tenths of one per cent in the measure-
ment of tracer-diffusion coefficients.

MEASUREMENT OF DIFFUSION BY THE CONDUCTIMETRIC
METHOD

It is characteristic of the capillary-tube method that it is permissible
and indeed desirable to let diffusion proceed until the concentration-
change even at the closed end of the tube is large: it may be termed
a ‘restricted diffusion’ method in contrast to the free diffusion
methods, in which an essential feature is that part of the diffusion
column should be so remote from the region of the initial dis-
continuity that it undergoes no detectable concentration change.
The optical methods to be described later are free-diffusion methods.
Another important restricted-diffusion technique is the conducti-
metric method developed at Yale by HArRNED and his collabora-
tors!, 18, The diffusion channel of their cell is rectangular in cross-
section (4 in Figure 10.4) and its height a (about 5 cm) is accurately
measured. It is closed permanently at the top, and at the bottom
fits against a sliding plate containing two small reservoirs B and ¢
which have the same cross-section as the channel 4, so that by
suitably sliding the plate either of them may be made to form a
downward continuation of the channel. In an inverted position,
the channel 4 is filled with conductivity water and the plate is
placed in position with the reservoir B in line with 4. On sliding
the plate to the position shown, the excess water is carried off in B,
leaving A4 completely filled. Reservoir C is filled with a salt solution
of suitable concentration. The cell is then turned right way up and
set up in an air-tight thermostated box with the most stringent
precautions against mechanical vibration. After allowing a day for
attainment of thermal equilibrium, the sliding plate is moved by a
remote control so that the solution in reservoir C is in line with A,
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‘THE CONDUCTIMETRIC METHOD

and salt diffuses into 4. When a suitable amount has entered, the
plate is moved back to the position shown and the main run begins.
The concentration changes are followed by measuring the con-
ductivity at two positions in the cell by means of pairs of very small

ERARMNN \\\\\\\\

/////////////4

Figure 10.4. Harned's conductimetric diffusion cell
(diagrammatic only)

DI

electrodes set in opposite walls at hclghts and
plate. 6

The boundary conditions are, since both ends of the cell are
closed,

2 above the sliding

d
.-i=0 at x=0 andat x=a
ox

and the appropriate Fourier-series solution!® of equation (10.5)
for the concentration ¢ at a height x is:

n-eo

c=¢co+ z B, exp (— n*nr%Dt[a®) cos _x

where ¢g and the B,’s are constants. Hence the difference in concen-

. a 5a .
tration between the planes x = 5 and x = s

ne=w Dt 5
Cats = Csal6 = nzl B, exp (— nbm? -a—g) [cos r%r — cos %ﬂ]
....(10.10)
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5 5
For even values of n, cos %—T = cos n—g and for odd n, cos %T

nm ey . .
— cos & so that all the terms for even r vanish since the factor in

square brackets is zero; and for odd n the square bracket becomes
2cos"—;’ which equals v/3 forn = 1,0forn = 3, — y/3forn =5
and 7, etc. Equation (10.10) therefore becomes:

Cat6 — Csae = By exp (— w2 Dt[a*) + Bgexp (~— 257t Dtfa®) + . . .

where B, = B,4/3, etc. Since the leading term of this expression
exceeds the second term by the factor exp (247%Dt/a?) the series
converges very rapidly even for small values of Dtfa?, and after a
few days only the first term need be considered at all. This rapid

convergence is a result of the ingenious choice of the heights g and
5
-g for the electrode pairs, which makes the term for n = 3 vanish
at all times. The coefficient B; need not be determined, for by
logarithmic differentiation one obtains:

d 7D

&ln [CGIG—CMIG] = —7 ....(lO.ll)
so that by plotting In [¢gq — cs54/6] against the time ¢ a straight line

2

"
of slope — - results.

In the early stages of the experiment the assumption of constant
D may not be justified, but as the diffusion proceeds the concentra-
tion-differences become smaller, and D is more nearly constant
throughout the solution. The remarkably constant values of D
given by equation (10.11) after the first day are evidence for the
validity of the theoretical treatment. The constant value attained
can therefore be treated as the differential diffusion coefficient at
the average concentration of the solution, which is found by
allowing the cell solution to mix under the action of thermal con-
vection after completing the run, and measuring its concentration
conductimetrically.

This method demands great care and elaborate precautions to
avoid trouble from vibration and thermal convection, owing to the
long duration of the runs; but it is extremely important since it
provides a means by which data accurate to 0-1 per cent can be
obtained for electrolyte solutions more dilute than about 0-05 M, a
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concentration region of great theoretical interest. In this region the
diaphragm-cell is untrustworthy owing to the surface transport
effect mentioned above, and the optical methods discussed below
(except that recently described by Bryngdahl—see p. 282) can-
not give reliable results since the change of the refractive index
between the ends of the diffusion column is too small. It is indeed
remarkable that Harned and his collaborators have been successful
in making measurements at concentrations as low as 0-001 M, for
at these concentrations only minute density gradients exist and the
stabilizing effect of gravity is therefore very slight; to preserve a
stable column of diffusing liquid for a- week or more under such
conditions is a striking experimental achievement. Some idea of
the precautions necessary to avoid thermal disturbances is given by
the fact that, when it was desired to mix the cell solution thoroughly
at the end of the run (in order to determine the average concentra-
tion), it was only necessary to place a heating lamp outside the
scaled box containing the cell; absorption of radiation by the black
platinum electrodes started convection currents which produced
complete uniformity within a few hours.

OPTICAL METHODS

The various optical methods for determining diffusion coefficients
employ some form of cell in which a sharp boundary can be estab-
lished between two initially uniform columns of liquid of different
concentration. There is thus a sharp discontinuity in refractive
index at the beginning of the experiment; as diffusion proceeds, the
discontinuity is replaced by an increasingly broad region of gradual
change of refractive index, which is studied by suitable optical
arrangements.

Whilst it is possible to obtain a Fourier series solution valid at any
time for a cell of which the ends are closed at known distances from
the initial boundary, this form of solution is not well adapted to
the needs of the optical methods. A solution of much simpler form
exists for the special case in which the two columns of liquid extend
to a virtually infinite distance above and below the boundary, and
is applicable to columns of finite length provided that the times
considered are not long enough for detectable concentration changes
to have reached the ends of the cell. This solution may be obtained
from the general Fourier-series solution by a special method of
summing the infinite series, but is more readily arrived at indepen-
dently as follows:

In the cell shown in Figure 10.5, let one-dimensional diffusion in
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the x-direction proceed from an initially sharp boundary between
two semi-infinite columns of liquid of initial concentrations ¢, and
¢s. The boundary conditions are given by:

att=0 ¢=g¢ for 0>x> — @
c=¢ for 0 <x< + o

at{>0 ¢c=¢ at x=— .. (10.12)
c=¢ at x=+ ©

Define a new variable y = x/(2V Dt).

[+

X t I=0

]

Figure 10.5

The boundary conditions (10.12) can then be stated more simply
as:
c=y¢ for y=— o

c=¢ for y=+ ....(10.13)

sinceat¢t =0,y - — oo and + oo for all finite x below and above
the boundary respectively, and for positive ¢, y = L co corresponds
to x = 4 oo. This reduction of the two sets of boundary conditions
(10.12) to a single set (10.13) is clearly only possible because the
columns are considered to extend to infinity; the reader who is not
convinced of this may attempt a similar reduction for the case of
finite columns.

In terms of the new independent variable y, equation (2.54) can
be reduced from a partial to an ordinary differential equation. We
have, assuming once more that D is constant,

& deoy x de

—_—— e = = =82

o dyot 4y/D dy
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and * "% WD
P:] o 1 d%
therefore 3 (D 5;) by d—}—.;
Hence equation (2.54), i.c.,
x 9 o
ErR> (D a)
becomes:
dzc de
(—i_—yi=-—2_y$ ....(10.14)

de
Equauon (10.14) is readily solved (by the substitution o= p) to
give:

where 4 is a constant. Hence
¥V
c=c,,+AJ‘ eV'dy
o

where ¢, is another constant. The constants ¢, and 4 can be
evaluated from the boundary conditions (10.13), using the known

definite integral:
%
f eVdy=+ !21—1
0

_ata _a—daft .
=" = J;a dy

de € — €

ly Vm

At a given time ¢, therefore, the concentration ¢ and its gradient at
distance x are:

giving finally:

eV

d__a=-4 (_ i)

& T ovap P\ T i
_c1+c,_¢1—c, x

T2 2 erf(zm)
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where erf (a), the error-function of a, is defined by the definite
integral

erf (a) = :/2- fae"' dz
7 Jo

Values of the error-function are given in tables and books on
probability theory; important special values are erf (0) =0,
erf () = 1, erf (— ) = — 1; and it has the property erf (— a)
= — erf (a), i.e., it is an odd function.

d
In most of the optical methods the refractive index gradient &‘2

is of more direct interest than the concentration and its gradient.

tea
| Il )
./"’/V" ] - T
o I I — I ) —
N —~— -1- ~~a i
N i =V
\\\:~_;-_\¢ p
L1 0 A Ing \\\\
e

Figure 10.6. The Goiiy interference effect

S—horizontal illuminated slit
L,—collimating lens
Ly—focusing lens, focal length = &
D—diffusion cell, thickness = a
OPQ—interference pattern

Rays deviated by the diffusion-boundary are shown as broken lines.

The experimental conditions necessary to ensure a nearly constant
value of D (viz., that ¢, and ¢, should not be too far apart) are

usually such that i is constant also. Then (10.15) becomes:

dn ny, — n, ( x2 )
- = = ——=¢X - ....lO.lG
&~ T avien P\ T i (10.16)
THE GOUY INTERFERENCE METHOD

In 1880 Goty'® reported a new interference phenomenon: when
collimated light (Figure 10.6) from a horizontal slit was passed
through a cell in which diffusion was occurring in a vertical direc-
tion, and the beam was brought to a focus by means of a lens, an
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THE GOUY INTERFERENCE METHOD

interference pattern consisting of a finite number of horizontal bands
was produced in the focal plane. The intensity of the bands is
greatest near the optic axis (on which the initial boundary between
the diffusing solutions is preferably situated); here they are closely
spaced. Proceeding downwards from the optic axis, the interference
bands become more widely spaced and less intense, ending with an
especially wide one with an ill-defined lower boundary.
Qualitatively the origin of this interference pattern is easily seen:
according to equation (10.16) the refractive index gradient in the
cell is given by a Gaussian curve which is symmetrical about the

=0
Figure 10.7

initial boundary at x = 0. At equal distances x above and below
the boundary there are, therefore, conjugate regions of equal
refractive index gradient. Parallel light passing through these
regions will be bent down to the same extent in each, since each
element of the solution can be considered to act as a prism tapering
upwards. The refractive index gradient at various points in the cell
is shown in Figure 10.7.

In Figure 10.6, the regions 4 and 4’ remote from the boundary
have not yet experienced any concentration change; the refractive
index at these positions is uniform, and light through 4 and 4’ is
undeflected, coming to a focus on the optic axis 0. At the centre
of the cell, C, the refractive index gradient has always a maximum
value ( iven b dr _m_mh

BVER Y & T T ovaD
therefore experiences the greatest deflection, forming the lowest
band @ of the pattern. At intermediate points B and B’, the light
is deflected downward to a focus at P. The light-path lengths SBP
and SB’P are, however, not equal: when they differ by an integral
number p of wavelengths, the two rays reinforce and form a bright
band, and when the path lengths differ by (p + ) wavelengths
they interfere and cancel giving a dark band. The path-length
difference will obviously vary with the distance of B and B’ from
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the optic axis C, giving rise to the alternating system of light and
dark bands. This band-system is shown in Figure 10.8, from a
photograph by J. R. Hall.

This qualitative explanation was all that was available until 1947,
when a more complete theory of the phenomenon was given by
KeceLEs and GosTing!17), and almost simultaneously by Courson

1161 sec 831 sec 498 sec

Figure 10.8. Goiy interference patterns. Produced by the diffusion of calcium chloride

between concentrations of 3-48 and 3-58 molar at 25°. The times are measured from the

establishment of the sharp boundary. The three-line patterns at the top of each picture are
the reference mark

et al.'®, An even more rigorous treatment has been given by
Gosting and ONsaGeR!1?), These authors show that the reasoning
based on geometric optics, in which pairs of rays through various
parts of the cell are considered, is not quite adequate. Instead they
use the methods of wave optics, according to which every portion
of the wave front makes some contribution to the resultant amplitude
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at each point in the focal plane. This leads to a slight change in the
conditions for reinforcement and cancellation. Instead of complete
cancellation occurring when the points B and B’ are so placed that
the light-paths SBP and SBP’ differ by (p 4+ %) wavelengths, it is
found to occur when they differ by very nearly (p + §) wave-
lengths. Similarly, maximum reinforcement occurs when the paths
differ by very nearly (p 4+ }) wavelengths instead of p wavelengths.

If the thickness of the cell along the optic axis is denoted by a,
and the focal length of the second lens by b, it can be shown that,
according to geometric optics, the lowest bright band of the pattern
has its maximum intensity at a distance C, below the centre of the
undeviated image formed by the light passing through the unchanged
solution (i.e., C, = OQ in Figure 10.6) and that C; is given by:

C, = ab [(n; — n,)/(2V'=Dt)] ....(10.17)
Furthermore, the number of bands in the pattern bears a simple
relation to the difference of refractive index, expressed as the
number, j,, of wavelengths, 1, retardation of the light passing
through unchanged solution at A’ compared with that passing
through at 4:
a(ny — n,)
i
where a is a fraction, less than unity and m is an integer, one less
than the number of bright bands in the pattern. Thus if the lowest
bright band is numbered 0, the next lowest one 1, ec., the mth band
is the one next to the undeviated image. The main (integral) part
of j., can therefore be determined by simply counting the number
of bands in the pattern; the fractional part can be found by a
minor modification to the apparatus as described below, so that j,,
is known for each experiment. Photographs of the interference
pattern are taken at known times ¢ after the start of the diffusion,
and the distances from the undeviated image of various minima in
the light-intensity are measured. The wave-optical theory%?
shows that if y; is the displacement of the jth minimum from the
undeviated position, counting the lowest minimum, i.e., the one above
the lowest bright band, as j = 0, then y, and C, are related by the
following expression:

=m+ o=jn ....(10.18)

Cy =y ....{10.19)
where z is a dimensionless quantity given by the implicit expression:
2r . 2 a4 [ Jt+i
=—|e¥dg——= 2z E—j Ze?dz =——
A=z, Va3 n
....{10.20)
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The rather clumsy-looking function f{(z) is, in fact, easily evaluated
from tables of probability functions for a series of values of z, and
¢ can then be tabulated against f{z) (Appendix 10.1).

A further slight refinement® of the theory (involving the use of
the zeros of the Airy integral) shows that the quantity (3) in the

expression," j_ ¢ in (10.20) should be replaced by slightly different

values, the difference being appreciable only for the lowest fringes
up to about j = 5. Appendix 10.2 gives these slightly modified values.
By the use of the tables in Appendixes 10.1 and 10.2, C, may be
calculated from the measured value of the displacement y, of any
chosen fringe (the jth) in the interference pattern. C, should be
constant for all the fringes in the pattern and the constancy provides
a check on the correctness of the value of j,,. It is, in fact, possible
to find j,, without using the Rayleigh interferometer modification
of the apparatus, by counting fringes to find the integral part of j,,
and then trying various fractional parts « [equation (10.18)] until
a value is found which gives the best constancy for C, for fringes
corresponding to well separated j,, values. C, can also be evaluated
by measuring the maxima instead of the minima in the light-
intensity though these are not so readily located as minima with the
usual design of travelling microscope. For maxima, the only
difference in the calculation is that (f + ) of equation (10.20) is
replaced by (5 + $); again the Airy integral refinement gives
slightly different values from } for the lowest fringes. From the
constant value of C, for a pattern photographed at time ¢, D is
calculated by combining (10.17) and (10.18) to give:
j2m b212
=G ....(10.21)
The measurements are most conveniently made at the wavelength
of the green mercury line, A = 5461 A. The distance b, the focal
length of the second lens, must be very accurately known, and
correct focus is critical. It is often more convenient to replace the
two lenses of Figure 10.6 by a single lens of focal length of the order
of 20 cm which focuses an image of the slit on to the photographic
plate. This is placed at least a metre from the lens so that the light
through the diffusion cell is only slightly convergent; under these
conditions the same theory holds, but 4 in equation (10.21) must
now be taken as an ‘optical distance’ from the centre of the cell to

{
the photographic plate, given by 6 = 3 - where ! is the distance

through each medium (air, glass, thermostat-water, or solution) and
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n is its refractive index. In this method it is possible to fix the plate
at a measured distance from the cell and then to focus by moving
the lens or the source-slit through small known increments (e.g.,
0-001 in.) by means of a set of feeler gauges placed between the lens
or slit mount and a fixed stop on the optical bench, taking a photo-
graph at each setting; the setting which gives the sharpest image
of the slit is correct.

Various methods are employed for forming the sharp boundary
in the cell. A conventional Tiselius electrophoresis cell may be

Solution Solvent

Figure 10.9. From Gostmg, L. J., N\
Hanson, E. M., KeceLes, G. and N

Morris, M. S., Rew. Sci. Instrum.,
20 (1949) 209 \

C -1

| Level of
N| optrc axss

L]

T

used(29’; this gives a sheared boundary which has to be displaced
50 as to bring it into view, the initial position being obscured by the
sliding faces (Figure 10.9). The boundary is disturbed by shifting
and it is desirable to sharpen it again by drawing the disturbed
solution out through a fine capillary tube. In another system®8, 21
the boundary is formed by allowing the two solutions to flow out
through a horizontal slit in the wall of the cell at the level of the
optic axis and then smoothly stopping the flow; this avoids the need
for lubricated sliding surfaces with the consequent risks of leakage
and grease contamination. A cell employing this system is shown
in Figure 10.10.
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Freedom from vibration, and adequate thermostating, are im-
portant requirements of the Goily interference method, as of all
methods in which the diffusion column is stabilized only by gravity.

A

%

[ IS/

Figure 10.10. Gell for Goiy diffusiometer. (a) Assembled. (b) Exploded. From HaLr,
R., Wistaw, B. F. and Stokes, R. H., 7. Amer. chem. Soc., 15 (1953) 1556
Ry~—reservoir for dilute solution
Ry;—reservoir for concentrated solution
A—diffusion channel
S—sharpening slit
T—exit tube for solution from slits

D—reference-channel, filled with homogeneous concentrated solution for
light forming reference marks

O—optical flas

G—collecting-channel for solution from §

H-—hole admitting concentrated solution to bottom of channel 4
P—hole admitting dilute solution to top of channel 4
V—gate-valve for closing H during filling of cell.

In use, a thermostated waleraiiacket surrounds the whole of the cell except the outer faces of
the two optic , to which it is fitted by rubber gaskets

For work within about 10° of room temperature it has been found
sufficient%. 21 to thermostat the cell by means of a jacket sur-
rounding all of the cell except the outer faces of the optical flats,
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to which it is fitted by rubber gaskets; for more extreme tempera-
tures, the cell must be completely immersed, which requires a
thermostat with optically flat windows, or one in which the windows
are formed by the lenses of the optical system.

In the interference pattern, the undeviated slit image is of very
high intensity relative to the rest of the pattern, especially at short
times when most of the light passes through uniform solution; it is
consequently over-exposed as appears from Figure 10.8, and cannot
be located accurately. Its intensity may be reduced by suitably
placed filters at the plate or by specially shaped masks at the cell,
but a more satisfactory way of locating it'!8) i3 to form on the plate
a reference mark lying a few millimetres above the undeviated
image. The distance between this mark and the undeviated image
can be accurately measured, and the reference mark is then used
as a base line for the measurements of fringe positions. This
reference mark is most conveniently made by placing at the cell a
double stop consisting of two rectangular holes about one to two
millimetres square and the same distance vertically apart. Light
from the source-slit passes through this double stop, and through
the thermostat-water or a channel in the cell which always contains
uniform solution, and is then displaced upwards by passing through
a tilted fixed optical flat. A Rayleigh interference pattern is thus
formed at the plate, as shown in Figure 10.8, at a distance above the
undeviated slit image which is determined by the angle and thick-
ness of the tilted flat. While the main diffusion channel is filled
with uniform solution, a similar double stop is placed over it also,
and a similar Rayleigh pattern is formed at the plate, with its
central fringe exactly where the undeviated slit image will be in the
diffusion photographs. These two interference patterns are very well
defined and can be located with high accuracy. During the diffusion
exposures, the double stop is removed from the main channel, but
the other one forming the reference mark remains in place.

The same system of double stops can be used!® to determine the
fractional part « of j, (equation 10.18). For this purpose the
double stops are placed over the diffusion channel while a sharp
boundary is maintained between them, e¢.g., by flowing the liquids
out of the lateral sharpening-slit. Thus light from one of the rect-
angular holes passes through solution of refractive index n,, and that
from the other through solution of refractive index ny. If the light-
paths through the solutions differ by an integral number of wave-
lengths (i.e., if j,, is integral) the pattern is identical in appearance
and position with that formed when uniform solution fills the whole
diffusion-channel; but if j,, is not integral, the pattern changes in
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appearance and .position. The relative intensities of the lines alter,
but the spacings between minima in the light intensity remain the
same. The intensity-diagrams for various fractional values of o are

@ 1]
w0 @=025

Oistance from oplic oxis Distance from oplic axis

Infensity w—e

t x=075
N © @)
3
§, ®=06
RS
Distance from oplic axis Oristonce from gfic ars

Figure 10.11. Theoretical light-intensity-distribution curves in the Rayleigh interference

patterns formed by a double stop consisting of two slots of width d separated by a distance d.

The quantity a is the fractional part of the number of wavelengths difference in the light-path

for the two slots (equation 10.18). The symmetrical pattern A is found when this light-path

difference is zero or an integral number of wavelengths, as, for instance, in the upper (reference
mark) patterns in Figure 10.8.

The location of the optic axis in each pattern is shown by the small arrow-head, and points to
the right of this are below the optic axis in the actual patterns photographed.
(Curves computed from formulae in reference 18)

shown in Figure 10.11; it will be seen that « = 05 gives a sym-
metrical four-line pattern centred on the optic axis, while « < 0-5
gives unsymmetrical patterns in which the nearest minimum to the
optic axis is above it, and « > 0-5 gives similar patterns reflected in
the optic axis. The theory showst1® that if § be the spacing between
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minima in the Rayleigh pattern and s the distance from the nearest
minimum to the optic axis, then:

=05 -3 if this minimum lies above the optic axis and

a =05+ g. if it lies below the optic axis. The counting of fringes

to obtain the integral part of j,, can usually be done satisfactorily
under a travelling microscope, but occasionally it is in doubt within
one integer due to over-exposure near the optic axis: this doubt is
easily settled by the requirement that C, should be constant for all
fringes of the Goiiy pattern.

No cell design can, in practice, give a mathematically sharp
boundary at zero time; with the best designs, the degree of initial
blurring of the boundary is equivalent to what would be reached
in a time of five to fifteen seconds after the formation of an ideal
boundary. This ‘zero-time correction’, At, depends on the density-
gradient in the solution and on the diffusion coefficient, decreasing
as these increase. It is allowed for by making a series of exposures
at known times, e.g., 5, 10, 20, 30 min. after the start of the experi-
ment. The times may be recorded by photographing the dial of a
stop-watch which is started when the boundary is formed®®?, the
exposure being controlled by the movement of the same shutter
which exposes the fringe patterns; or by moving the plate mechani-
cally at a measured rate’®, The diffusion coefficient D given by
equation (10.21) is then not constant for the several exposures, since
the time ¢ of equation (10.21) should be replaced by ¢t + At. How-

1
ever, by plotting the D values for different times against 72 straight
line of slope DAt is obtained, which extrapolates to the true value
of D at -} = 0. With a little experience it becomes possible to start

the stop-watch approximately At seconds before the start of the
diffusion, thus making the remaining correction very small and the
extrapolation graph practically horizontal.

The Goily method is probably the most exact of those at present
available for measuring diffusion coefficients. It is, however,
restricted to concentrations large enough to give a reasonable
number of fringes in the interference pattern; at least 30 are desir-
able for 0-1 per cent accuracy. With special cell designs it is possible
to obtain results accurate to 1 per cent with as few as 10 bands!2?,
but even this corresponds for electrolyte solutions to a concentration-
difference between the upper and lower solutions of the order of
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10 THE MEASUREMENT OF DIFFUSION COEFFICIENTS

0-02 M in a cell of 2 cm length along the light-path. For the study
of dilute electrolyte solutions the Goilty method must therefore give
way to Harned’s conductimetric method. Another limitation is that
the solution must not absorb light of the wavelength used.

OTHER OPTICAL METHODS

While the Gotiy method has in recent years become preferred among
the optical methods, some earlier methods are of great interest, and
retain considerable importance in the study of colloids.

In the Lamm scale method®, a transparent scale ruled with
horizontal lines (spaced, say, 0-2 mm apart) is iluminated by
monochromatic light, and an image of it is focused on to a photo-
graphic plate by means of a long-focus lens. The diffusion cell is
placed between the scale and the lens, the optical distance between
the scale and the centre of the cell being 5. The length of the cell
along the light-path is denoted by a. When the cell is filled with
uniform solution, the image of the scale formed on the plate is
undistorted but magnified by a factor G depending on the relative
positions of lens, scale and plate. When a diffusion-boundary is
present in the cell, however, the light passing through regions of
varying refractive index will be deflected downwards by amounts
proportional to the refractive index gradient, and the image of the
scale will be distorted, the scale-lines being displaced from their
normal positions. Geometric optics show that the displacement of
a scale-line is given by:

d
Z= Gabag ....(10.22)

d
and the refractive index gradient a—: at a distance x from the
boundary by:

dn _ n, —n, %2
32—2\/17_1)_texp(—4Dt) ....(10.23)

In these expressions, n), ny, x, D, ¢ have the same meanings as in
the theory of the Goily method. From the photographic measure-

de ) .
ments, values of — at various values of x can be computed. It is

dx

. de . . .
sufficient to know — in arbitrary units, since the constant of pro-

dx

d d
portionality « between d—; and d_n_ is determined during the calcula-
tion, as follows: *

de
Figure 10.12 represents the graph of & 7 versus x which can be

dx
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plotted from the measurements at a time ¢ after the start of the
diffusion process. If D is independent of ¢, this graph is the Gaussian
curve (10.23); if D varies with ¢ it is more or less skewed. In the
latter case equation (10.23) no longer holds, but equation (10.22)

. ¢ .
is still valid, so that the form of the curve of — versus x can still be

dx
obtained. For this general case!®%, equation (2.54) reduces by the

Figure 10.12

substitution y = x¢-1/% (applicable under the boundary conditions for
these experiments) to:

de d de
yay=—2a;(Daj) . .(10.29)
c=¢ at y= — ®©

....(10.25)
c=¢g at y= 4

It follows that at a fixed time ¢,

de de
— = g2 —
en=ey

X = t”’]

The nth moment y,, of the curve in Figure 10.12 about the vertical
axis through x = 0 is defined by:

° 4
,,,=J' a g dx ....(10.26)
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10 THE MEASUREMENT OF DIFFUSION COEFFICIENTS
From equations (10.24), (10.25) and (10.26) it is easily shown that:

Ho = — a{ey —¢g)

=0 . ....(10.27)

Hg = — 2atf Ddc
Cy

so that
(2 -
Halpo = Ddec = 2Dt ....(10.28)
€ — Cg Jey

where D is the average value with respect to concentration of the
diffusion coefficient over the concentration range of the experiment.
In the ideal case where D is constant, the same results of course
hold, but it may be more convenient to calculate D from the height
and area of the curve, or from its points of inflection, because these
characteristics are simply related to the moments for a true Gaussian
curve. The calculation given implies that the position corresponding
to x = 0, the initial boundary, is accurately known from the photo-
graph; this is not so in practice, and the origin of x is actually
located by means of the property u; = 0 (equation 10.27), i.c., it
is taken vertically below the centroid of the curve in Figure 10.12.
The zero-th and second moments are then calculated with this
origin.

In addition to the Lamm scale method, there are several other
ways of obtaining the refractive index-gradient curve, of which the
chief are the LoNGswoRTH!® ‘schlieren scanning’ method and
PHiLPOT®® ‘diagonal schlieren’ method. These methods are
important in the study of colloids, but have found little application
in the field of simple electrolytes; for this reason and because of the
complexity of the optical systems, they will not be described here.
Other recent developments include the ‘integral fringe’ method (%,
by which a photographic record of the concentration rather than its
gradient is obtained; this is valuable in cases where the diffusion
coefficient varies strongly with concentration, as with some high
molecular weight solutes.

An extremely promising new optical method is described by
BryNGDAHL(2®, whose apparatus incorporates a Savart plate which
produces birefringent interferences. This has the effect of amplifying
the refractive index differences in the diffusing solution, so that
extremely small concentration differences between the upper and
lower parts of the diffusion-cell may be used. For example, he
reports the result D = (5-229 &+ 0-011) x 10~ cm® sec~! for sucrose
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at 25°, for diffusion into water from a solution containing only
0-0112 per cent of sucrose by weight. This is in excellent agreement
with the result obtained by Gosting and Morris'!® by extrapola-
tion to zero concentration of their Goiiy data, viz., 5:226 x 10-¢
cm? sec™?; the Goily method however would be quite impracticable
for direct use at this low concentration. The method will obviously
be of great value in the study of diffusion in dilute electrolytes.
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THE THEORY OF DIFFUSION;
CONDUCTANCE AND DIFFUSION
IN RELATION TO VISCOSITY IN

CONCENTRATED SOLUTIONS

TABLES OF DIFFUSION COEFFICIENTS OF ELECTROLYTE
SOLUTIONS

AppPENDICES 11.]1 and 11.2 present values of the diffusion coefficients
of a number of aqueous electrolytes as determined by the three
most reliable of the modern methods, viz., the conductimetric
method of Harned, the Goiiy interference method and the magnetic-
ally-stirred diaphragm-cell method. The first two of these are
absolute methods; the conductimetric method has in most cases
been restricted to solutions below 0-01 M, but for potassium
chloride has been used up to 0-5 M. The Goily method is at its
best for solutions above 0-05M, and in the case of potassium
chloride in the range 0-1-0-5 M there is remarkably good agree-
ment with the conductimetric method. The diaphragm-cell method
is a relative one, and its calibration has been based on the absolute
data for potassium chloride; results from it for potassium chloride
agree with those from the absolute methods within about 0-2 per
cent at other concentrations than the one used for calibration.
However, since the diaphragm-cell gives an integral diffusion
coefficient, there is some loss of accuracy in converting this to a
differential diffusion coefficient: the differential diffusion coeffici-
ents derived from the original magnetically-stirred diaphragm-cell
data for potassium chloride in the range 0-1 N-4 N showed an
average deviation of approximately 0-5 per cent from later results
by the Goily method, most of the discrepancy arising from errors
in two points near the minimum of the integral diffusion coefficient
curve, which had affected the differential results over an appreciable
range. In general, the accuracy of the differential diffusion coeffi-
cients listed may be taken as 0-2 per cent or better for the Goily
and conductimetric methods, and 0-3 per cent for the diaphragm-
cell method.
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THEORETICAL DISCUSSION OF DIFFUSION

THEORETICAL DISCUSSION OF DIFFUSION

Both diffusion and electrical conductance in electrolyte solutions
involve the motion of ions and it is therefore to be expected that a
relation will exist between the diffusion coefficient of an electrolyte
and its equivalent conductivity. The most important differences
between the two processes are (a) in conduction positive and nega-
tive ions move in opposite directions, whilst in diffusion they move
in the same direction, and () in conduction, at the limit of extreme
dilution, the various ions of an electrolyte move independently of
one another, whereas in diffusion they are obliged to move at equal
speeds, since otherwise a separation of electrical charge in the
solution would result. Both processes can be regarded as deriving
from small perturbations of the ordinary molecular motions; in
conduction, the perturbing influence is the external electric field,
and in diffusion, the concentration gradient. In Nernst’s original
derivation!? of the relation between the two effects, the osmotic
pressure was given the status of a driving force for diffusion, analog-
ous to the electrical field in conduction. Though this approach
leads to the correct result in the limiting case of infinite dilution,
modern views on osmotic pressure do not favour regarding it as an
actual pressure in the solution. Instead, the gradient of chemical
potential in the solution, which has the dimensions of a force per
unit quantity of solute, is treated as the virtual force producing
diffusion; this course was first suggested by Gies'® and later by
GUGGENHEIM'®, HARTLEY® and by ONsaGER and Fuoss®. It is by
no means easy to justify the use of the free energy, a quantity usually
relevant to systems in equilibrium, in dealing with an irreversible
process such as diffusion; thus it is well known that in general the
rate of a chemical reaction is not directly related to the free energy
change during the reaction. The step of equating the free energy
change, occurring when the solution mixes by diffusion, with the
work done by the diffusing particles against the resistance of the
medium therefore requires careful scrutiny; this it has received at
the hands of ONsaGER'®, DE GROOT!" and others. Here we propose
to accept its validity without further discussion, merely noting that
diffusion is a slow process in which departures from equilibrium are
small compared with chemical processes, and that in these circum-
stances the whole of the free energy change can be taken as energy
dissipated by the viscous forces.

Each ion of the diffusing electrolyte can be regarded as moving
under the influence of two forces, (2) the gradient of chemical
potential for that ionic species, and () an electrical field produced
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11 THE THEORY OF DIFFUSION OF ELECTROLYTES

by the motion of oppositely charged ions. The more mobile ions
will tend to diffuse faster than the less mobile ones, but by doing
so they will create on a microscopic scale a charge separation or
gradient of electric potential in the solution. This will have the
effect of increasing the speed of the slower ion and decreasing that
of the faster; the resultant speeds of both must finally be equal,
since it is an experimental fact that a macroscopic charge separation
does not occur.

DIFFUSION OF A SINGLE ELECTROLYTE: THE
NERNST-HARTLEY RELATION

The diffusion of a single electrolyte is especially amenable to exact
theoretical treatment, since the condition of electrical neutrality
requires that anions and cations must move at the same speed.
Where more than two ionic species are present the situation becomes
more complex, since there is an infinite number of ways of satisfying
the electrical neutrality condition; general equations can be
derived, but not necessarily solved for such cases.

For a single electrolyte, one ‘molecule’ of which gives », cations
of algebraic valency z; and », anions of algebraic valency z,, the
following argument is used. The chemical potentials @, and G, of
the cations and anions may be considered separately (although they
are not separately measurable) provided that the final equations
contain only the chemical potential of the solute as a whole,

Gp = G, + 1,G, (227

The forces on single ions due to the gradient of chemical potential
are therefore:
1 3G, _ 126G,

“Fm M TN
respectively where N is the Avogadro number. The negative sign
is used since the ionic motion is down the free energy gradient.
The effect arising from the unequal mobilities of the ions may be
represented as an electrical field of intensity E, which exerts on each
ion an additional force given by z,eE and z,eE respectively. The
total forces are therefore:

1 3G,
F!=-wa—+z!e5
1 3G,
Fy = _I—Va_+ zseE



DIFFUSION OF A SINGLE ELECTROLYTE

These forces, acting respectively on ions of absolute mobilities u;
and u,, are required to produce equal velocities v given by:

1 3G 1 3(7
v=uy, (-— —1\73—; zleE) = U,y ( + z,eE)

From these equations eE can be eliminated giving:

1 (o 1 3G, 1 (v 1 3G,
z(z*wa)”’?‘z,( +~ax)

whence, using the condition of electrical neutrality:

12 + 23 =0
one obtains:
1 U iy 3G, Ty 3(7) ek . &
N + v, \"! ox * 3% ) T N vus + veu, Ox

Now let ¢ be the concentration of solute in moles per unit volume
at the point considered. Then the flux of solute is:

But the flux also defines the diffusion coefficient D in terms of the
concentration gradient:

J——D—a—-

Therefore D is given by:
Uyliy 1 Gy
~ vu; + v, NolIn¢

.(10.1)
Also, from the definition of the mean molar activity coefficient,
the differential in equation (11.1) is:
Gy

dlny, ;
3Tne —RT(vl+vz)( dlnc) v (112)

and finally the absolute ionic mobilities « may be expressed in terms
of the limiting equivalent conductivities, A%, by equation (2.46),

(£ 7)) A3 R'T(l dlnyt)

giving: ..(11.3)

T dln¢

”1lzl|(lo +A) F
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These formulae may be called the Nernst-Hartley relation. The
limiting value of D at infinite dilution, where 11;1"* -0, is given
by: ne
Do = RT(v, +v) A4S
Folof A2+ 4

an expression due to Nernst. Equivalent forms of equation (11.3)
obtained by using the condition of electrical neutrality v|z,| =
¥, 25] and the definition of the transport numbers &) = 29/(3} 4- 49)
= A[A° are:

o (11.4)

_RT || + |2 2928 ( diny

b= lzzsl A+ 48 L+ dlnc) oo (11.5)
_ RT |3 + |2 o,,.,( dln_yt)

b= 2522l AR\ + Tine .- -(11.6)

or D =D 4+dlny/dinc) L (1LT)

THE INTERPRETATION OF DIFFUSION COEFFICIENTS

Dilute Solutions

At high concentrations consideration must be given to the motion
of the solvent molecules as well as those of the solute: even for non-
electrolytes this involves some difficult concepts, and the situation
for concentrated electrolytes is a very complex one. In very dilute
solutions, however, the motion of the solvent can be disregarded,
and the experimental diffusion coefficients can be regarded as
describing the motion of the solute particles through a stationary
solvent.

The activity factor, d——dl:‘n‘:* = (l + cd——lgc]’“) is a separately
available experimental quantity; interest therefore centres, for
dilute solutions, on whether the mobility factor in equation (11.3):

CRT__ it
F* vy|5|(2 + 23)

is applicable at finite concentrations, and if not, what corrections
should be applied to it. This question can be examined experi-
mentally by dividing the observed D values by the quantity

dlny . . . .
14 ¢—g; ) sgiving a quantity proportional to the actual
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mobility of the diffusing solute, which can be compared with the
limiting value. In Table 11.1 this comparison is made for several
typical electrolytes in dilute solution at 25°.

Table 11.1
KCi LiCl CaCl, LaCl,
mole /-2
D DIy} D {DIfin] D |Diftyy] D |Difly
0* 1-993 | 1993 | 1-366 | 1-366 | 1-335 | 1-335 { 1-293 | 1-293
0-001 1964 | 1-998 | 1-342 | 1-366 | 1-249 | 1-320 | 1-175 | 1-307
0-002 1954 | 2:001 | 1-335 | 1-366 | 1-225 | 1-319 | 1-145 | 1-316
0-003 1945 | 2-:001 | 1-330 | 1-367 | 1-:201 | 1-310 { 1-126 | 1-325
0-005 1934 | 2-004 | 1-323 | 1:368 | 1-179 | 1-310 | 1-105 | 1-331
0-007 1925 | 2:005 | 1-317 | 1-368 —_ —_ 1-084 | 1-327
0-010 14917 | 2-009 | 1-313 | 1-369 — —_ _— —_—
SO =1+ cdl‘;"*
® The D values at ¢ = 0 are Nernst limiting values calculated by ion (11.4), which at 25°
becomes:

D*(cm?® sec™?) = 2:661, x 10-7 %ﬂ 1;':::11 /(Int obhm™! em® equiv™?)

The table shows that the variation of the diffusion coefficient D
with concentration is in each case many times greater than that of

dl
the quantity D / (l +¢ —d—r:—'—y), so that the greater part of the
change in D may be attributed to the non-ideality in thermodynamic

1
behaviour which is allowed for by the factor (l + cd ny). It

de
remains to consider whether the residual variation shown in the
third column for each solute is experimentally significant. The
accuracy of the diffusion coefficients themselves is about 0-2 per
cent; and the factor (l + cd(l;:'y
listed, be computed with similar accuracy from the activity coeffi-
cient data; we must conclude, therefore, that in general the actual
mobility of the diffusing ions does vary slightly with concentration.
In the case of potassium chloride, it increases by approximately
0-89, per cent between 0 and 0-01 molar; for lithium chloride it is
constant within experimental error; for calcium chloride it de-
creases by approximately 2 per cent between 0 and 0-005 molar,
and for lanthanum chloride it increases by approximately 2-5 per
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11 THE THEORY OF DIFFUSION OF ELECTROLYTES

cent in the same concentration range. These small but real varia-
tions, occurring as they do at very low concentrations, suggest the
possibility that they are due to interionic effects; and the manner
in which they differ from salt to salt indicates that the theory which
will adequately explain them will be of a complicated nature.

The form of the Nernst-Hartley expression (11.3) suggests the
course of substituting, for finite concentrations, the actual ionic
mobilities 4, and A, for the limiting values A} and A3. The Nernst
factor may be rewritten as:

HRA° ()

where ¢ and £ are the limiting transport numbers of the anion and
cation and A? is the limiting equivalent conductivity of the salt.
LA
nlzl’
the transport number product ¢, varies little with concentration,
but A decreases by amounts of the order of 5 per cent to 20 per cent
in the concentration range 0 to 0-01 molar for the salts of Table 11.1.
It is clear, therefore, that the use of the actual ionic equivalent
conductivities instead of the limiting values would severely over-
correct, as was pointed out by HARTLEY!?; indeed, for potassium
and lanthanum chlorides the effect would be in the wrong direction.
The position is, then, that the mobility of the ions in diffusion varies
much less with concentration than does their mobility in electrolytic
conduction; and while the latter always decreases with increasing
concentration, the former may increase, decrease or remain con-
stant, depending on the salt considered. This difference between
the two types of transport process is due to the fact that in diffusion
the ions move in the same direction, while in conduction oppositely
charged ions move in opposite directions. The mutual attraction
of the ions in the latter case will clearly have the effect of retarding
the motion of both species, whereas in diffusion the slower ions are
accelerated and the faster ones retarded. The effects of the ionic
interactions on conductance have been dealt with (Chapter 7) in
terms of a relaxation process and an electrophoretic effect, the
former arising from the disturbance of the symmetrical arrangement
of the ions in the solution, and the latter from a transfer of force
between the moving ions via the solvent. In the diffusion of a single
electrolyte, it can be shown that the symmetry of the ionic distribu-
tion is not disturbed so that the relaxation-effect is absent; the
primary result of ionic interactions in this case is the harmonic
averaging of the ionic speeds as given by the Nernst expression, but
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THE ELECTROPHORETIC EFFECT IN DIFFUSION

there is also a small electrophoretic effect, which will now be
discussed along the lines laid down by Onsacer and Fuoss®®, but
with some generalization'®.

THE ELECTROPHORETIC EFFECT IN DIFFUSION

Our discussion, as in the case of the conductivity problem, will be
restricted to the case of a single electrolyte, the cation and anion
being denoted by subscripts 1 and 2 respectively. In Chapter 7 a
general equation (7.7) was derived for the electrophoretic contribu-
tion to the motion of an ion in such a solution, in terms of the
unspecified forces &, and k, causing the motion.

In the case of diffusion, these forces can conveniently be evaluated
in terms of the velocity of the ions and their absolute mobilities.
Because the solution must remain electrically neutral at all points,
both ions must diffuse with the same final velocity ». Therefore by
the definition of the absolute mobility, we may write:

= (F?/N)|z|v/(82A°) ....(1L8)
= (F2[N)|z.]v/(2A%) ... (11.9)
Equation (7.7) then gives:
s W L
Ao, o BA° QA
— = (F /N)EA,,_————an(z — =8 ....(11.10)
2133
Ay o HA° t"A"
= = (F /N)ZA"——a"(zl 7y =% (LD

(8, and 8, are merely convenient abbreviations).

Now this means that a force which would produce a velocity v
in the absence of the electrophoretic effect will actually produce
velocities v + Av, and v + Az, Provided Ay, and Av, are small
compared to v, i.c., that 8, and 4, are small compared to unity, we
can therefore treat the electrophoretic effect in diffusion by in-
creasing the mobilities of the ions by factors (1 + 4,) and (1 + J,)
respectively.

In the simple Nernst-Hartley treatment which leads to the

diny
formula D = D° (l +¢ : ) the mobilities appear in the form

of the factor 75— AR We therefore replace this factor by:

Ty
M _ MA0 4 8)(1 + 8y -
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which, on putting A = #§A?, 4} = tJA° and expanding in series in
6, and ¢, as far as the first powers, becomes:

Mg
A+
On inserting the values of §; and J; according to equation (11.11)
and simplifying, this becomes:
Mk (12 + 29
A+ A a2, — z,)
We now replace the Nernst-Hartley expression (11.5) by:
RT || + |zs) AAs ( d lny)
= - {1 ....(11.15
Fr ozl A+ 4 +te7g ( )

from which we obtain, since z; — 2, = |2| + [24]:

= BIOA® 4 RN, + 128,) ....(11.13)

=:g¢gA°+IEva oo (1114)

D=

dlny

D=(l +e¢ )(D°+ZA,,) ....(11.16)
where D° is the Nernst limitmg value of the diffusion coefficient
given by:
Do_HLﬂ_lell'*'lzal A3
F vz 23 + 4 l212s] A2+ 43

and the electrophoretic terms A, are given by:

(2313 + 25t0)®
a”|2, 2o

The coeflicients A4, are functions of the dielectric constant and
viscosity of the solvent, the temperature and the dimensionless
concentration-dependent quantity xa and are defined in equation
(7.8).

It will be recalled from Chapter 7 that this expression for the
electrophoretic effect has been derived on the basis of a Boltzmann
distribution function for the ions, but has employed the Debye-
Hiickel expression for the potential (Eq. 4.13). The latter, however,
is actually based on the distribution function obtained by taking
only the first power term of the expansion of the exponential
Boltzmann function, except for symmetrical electrolytes where the

2
%), can alko justifiably be included. This

square term, in (ﬁ' s
means that to be consistent we should accept in applying equations
(11.16) and (11.17) only the first-order electrophoretic term (n = 1),
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THE ELECTROPHORETIC EFFECT IN DIFFUSION

except in the case of symmetrical electrolytes where the second
order term (n = 2) is acceptable. It is therefore convenient to
consider the cases of symmetrical and unsymmetrical valency types
separately. Here we depart from the treatment given by Onsacer
and Fuoss!®, who proposed that in all cases equation (11.16) should
be taken as far as the second-order term A,

Symmetrical Types

Here we put |2,] = |z4| = 2. Thefactor (238 + 23t%) appearing
in A, then reduces to |2|2*(t3 — ) for odd =z, and | 2|2 for even n.
Thus, in contrast to the case of conduction, no terms vanish identi-
cally; but in the special case where the ions have nearly equal
mobilities (1 s ), all the odd-order terms will be negligible. The
condition is realized for aqueous potassium chloride, bromide or
iodide solutions. The second-order term can never vanish, and is
always positive since A4, is positive for even n. Upon substituting
n =1 and » = 2 in the general formula for A, we have,

A= — oo (8 =11

1 4+ ka

0= g ey " () B ()

The function of (xa) appearing in A,:

bo(xa) = (xa)? ( 1 _‘:’ Ka)'Ei(2xa)

is given in Table 7.1 where higher-order functions of the same type are
also tabulated. In practice we shall be interested in the application
of these formulae to 1 : 1 electrolytes at 25° in water, when they
reduce to:
A, = — 807 X 10-%(12 — #)3V¢/(1 + xa)
Ay = + 877 X 10~2y(ka)[a?

where ¢ is expressed in mole/! and a in cm.

...(11.18)

Unsymmetrical Types
Here the requirements of self-consistency limit us to taking only
the first-order electrophoretic term (r = 1) which gives:
kT (2 +240)2  «
6mn  |azl 1+ xa
293

Al=—

.o (1L19)



11 THE THEORY OF DIFFUSION OF ELECTROLYTES

reducing for aqueous solutions at 25° to:

(288 + 20)% Vi
|z3zs]l 1 + 0-3291 x 10%V1
.e..(11.20)

the ionic strength I being computed on the mole/! scale and 2 being
measured in cm. The higher-order terms may of course be evalu-
ated; STokes'® and Apamson® found that, in contrast to the case
of 1 : 1 electrolytes, they do not converge satisfactorily, terms as
high as the fifth order being comparable to the first-order term.
Dye and SpepbpInG1? have in effect evaluated the series TA, to
infinity by numerical integration; though this overcomes the diffi-
culty of the slow convergence, it is doubtful if the results are applic-
able since the theory is self-consistent only as far as the first-order
terms for unsymmetrical electrolytes. We therefore proceed to
examine the experimental data on the basis of the equations:

A, = — 807 x 10-

1
D= (D°+ A, + Ay (1 + cdd':’) ....(1.21n)

for symmetrical electrolytes, and
D= (D°+ A) (1 +cd$’) ....(11.22)

for unsymmetrical ones. ONsAGER and Fuoss'® proposed the use
of equation (11.21) for all cases, and (11.21) is known as the
Onsager-Fuoss expression.

TESTS OF THE THEORY OF THE ELECTROPHORETIC
EFFECT IN DIFFUSION

It has been shown earlier that one test of the theory of the electro-
phoretic effect is provided by the variation of transport numbers
with concentration; in that case the relaxation effect does not
enter the final equations because it affects the velocity of both ions
in the same proportion. In the diffusion of a single electrolyte, the
relaxation effect is also absent, for the more physical reason that
there is no mean motion of ions relative to one another, owing to
the necessity of preserving electrical neutrality at all points. The
testing of the theoretical equations for the electrophoretic effect in
diffusion is, however, less straightforward, since the diffusion
coefficient depends also on the concentration gradient of the free
energy. It would be possible to compute this gradient separately
from the theory, combine this with the equation for the electro-
phoretic effect and test the resuiting expression for D directly
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However, one would then not know whether deviations from the
theory were attributable to failure of the electrophoretic or of the
free energy portion of the calculation. It is therefore more con-
venient to use experimentally determined values of the free energy
gradient, obtainable from activity coefficient data; but unless these
are of high precision, the small electrophoretic effect may be
masked. Furthermore, the tests should be confined to fairly dilute
solutions, since diffusion in more concentrated solutions involves
further considerations of viscosity, hydration and volume-effects.
The most suitable diffusion data are thus those obtained by Harned’s
conductimetric method, and given in Appendix 11.l1; but un-
fortunately accurate activity coefficient data are not available for
all of the salts at the concentrations in question (<< 0-01 M),

DILUTE | : | ELECTROLYTES

For potassium and sodium chlorides, reliable activity coefficients
below 0-01 M have been obtained from cells with transport and
moving-boundary transport numbers, with good agreement between
independent workers. For lithium chloride, the activity coefficients
at 0° obtained by the freezing-point method*?) may be used, since
the corrections to 25° at these low concentrations are ccrtain to be

small; the resulting values of the factor (l + c ) differ by

less than 0-1 per cent from those obtained by extrapolatmg the 25°
data available from vapour pressures above 0-1 M, by means of a
Debye-Hiickel equation of the type given in equation (9.11). For
these three electrolytes, therefore, the data are adequate to test the
dlny
de )
which contain the experimental quantities, have been given in Table
11.1. We now require to compute the electrophoretic corrections
A, and A, of equations (11.21) and (11.18). These are functions of
both concentration and ion size, and the first-order term A, also
involves the factor (#§ — 2)2. Figure 11.1 shows the form of the terms
for 1 : 1 electrolytes at 25° in water, for ion sizes of 3-6 and 5 A,
which are about the upper and lower limits of ionic diameters
encountered with simple non-associated electrolytes, It will be seen
that A, is much more sensitive to ion size than A, and that hoth
change only slowly with concentration above one molar. The
factor (4 — ¢9)* has the following values at 25°: HCI, 0-4115;
HBr, 0-4032; LiCl, 0-1072; LiBr, 0-1141; NaCl, 0-0430; NaBr.
0-0479; Nal, 0-0441; KCI, KBr, KI < 0-001.
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11 THE THEORY OF DIFFUSION OF ELECTROLYTES

Since the diffusion coefficients are of the order of 2 x 10~% cm?®
sec~!, this means that A, is negligible for the potassium halides but
affects the third or fourth significant figure in the other cases.
Below 0-01 molar, the value of a used will not be very critical, but
at higher concentrations it will make a substantial difference
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Figure 11.1. Dependence of the first- and second-order electrophoretic corrections A,
and A, on concentration and ion-size. (Aqueous 1: 1 clectrolytes at 25°)

especially in A,. We use here the a values which have been found
to give a satisfactory account of the activity coefficient data (see
Table 9.5). The quantity (D® + A, + 4,) is given at a few con-
centrations below 0-01 molar in Table 11.2, together with the a
value used in its computation; the value found experimentally,

D / (1 +9 ;‘:’ ) from Table 11.1 is included for comparison.

Though the electrophoretic effects in this concentration range are
small, the theory gives fair agreement with observation. The virtual
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constancy of the calculated mobility for lithium chloride arises from
the cancellation of A, and A,; for potassium chloride the small
increase with concentration arises from A, alone, A, being negligible;
in sodium chloride A, is somewhat larger numerically than A,.
GuGGENHEIM!® has pointed out in a more detailed analysis of the
data for sodium chloride that the electrophoretic effects are not as
great as the random experimental errors, a fact which is masked in
Table 11.2 by the presentation of smoothed values in the columns
headed ‘obs.” Nevertheless the extent of agreement provides some

Table 11.2
Values of 105(D® 4 A, + A,)/(cm?sec™?) at 25°
LiCl (4¢-32 A) NaCl (397 A) KCl (3-63 A)

‘ .

molefl
calc. obs. calc. obs. calc. obs,

0 1-366 (1-366) 1-610 (1-610) 1-993 (1-993)
0-001 1-366 1-366 1-611 1-611 1-995 1-998
0-002 1-366 1-366 1-612 1-613 1-996 2-001
0-005 1-366 1-368 1-614 1-617 1-999 2-004
0-01 1-368 1-369 1-616 1-618 2-003 2009

evidence in favour of the theory of the electrophoretic effect. Better
support is found in the theory of conductance, where the electro-
phoretic effect is much larger since the ions move in opposite direc-
tions. In the particular case of potassium chloride, the Onsager-
Fuoss expression 11.2]1 holds even at half-molar concentration, but
this is a fortunate coincidence, attributable mainly to the fact that
the ions are little hydrated and the viscosity little different from
that of water. In other cases the calculated mobilities fall increas-
ingly above the observed values as the concentration is increased.
This cannot be attributed to the failure of the theory of the electro-
phoretic effect; it is due rather to the neglect of other effects, which
are discussed later in this chapter.

HIGHER SYMMETRICAL VALENCY TYPES

With salts of higher valency type than uni-univalent the theory
encounters a number of difficulties which are at present only partly
solved. With symmetrical valency types of double or higher charge,
an appreciable fraction of the ions are present as closely associated
pairs. Zinc and magnesium sulphates have been studied up to
0-005 molar by HARNED’s school?, who find that the observed
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values in this region are up to 10 per cent higher than the predictions
of the equation:

d1
D=(D+ A, + A,)(l +¢ d':’) ....(11.21)

when a value of a = 3-64 A is used in the computation of the
electrophoretic terms. They have also shown that if the degree of
ion-pair formation computed from the conductivity data is taken
into account, and the ion-pair is assumed to have a constant
mobility equal to that of an ion for which 2° = 44 (for ZnSO,) or
46 (for MgSO,), the observed and calculated values can be brought
into satisfactory agreement. The ratio D obs./D calc. (where D calc.
is the value obtained by equation (11.21) for a fully ionized 2 : 2
electrolyte) is shown to be given by:

0 [ 0
Dobs./Dcalc. = 1 + (I — «) l"—(’;’,l,%g'i”l—l] ... .(11.23)

where « is the fraction of non-paired ions, and A, is the mobility of
the ion-pair in equivalent conductance units. The result indicates
that the ion-pair has a higher mobility than the dissociated part of
the electrolyte, which is explained on the ground that its formation
results in the loss of water of hydration by the zinc ion. The success
of this treatment is, however, somewhat reduced by the fact that it
employs an ion size ¢ = 3:64 A for bi-bivalent electrolytes; other
evidence about the size of the zinc and magnesium ions indicates a
minimum acceptable value of 6 A for the unpaired ions. However,
the value 3-64 is consistent with that needed to interpret the trans-
port numbers of cadmium sulphate (see Table 7.8).

UNSYMMETRICAL VALENCY TYPES

A few salts of unsymmetrical valency type have been studied, e.g.,
the alkaline earth chlorides?®, lanthanum chloride*®, some alkali
sulphates®), and potassium ferrocyanide®®®. Of these, calcium
and strontium chlorides are the only ones in which we are reason-
ably certain that ion-pair formation is negligible, though it may
well be only slight in the alkali sulphates at the concentrations in
question (below 0-005 M).

For calcium chloride, the original Onsager-Fuoss equation (11.21)
definitely breaks down, the observed diffusion coefficient at 0-005 M
being some 5 per cent lower than that predicted by equation (11.21).
However, the ‘self-consistent’ equation:

D= (D+ A) (1+cd::’) ....(11.22)
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gives a satisfactory account of the data®®. The term A, is rejected
on the grounds that its inclusion implies a distribution function
inconsistent with the Poisson equation; this term is, however, twice
as large as A, and the higher terms (43, A, . . .) do not converge
satisfactorily so that the theory cannot be regarded as adequate in

Table 11.3
Diffusion Coefficients of Dilute Aqueous 2 : 1 and 1 : 2 Electrolytes at 25°

@ Gy A) Li,SO, N2,S0,

¢ mole/l.
f()’) Deato. | Dobs. f(}') Deare. | Dobes. f(]) Doase. | Dobs.

0 1:000| 1-:336 | — |1000| 1-041 | — {1-000} 1-:230 | —
0001 |[0-947 | 1-257 | 1-249 | 0950 | 0-989 | 0-990{0-945| 1-162 | 1-175
0002 0924 § 1-223 | 1-225)0-939 | 0-978 | 0-974 | 0-927 | 1-141 | 1-160
0005 | 09001 1-185 | 1-179 ] 0-917 | 0-955 | 0-950 | 0-892 | 1-097 | 1-123

Notes: (a) Dons. by conductimetric method of Harned (see Appendix 11.1). Later
values of D for CaCl, are 1-263, 1:243 and 1-213 at ¢ = 0-001, 0-002,
0-005 respectively.

(5) Deale. from the “self-consistent’ equation:
din
Dexe. = (0° + &) (1 + < 552%)
(¢) », from freezing-point data for Li,SO, and Na,SO,, and from e.m.f.

measurements for CaCl,. For the sulphates, A, is negligible, hence
no ion-size parameter is needed.

(d) Din cm®sec? x 10-%,

din
@ S = (1+:532)
(f) Values at ¢ = 0 from equation (11.4).

its present form. For the strontium chloride results'® on the other
hand, the Onsager-Fuoss equation (11.21) seems to be more satis-
factory than the ‘self-consistent’ equation (11.22). This anomaly
has not been resolved. In the case of sodium and lithium sulphates,
calculation shows that A, is very small, since the factor (2,8 4+ z,{)®
is only 0-0247 for the former and 0-00042 for the latter, in contrast
to 0-4706 for calcium chloride. Therefore, if only the first-order
electrophoretic term is relevant for these electrolytes, there should
be no detectable electrophoretic effect at all. The experimental
results do not settle the matter definitely, owing to uncertainties
about the activity coefficients at these low concentrations, which
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dl
make it difficult to compute the factor (l + ¢ —%) with sufficient

accuracy; one must choose between using freezing-point data which
refer to 0° and extrapolation from the region above 0-1 M at 25°
where vapour pressure and e.m.f. measurements are available. The
freezing-point activity data are probably to be preferred, as the
corrections from 0° to 25° will be very small at the concentrations
below 0-005 M to which the diffusion coefficients refer.

Table 11.3 shows moderately good agreement between the
observed values and those calculated by equation (11.22) for calcium
chloride and lithium sulphate, but for sodium sulphate the diffusion
coefficients are definitely higher than theory predicts. This may
possibly be due to ion-pair formation, which would be more pro-
nounced in sodium sulphate than in lithium sulphate; but even in
the other cases the theory is by no means as successful as for 1 : 1
electrolytes. Lanthanum chloride conforms only poorly with the
theoretical equation‘®; it has been shown that the series ZA, of
equation (11.16) is initially divergent with alternating signs for this
case, so that agreement with the present form of the theory cannot
be expected.

DIFFUSION OF AN INCOMPLETELY DISSOCIATED
ELECTROLYTE

In associated electrolytes it is necessary to recognize that an appreci-
able fraction of the transport of solute may occur as a result of the
motion of ion-pairs (or larger aggregates); in the extreme case of
a weak electrolyte, the covalent molecular form is the predominating
diffusing entity. Ion-association affects the diffusion coefficient in
two ways: first, it reduces the activity of the solute as compared
with a fully dissociated electrolyte, and hence leads to lower values
of the gradient of free energy with concentration; and secondly,
when two particles merge into one they offer less resistance to
motion through the liquid; this has the effect of increasing the
diffusion coefficient. The effect on the free energy gradient need
not be considered, since we use experimental values of the factor

dl
(l +m dl’ln)') in comparing observed and calculated diffusion

coefficients. The chemical potentials of the associated and dis-
sociated forms of the solute are the same, since they exist in equili-
brium, and the free energy gradient of the solute is therefore the
same for both forms.

Denoting the absolute mobilities of the ions by «, and u, and that
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of the ion-pair or molecule by u,,, and with a degree of dissociation
«, we thus obtain for dilute solutions of associated symmetrical
electrolytes:

_ dlﬂ.yt Uglig
D-—2kT(l+c % )[u +u’+(l—u)un ... .(11.24)

In actual solutions the mobility terms (in the square brackets) will
mutually influence each other. The electrophoretic effect already
discussed for non-associated electrolytes will of course be operative
though at an fonic concentration of ac rather than ¢. An essentially
similar effect will operate between the neutral diffusing particles
and their neighbours, whether moleculés or ions; this is not easy
to evaluate without arbitrary assumptions about the distribution of
the associated particles. Neglecting it, one would obtain the
relation:

= (6(0° + &, + &) +20 — DR (1 +25%2)

..(11.25)

where D2, represents the (hypothetical) diffusion coefficient of an
isolated ion-pair or molecule at infinite dilution and is defined by
DYy = kTu,,., Harnep and Hupson? first derived and tested an
equation equivalent to (11.25) for zinc sulphate at 25°. Their
values for a were obtained from conductivity estimates, and their
diffusion-coefficients measured in the range 0-001-0-005 M indi-
cated a reasonably constant value for the diffusion coefficient DS,
of the ion-pairs.

For I : 1 electrolytes, the proportion of the associated form is
small at low concentrations, so that it is more difficult to estimate
DYy with any accuracy. However, some recent measurements on
concentrated ammonium nitrate solutions!'® have been interpreted
with fair quantitative success on this basis. In this case an equation
similar to equation (11.66) was used in order to allow for the effect
of volume restraints and of the diffusion of the solvent; hydration
of the ions of ammonium nitrate was assumed to be negligible. The
final equation was:

= [a(D + Ay + Ay + 2(1 — a)Dy,)
(1 L "*)(1 + 0036 m g;°) T (1.2

As in the work of Harned and Hudson, the degree of dissociation, «,
was estimated from the conductivities, though at the high concen-
trations (0-1 to 8 M) of these measurements the theory used in
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calculating the degree of dissociation is necessarily very approxi-
mate. Nevertheless, the diffusion coefficients of ammonium nitrate
calculated from equation (11.26) with Df, = 1-5 x 10-% agreed
within 2 per cent with the experimental values up to 6 mole/litre.
The value Df, = 1-5 x 10-% for the ion-pair was not arbitrarily
assumed, but was calculated from the mobilities of the separate ions
by considering them to merge into an ellipsoidal body.

Diffusion of a weak electrolyte. This is essentially the same problem
as the diffusion of an incompletely dissociated electrolyte. Goily
measurements have been made on citric acid'® and acetic acid!® in
water. The degree of ionization of these substances being known
from conductance data, equation (11.25) can be rearranged to yield
a convenient extrapolation for D, if the activity data are available.
An alternative method which was used in the case of citric acid,
leads to the conclusion that the function:

D), = [(1 — «/2) Dy/n® — («/2) DY/(1 —a) ....(11.27)

when plotted against concentration extrapolates linearly to DY, at
zero concentration. Here D is the measured diffusion coefficient
and D9 is the limiting Nernst value for the completely dissociated
ionic form. The limiting diffusion coefficients D, of molecular citric
acid and acetic acid are found to be 0-657 x 10-5and 1-201 x 10-5
cm? sec! respectively. It is interesting to compare these with the
limiting Nernst values (RT A%/ F2) for the monocitrate ion (0-8! x
10-% cm? sec™!) and the acetate ion (1-088 x 10-% cm? sec~1). The
citric acid molecule has a considerably lower mobility than its
anion, whilst the acetic acid molecule has a higher one. This, taken
in conjunction with the facts that the acetate ion has a low mobility
for its size and that the activity coefficients of metal acetates are
high, suggests that the acetate ion interacts fairly strongly with water
molecules. The effect of the charge of the monocitrate ion, on the
other hand, appears to be predominantly a structure-breaking one.

VISCOSITY AND IONIC MOTION IN
CONCENTRATED SOLUTIONS

In Chapter 7 and in pp. 286-302 we have discussed the way in
which the motion of ions is affected by electrical interactions with
other ions. The mathematical treatment of these effects is at present
strictly valid only for low concentrations, owing to approximations
which must be made in order to give manageable results. In regard
to concentrated solutions, many workers adopt a counsel of despair,
confining their interest to concentrations below about 0-02 M,
while others maintain that an adequate theory of the behaviour of
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pure fused salts is an essential pre-requisite to the understanding of
transport processes in concentrated electrolytes. Nevertheless we
believe that useful information can be gained from the study of
transport processes in concentrated solutions, and their practical
importance justifies the attempt.

The treatment of interionic effects on both chemical potential
and ion mobility leads (apart from minor corrections) to results
which may be summarized as

Y — 1, ««/(l + «a) ....(11.28)

where ¥ denotes diffusion coefficient, conductance, or the logarithm
of an activity coefficient and the subscript zero refers to infinite

dilution. Now the quantity «/(1 + xa), though varying as V¢ at
low concentrations, changes only slowly at high concentrations, and
variations in the ion size parameter a are insufficient to cause large
variations in behaviour between one salt and another of the same
valency type. Yet such large variations do occur, and become very
marked at concentrations of a few molar. In the case of thermo-
dynamic properties, they can be explained by the effects of ion-
solvent interactions, which have an important influence at high con-
centrations. In the case of the transport properties, another effect,
negligible in dilute solutions, becomes important at high concentra-
tions. This effect is connected with the changed viscosity of the
solution; we shall not say it is caused by the changed viscosity, but
for brevity we shall refer to it as the viscosity-effect.

The Viscosity of Electrolyte Solutions

Viscosity, the force required to produce unit rate of shear between
two layers separated by unit distance, is an important property of
liquids. For methods of measurement, the reader is referred to
standard text-books on practical physical chemistry!2!; the papers
of G. Jones and collaborators!?? and recent publications from the
U.S. Bureau of Standards'?® should then be studied to dispel any
idea that really accurate measurements are easily made. It is usual
to calibrate viscometers by means of pure water, for which careful
absolute viscosity measurements have been made. The most recent
of these has resulted in an appreciable change from the values'2®
which had been accepted since 1919, and a close approach to those
obtained in the classical work of THorPE and RODGER!?® in 1894.
Calibration at two or more points is highly desirable, and is most
conveniently obtained by using water at several temperatures (see
Appendix 1.1},
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For solutions the relative viscosity, 7re1 = 7/7° is often used, »°
denoting the viscosity of the pure solvent at the same temperature.
The ‘specific viscosity’ #*, defined by

1)* = (ﬂrel - l)/t e .(11.29)

is also useful, particularly since it often changes only slowly with
concentration and temperature.

It is clear that the electrical forces between ions in adjacent layers
of an electrolyte solution will increase the viscosity. The mathe-
matical treatment of this effect was given by FALKENHAGEN and
collaborators!®® who showed that the limiting law is of the form

Nre1 = 1 +Al\/c ....(11.30)

the constant 4, being as usual a function of solvent properties, ionic
charges and mobilities, and temperature. Numerically, 4, is fairly
small, ¢.g., for KI and Li,SO, at 25° in water, the calculated values!??
are 4, = 0-0050 and 0-0167 mole-1 /¥ respectively. The corres-
ponding experimental values are 0-0047 and 0-0167. This agree-
ment, however, does not mean that the theory is of practical use for
calculating viscosities, since the small square-root term is quickly

swamped by a much larger linear term, as expressed by the equation
of Jones and DoLg!?%:

nret = 1 + 4,Ve + Ay ....(11.31)

(The coefficient 4, is usually referred to in the literature as the
‘viscosity B-coefficient,” a terminology we are obliged to depart from
here to avoid confusion with our other B symbols.) This coefficient
is highly specific for the electrolyte and temperature, ¢.g., — 0-014
mole-1/ for KCl and + 0-567 mole~! ! for LaCl,, at 25°. Equation
(11.31) is usually valid up to a few tenths molar. The 4, coeflicients
are found to be fairly accurately additive properties of the constit-
uent ions, and several independent workers(28, 2,30 have agreed that
individual ionic 4, values can be based on 4,(K+, 25°) = — 0-007
mole-! [, The 4,-values are strongly correlated with the entropy of
solution of the ions (see p. 16). Negative values are found with those
ions which exert a ‘structure-breaking’ effect on water, e.g., Rb+,
Cs+, I-, ClO3, NO7, and such values become less negative or even
change to positive as the temperature is raised. The reason is
clearly that at the higher temperatures the water structure is already
so broken by thermal agitation that the ion can scarcely make
matters worse. These negative values of 4, appear to be confined
to aqueous solutions, and even here they seldom cause a decrease
of more than 10 per cent in the viscosity. More typical are fairly
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large positive values of A4,, found with ions which are strongly
hydrated, e.g., at 25° the A, values for Na+, Li+, Mg*+, La*+++ are
0-0863, 0-1495, 0-3852 and 0-5888 mole! /, respectively. A recent
tabulation by Kaminsky(?® is reproduced in Appendix 11.3.
Similar behaviour is found with large non-electrolyte molecules
such as glycerol and sucrose.

The viscosity increase found with large solute particles was
explained by EINsTEIN'3Y as due to interference of the particles with
the stream-lines in the liquid; by classical hydrodynamic methods,
treating the liquid as a viscous continuum with rigid spherical
obstructions at the surface of which the liquid is at rest, he obtained

the result
fret = 1 + 2-5¢ ....(11.32)

valid at low concentrations, with ¢ denoting the volume-fraction
occupied by the obstructions. Later work®? has extended this
limiting theory to higher concentrations, giving

2-5¢
In = T S (1L
Yrel 1 —Q¢ (11.33)
where @ is an interaction parameter dealing with mutual inter-
ference between the spheres, and with their Brownian motion;
various authors agree only that it does not differ greatly from unity.
Since ¢ is a volume fraction, we can replace it by ¢’ where ¢ is the
molar concentration, and V is an ‘effective rigid molar volume’
expressed in litres per mole. This gives:

y
log 7jre1 = l—j%c- .. (11.34)

where A3 = 2:57/2:303, and Q' = QV is an arbitrary constant.
Equation (11.34) gives an excellent representation of the viscosities
of strongly hydrated electrolyte solutions and of solutions of large
non-¢lectrolyte molecules, often up to the point where the viscosity
is five or ten times that of water, though it is necessarily less exact
than equation (11.31) in dilute electrolyte solutions owing to the
omission of the small term in V¢. The connection between equa-
tions (11.31) and (11.34) is apparent on expanding the logarithm
in (11.34) when we obtain for small ¢:

Nrer — 1 = 2:3034,¢ ....(11.35)
A Ay (ignoring 4,V¢ in (11.31) )
ie., Ay = 2-3034;. Table 11.4 gives the values of 44 and Q' required
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by equation (11.34) at 25° for a few substances, along with the
value of 4,/2-303 from Kaminsky’s'2® table (Appendix 11.3).

If the theory underlying equation (11.34) is taken literally, the
‘rigid volumes’ ¥ of this table should represent the molar volumes
of the solutes including any water of hydration which is held too
firmly to participate in the viscous shearing process. The molar
volume of sucrose in solution, on the unhydrated basis, is 0-212 {
mole-1, and that of glycerol is 0:071 { mole-1. The ¥ values there-
fore indicate that the sucrose molecule acts, on Einstein’s model, as
if it includes (0-350 — 0-212)/0-018 = 7-7 molecules of water, and

Table 11.4
Constants of Equation (11.34) for Viscosities of Concentrated Aqueous Solutions
at 25°, and the ‘Rigid Volume’ V

4, Q v A,/2:303
Solute ! mole—! I mole—? I mole—! I mole-t
Sucrose 0-380 0-231 0-350 (0-3816)»
Glycerol 0-0959 0-0363 0-0883 —_
NaCl 00379 0-0589 0-0349 0:0344>
LiCl 0-0586 0-0079 0-0540 0-0619b
MgCl, 0-147 0-078 0135 0-161

(a)—from measurements on dilute solutions (< 0-02 M): Jones G. and TaLLey,
S. K., J. Amer. Chem. Soc. 55 (1933) 624.
(b)—from Appendix 11.3.

the glycerol molecule, one molecule of water. In Chapter 9 we
showed that the activity coefficients are consistent with ideal-solu-
tion behaviour with 5 molecules of water of hydration for sucrose
and 1-2 for glycerol. Another estimate of the ‘solvation’ of sucrose
may be made from its limiting diffusion coefficient'3® (0-5226 x
10-% cm sec~! at 25°) which gives, using equation (2-51), a Stokes’—
law radius of 4-69 A. Applying to this the ‘correction-factor’ 1-05
indicated by Table 6.2, we calculate a ‘hydrodynamic volume’
of 0-301 //mole, corresponding to 4.7 molecules of attached water.
This agrees remarkably well with the ‘thermodynamic’ value of 5,
but is less than is indicated by the viscosity result. Bearing in mind
the possible effects of departure from spherical shape, there is no
ground for dissatisfaction, however; rather, one may be astonished
that the theory gives such reasonable results. Since the chloried
ion causes a small decrease in viscosity, the ‘rigid volumes’ of Table
11.4 must be regarded as essentially those of the cations; after sub-
tracting the estimated molar volume of the cation (which is actually
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negative) they suggest ‘hydrodynamic’ hydration numbers of 2-3
for Na+, 34 for Li+, and 9-10 for Mg*+. These viscosity calcula-
tions thus provide yet another set of hydration numbers, of reason-
able magnitude, but differing materially from estimates by other
means (¢f. Tables 6.3, 9.5, and p. 331). Table 11.4 encourages the
view that where large increases in viscosity occur in electrolyte solu-
tions, they are mainly a direct hydrodynamic result of the distortion
of stream-lines by particles considerably larger than water molecules.
It should be emphasized that the above considerations refer only
to approximately spherical particles; long-chain ions and molecules,
in particular, need special treatment which will be found in text-
books of colloid chemistry.

‘Microscapic Viscosity’ and the Mobility of Dissolved Particles

In order to understand the motion of ions in concentrated electro-
lytes, we need an answer to the question : how is the mobility of
ions related to the change in viscosity of the solution, bearing in
mind that this changed viscosity is itself produced by the ions of
interest?

A direct answer could be given if we had an exact treatment of
the interionic effects which also alter the mobilities. In concentrated
solutions, however, we can do no more than estimate the magnitude
of interionic effects; it is therefore more profitable to seek other
information which may bear on the viscosity relationship.

In Chapter 6 we have seen that comparison of the temperature-
dependence of viscosity and ionic mobility is of some value. A visco-
sity change produced in this way is, however, of a different nature
from the isothermal change produced by the presence of dissolved
particles; the latter is concerned with the distortion of stream-lines,
while the former is due to changes in the relative magnitudes of
thermal agitation and intermolecular forces. The relation between
ionic mobility and viscosity can scarcely be expected to be the same
in these two cases. We shall now summarize some relevant experi-
mental results.

The Influence of Large Neutral Molecules on the Limiting Mobilities of
Tons

Limiting conductances®® and transport numbers® for a number
of simple electrolytes have been measured at 25° in aqueous 10 per
cent mannitol, 10 per cent and 20 per cent glycerol, and 10 per cent
and 20 per cent sucrose. Limiting ion mobilities in the non-electro-
lyte solutions and in water, are summarized in Table 11.5.
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11 THE THEORY OF DIFFUSION OF ELECTROLYTES

The ratio of the viscosity of water to that of the mixed solvent is
also shown in Table 11.5. The following generalizations can be made
about the results:

(1) All the ions studied suffer some reduction in mobility through
the presence of the added non-electrolyte.

(2) Different ions are affected differently by a given non-electro-
lyte, though for simple small ions the R values cluster about an

Table 11.5
Relative Ion Mobilities R in Aqueous Non-clectrolyte Solutions at 25°

Sucrose Glycerol Mannitol
Ion

102 20%, 109 20%, 10%
H+ 0-841 0-684 — — 0-837
K+ 0-812 0-627 0817 0-648 0-797
Na+ 0810 0-621 0-815 0-647 0-790
Li+ 0-802 0-610 — — 0-778
Agt 0-800 0-607 0-801 0-632 0-780
Cat+ 0-787 0-585 — — -—
Mg+t 0-788 0-582 — - —
Lat++ 0-778 0-567 —_ —_ —_
N(n Am) *+ 0-761 0-550 - —_— —
Cl- 0815 0-631 0813 0-644 0-800
NO,~ 0-810 0-624 0-817 0-644 0-803
Br- 0-807 0-619 0-806 0-632 0-797
ClO - 0-803 0612 — - —
I- 0-796 0-604 0-799 0-617 0-792
10 0-756 0-525 0775 0579 0747

The quannty R is the ratio of the hmmng mobility of the ion in the mixed
solvent to its value in water, as given in Appendix 6.1.

Solvent compositions are in percent non-electrolyte to total solution, by weight.
15ll";"ou'l STEEL, B. J., STOKES, J. M. and Stokes, R. H., 7. phys. Chem. 62 (1958)

average, ¢.¢., R ~ 0-80 for many monovalent ions in 10 per cent
sucrose. Hydrogen ion is less retarded than any other, and there is
a fair degree of correlation between the size of the ion (allowing for
probable hydration of many cations) and the extent of retardation.

(3) Different non-electrolytes have slightly different effects, in
the sense that the relation between the viscosity and the mobility of
a given ion is not quite the same for different non-electrolytes.

{4) In no case is the mobility reduced to the full extent that the
increase of viscosity would demand, i.c., the behaviour is not con-
sistent with Stokes’ law (or Walden’s rule), but approximates to
that described by

Anp = const ....(11.36)
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where p is less than unity. This relation holds fairly accurately for
a given ion in a given non-electrolyte solution, but the index p
varies with both the ion and the non-electrolyte. For a given ion, p
is approximately a linear function of the molar volume ¥ of the
non-electrolyte, decreasing as P increases, while for a given non-
electrolyte p increases with the size of the ion, approaching unity
for very large ions. The same relation, but in general with a

s

x Jemperature
I o2 © Sucrose

~log 4743

a1

g 24 02 93
log 7/ 735 -—

Figure 11.2. Effects on various ions of viscosily increases caused by:
(a) addition of sucrose (circles),
(b) lowering of temperatures (crosses).
Viscosities and equivalent conductivities are expressed relative to water at 25°.

different value of p, describes fairly accurately the variation of A% in
pure water as solvent when the viscosity is increased by lowering
the temperature. Figure 11.2 compares the effects of these two kinds
of viscosity-increase for a few ions. The large tetra-amyl ammonium
ion has p a1 for both kinds of viscosity-increase, i.c., it approxi-
mates to Stokes’ law or Walden’s rule as would be expected. It is
remarkable, however, that hydrogen ion, with the much lower value
p = 0-63, does not seem to discriminate between addition of sucrose
or mannitol and lowering of temperature as causes of viscosity-
increase. This is doubtless connected in some way with its abnormal
transport mechanism, (p. 121) which is believed to be limited
mainly by the ease of rotation of water molecules. Most other ions,
of which K+ is typical, show considerable differences in their res-
ponses to the two kinds of viscosity-increase. It is thus not feasible
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11 THE THEORY OF DIFFUSION OF ELECTROLYTES

to treat the effect of added non-electrolytes in terms of a change in
‘structural temperature’ of the water.

The ‘Obstruction-effect’

The experimental work described above shows that when the
viscosity of water is increased by molecular solutes, the resistance
encountered by an ion moving through the solution is also increased,
but not in direct proportion to the viscosity as would be predicted
by simple hydrodynamic considerations. Presumably this direct
proportionality would be observed for really large moving particles,
but they would have to be large not merely in relation to the water
molecules, but even in relation to the molecules or ions causing the
viscosity increase. (It should be noted that in the conductance and
transport number experiments discussed above, the concentration of
the moving particles themselves is made effectively zero by suitable
extrapolations, so that we do not have to consider their own effect
on the viscosity.)

This situation is sometimes described by saying that the ‘micro-
scopic viscosity’ of the solution is lower than the measured viscosity,
but this statement does not constitute an explanation of the effect.
An alternative possibility is that the increased viscosity and the
increased resistance experienced by the moving particle are not
related as cause and effect, but are two parallel effects of a common
cause, that cause being the obstructive action of the added solute.
In viscous flow, the solute molecules or ions distort the stream-lines,
introducing a rotational quality to the previously irrotational flow;
in conductance and diffusion, they lengthen the effective paths of
the moving particles. This suggestion was first advanced by Wang3®
in connection with the self-diffusion of water molecules in protein
solutions. We shall not make direct use of his treatment, since the
result can be obtained more conveniently by the following argument,
which also brings to notice a point not dealt with by Wang.

We shall idealize the actual situation to the following model:
the moving particles and the solvent molecules are both of negligible
size compared to the added solute molecules causing the obstruc-
tion; the latter are regarded as rigid spheres in a continuous
medium. We shall discuss the motion of ions in terms of the passage
of electric current through such a system. The added non-electro-
lyte must now be regarded as a set of insulating spheres dispersed in
a random manner through a conducting continuum, and we wish
to compare the conductances of, for example, a unit cube of this
material and a unit cube of the same conducting medium in the
absence of the insulating spheres. When a single insulating sphere
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isintroduced into a uniform infinite conductor, the standard methods
of electrical theory show that the current-lines are distorted as
shown in Figure 11.3; this will clearly cause an increase in resistance.
The actual problem deals with a large array of such spheres com-
paratively close together, and has been discussed by FRICKE®? in
connection with the conductance of blood, where the blood cor-
puscles form ‘obstructions’ in the plasma. (His treatment, like
Wang’s, deals with the more general case of ellipsoidal obstructions.)
However, it is instructive to approach this problem in another way:

E— e —

Figure 11.3. Current flow round insulating sphere in conducting medium

it is a well-known principle of electricity that problems of steady
current flow in conductors and of lines of force in insulators are
formally identical, the only change necessary in the mathematics
being the substitution of specific conductances for dielectric con-
stants. Now the corresponding problem in dielectric theory is:
what is the effective dielectric constant of a medium of dielectric
constant &, in which are suspended spherical particles of a different
dielectric constant & ? This problem has received attention at
intervals since it was first discussed by Rayleigh in 1892; all inves-
tigators have concluded that the size of the spheres is irrelevant,
only the fraction of the total volume which they occupy appearing
in the equations. In Table 11.6 the results of the main investigations
are summarized, along with the corresponding results for the present
case of electrical conductance. (It is notable that though the formal
mathematics is the same, the electrical conductance of the spheres
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11 THE THEORY OF DIFFUSION OF ELECTROLYTES
can take the value zero, whereas the dielectric constant can never
be less than unity.)

Though all these formulae reduce for low volume fractions ¢ of
the insulating spheres to the same result, viz.

KoplKopr = 1 — 3¢/2 ....(11.37)

they differ somewhat at higher volume fractions. (The upper limit
for ¢, when the spheres are in mutual contact in close packing, is

Table 11.6
The *Obstruction-effect’ in Conductance from Analogy with the
Corresponding Dielectric Problem
Dielectric Conductance
Medium: ¢, Ko
Spherical obstructions: &, Ky =0
Mixture: & Ku
Volume fraction of obstructions: ¢ ¢
1 £=& _&H 5% K, _ 1-4¢ -1
Ravizicy, (1892) e+ 24 &+ 2, ¢ Kypior 1+ ¢f2 ~ 1 =154
BrucGEMAN (1935)
&H —& _ (8 )”’ Ky _ 32 .
—_— =l — - = (1 — 1 - 1-5
& —& ( ¢) &y Kw(o) ( ¢) ~ ¢
Borrcuer (1945)
e—g & —¢& Ko _1_1
3 &+ 2 ¢ Kesior =154

RavLEIGH, J. W. Phil. Mag. (5) 34 (1892) 481.

BruGGEMAN, D., Ann. Physik. Lpz. (5) 24 (1935) 636.

BérTcueR, C. J. F., Rec. Trav. Chim., Pays-Bas. 64 (1945) 47.

See also EL SaBen, S. H. and HastEp, ]. B., Proc. Phys. Soc. 66B (1953) 611.

¢ = 0-7405 which would give a negative conductance on several of
the formulae; they are not intended to apply under such extreme
conditions.) Béttcher’s formula has been tested by measuring the
dielectric constant of suspensions of salts in organic liquids, and is
satisfactory at volume fractions as high as 0-5.

Equation 11.37 would not be immediately applicable to the equiv-
alent conductances of Table 11.5, even if the model were valid for
the solutions considered. Allowance must first be made for the fact
that when calculating equivalent conductances of the electrolytes
in the non-electrolyte solutions, the whole volume of the solution is
taken as the basis for the concentration calculation. In formula
11.37 on the other hand, K, represents the specific conductance
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of the electrolyte solution outside the insulating spheres. Since the
latter occupy a volume-fraction ¢, we obtain:

A° 1 — 3¢/2
= = ~ | — ¢/2 for small
A% =0 1 —¢ ¢ ¢

....(11.38)

R

This may be compared with the corresponding result for the relative
viscosity of the non-electrolyte solution, which by equation (11.32)
gives for small ¢:

7% ~ 1 — 2:5¢ ....(11.39)

Thus the addition of sufficient large non-electrolyte molecules to
lower the fluidity of water by 5 per cent should lower the mobility
of ions in the solution by only 1 per cent, if this ‘obstruction’ model
of the situation is valid. The other extreme model, in which the
non-electrolyte solution is treated as a viscous continuum in which
the ions move under Stokes’-Law conditions, would lead one to
expect a 5 per cent decrease in mobility for a 5 per cent decrease in
fluidity. Table 11.5 shows that the effects actually found are inter-
mediate between these two extremes, i.e., there is for small ions
about 3 to 4 per cent decrease in mobility for 5 per cent decrease in
fluidity. This seems reasonable, since the ions and the non-electro-
lyte molecules are in fact of comparable sizes, whereas the obstruc-
tion model considers the ions to be much smaller than the non-
electrolyte molecules, and the Stokes’-Law model considers them
to be much larger.

Furthermore, the largest ion studied—the tetra-n-amylammonium
ion—shows the nearest approach to the predictions of the Stokes’-
Law model, while the chloride ion is the least affected by increased
viscosity (though even here the effect is much larger than the
‘obstruction’ model predicts).

BROERSMA(®® has developed the hydrodynamic theory of a liquid
containing suspended or dissolved particles which cause a change in
the local viscosity, falling off with an inverse power of distance from
the particle. With suitable choice of the parameters describing this
change, the theory promises considerable success in the treatment
of problems of conductance, viscosity and diffusion.

In the meantime, we can conclude only that there is no universal
quantitative relation between the mobility of an ion and the viscosity
of the medium, at least when the viscosity-change is produced by
adding non-electrolytes. The position may be expected to be even
more complicated when the viscosity-change is produced by ions.
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SELF-DIFFUSION AND TRACER-DIFFUSION IN
ELECTROLYTE SOLUTIONS

In a uniform liquid, the molecules are continually moving about in
a random manner, and a given molecule at one point has a definite
probability of arriving at some other point within a given time.
This motion constitutes true self-diffusion, but is a process which
can never be detected because of the indistinguishability of the
molecules. A close approach to it is realized in the case of the inter-
diffusion of two isotopically different species which differ only
enough to be distinguishable, but have nearly identical dimensions
and force fields. Since mixtures of isotopic species show practically
ideal thermodynamic behaviour, the gradient of chemical potential
for each isotope is also ideal, i.¢., itissimply the gradient of (RT In ¢).
The ‘driving force’ for the inter-diffusion of isotopic species may be
considered to arise solely from the term contributed to the free energy
of mixing by the entropy of mixing, which obeys the ideal relation:

ASimizing = — R(NM In N, + N, In V) ....(11.40)

M and N, being the mole fractions of the two species.

A closely-related process occurs when an ion of one kind in very
small amount diffuses in a large excess of other electrolyte; the
name ‘tracer-diffusion’ has been given to this process. Examples
are the diffusion of radioactive sodium ion present in tracer amounts
in an otherwise uniform solution of (2) potassium chloride, or () of
sodium chloride. In case (b) the diffusion coefficient of the tracer
species is assumed to be identical with the true self-diffusion
coefficient of sodium ion in the sodium chloride solution. In case
(a), since the ionic environment of the tracer ion is effectively
unchanged during diffusion, its activity coefficient remains practi-
cally constant, so that the ‘driving force’ is once more the gradient
of (RT In¢). In both cases the ‘diffusion potential’ is negligibly
small, so that the movement of the tracer ions is not tied to that of
ions of opposite sign. The electrophoretic effect, which involves the
concentration of the diffusing ions, may also be neglected, since the
concentration of the diffusing radioactive species is extremely low.
Rather unexpectedly, however, the relaxation effect now becomes
important, though in ordinary diffusion, owing to the preservation
of the symmetry of the ‘ionic atmosphere’, it is negligible. The
reason for this is that in self- or tracer-diffusion the tracer ion is
moving relative to a background of non-diffusing ions, whereas in
the ordinary diffusion of a single electrolyte all the ions are moving
with the same velocity.
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These tracer-diffusion coefficients, incidentally, are the quantities
which appear in the formulae of polarographic theory for the
limiting diffusion-current at the dropping mercury electrode.

But for the complications introduced by the interionic relaxation-
effect (¢f. p. 136) tracer- and self-diffusion studies in electrolytes
would provide valuable information on viscosity-effects. The
tracer-diffusion of iodide ion in alkali chloride solutions'*® has been
studied with especial care both by conventional radioactive tracer
techniques and by chemical analysis as means of following the iodide
ion, with excellent agreement (~ 0-5 per cent) between the two
methods. Fairly comprehensive data are also available for sodium ion,
chloride ion, and hydrogen ion; the data are given in Table 11.7.

THEORETICAL EXPRESSIONS FOR THE RELAXATION-EFFECT
IN SELF-DIFFUSION

ONsaGER® has discussed the problem of the diffusion of an ion
present in vanishingly small amounts in a solution of another
electrolyte, as a special case of diffusion in multi-component systems
and GostiNgG and HARNED®#® have shown that his formulae can be
applied to the case of self-diffusion. In our notation, Onsager’s
equation for the diffusion coefficient D} of an ion j present in
vanishingly small amounts in an otherwise uniform electrolyte
solution becomes:

D} =y [kT - "f:z a— \/J.;))] ....(10.41)

The function d(u;) depends on the mobilities and valencies of the
various ions present, and is discussed below; all the other symbols
have already been introduced. Now (11.41) may be rewritten as:

D} = kTuy; [1 - gi—f.(l - \/m,-))]

= Dpo [ ""T(l \/d(u,.))] o .(11.42)
It is instructive to compare equation (11.42) with equation (7.9):
both deal with a relaxation effect, the former in tracer- or self-
diffusion, and the latter in electrical conduction. In conduction the
relaxation effect changes the applied field by the factor:

AX — AL q
I+ ='-Zar T+v4
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while in tracer- or self-diffusion it changes the virtual force acting
on the tracer-ion j by the factor:

Kzie?
3Z;ﬂ.(l V() ... (11.44)
The only difference between expressions (11.43) and (11.44) lies in
the valency factor and the mobility functions, z} replacing |z,2,|
and (1 — Vvd(u)) replacing ¢/(1 + 4/¢). These two mobility
functions are both dimensionless quantities, ¢ being defined by
equation (7.10). The definition of d(u,) is rather more complicated,
especially in the general case covered by Onsager’s treatment.
However, when the only kinds of ions present are the ions 2 and 3
of the main electrolyte and the tracer-species 1, the definition
becomes:

24} ( EAL 25143 )

) = o+ Teal s + 1l ¥ Tl + Tl
...(11.45)

and for the case of most immediate interest, where all the ions are
univalent and species 1 is an isotopic form of species 2 so that
2% &~ 23, (11.45) simplifies further to:

0 0 0
O A+328 1+ 24
) =z~ 4
where ¢ is the limiting transport number of the ion 3, i.c., of the
ion of opposite sign to the tracer-ion 1. (It may be noted that in

the special case where the anion and cation have equal mobilities,
as is nearly the case in aqueous potassium chloride, for example,
the mobility functions ¢/(1 + +/¢) and (1 — Vd(s,)) become
identical, both taking the value 1 — V/0-5 = 0-2929. In this case
expressions (11.43) and (11.44) are not merely similar but identical.)
Because of the similarity of form of equations (11.42) and (7.9),
we can simply take over the numerical evaluations of the quantities
in 7.9 for use in equation (11.42). Thus, referring to equations
(7.29) and (7.31), we see that equation (11.42) becomes:
2-801 x 108

and for aqueous solutions of 1 : 1 electrolytes at 25°:
Df = Dol — 0-7816(1 — Vd(uj))+/<] . ...(11.48)
Equations (11.47) and (11.48) thus represent the Onsager limiting
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law for tracer- or self-diffusion at low total ionic strengths. The
limiting value D}? is given by the Nernst expression:

pro — RTH

N P

= 2:661 X 10-7—11- at 25° ....(11.49)
2l
Table 11.7

Tracer and Self-diffusion Coefficients of Ions in
Alkali Chloride Solutions at 2

Concentration of Supporting Electrolyte, mole[l
Supporting | Tracer
Electrolyte Ion

01 05 1 2 3 4

KCl Na*(s) | 099, | 098, | 098, | 09, | 094, | 092,
NaCl Na+§b) 097, | 095, | 092, | 084, | 077, | 069,
Licl Na+(b) | 096, | 093, | o088, | 079, | 072, | —

KCl c-() | o9, | 09, | 096, | 093, | 091, | 087,
NaGl | Cl-(c) | 096, | o091, | 087, | 079, | 071, | 062,
LiCl C-(c) | o905, | 089, | 082, | 073 | 063,

HCl cl- :

KCl I-(4) | 096, | 095, | 093, | 090, | 086, | —
NaCl |I-(d) | 095 | 090, | 086, | 077, | 068, | 059,
LiCl I-(d) | 095 | 089, | 083, | 072, | 063, | 054,

KCl H*(e) 087, | 085, | 082, 0-75, 067, —
NaCl H(¢ 0-86, 0-80, 0-74, 064, 052, | 042,
LiCl H+(¢§ 083, 0-76, 0-67 051, | 0-38; | 028,

Data from the following sources, interpolated to round concentrations where
necessary:
(a) Mivis, R., 7. Phys. Chem., 61 (1957) 1258.
(6) MivLis, R., private communication, (1958); 7. Amer. chem. Soc., 77 (1955) 6116.
(¢) Miis, R., 7. phys. Chem., 61 (1957) 1631.
(d) Stoxes, R. H., Wootr, L. A. and Mis, R,, ibid., 61 (1957) 1634.
(e) WooLr, L. A., Thesis, University of New England, 1958.

D= %T 2°; D° for Nat, Cl-, I- and H* has respectively the values 1-333
2:032, 2:045 and 9-308 x 10-% cm? sec-L.

No reliable studies of tracer-diffusion have yet been made at con-
centrations of supporting electrolyte low enough to test the limiting

law (11.42). The data in concentrated supporting electrolytes lie
well above the predictions of the limiting law, a situation similar to
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that arising in studies of conductance, ordinary diffusion, and
activity. There is little doubt that the introduction of a finite ion
size into the theory would raise the predicted values but it seems
unlikely that it will explain the large differences in the tracer diffu-
sion coefficients at high concentrations. It must be expected that
the viscosity of the supporting electrolyte will play an important

o7 H*

Yo —

Figure 11.4. Tracer diffusion coefficients of ions in potassium chloride solutions

role, and this is confirmed by a detailed consideration of the result
in Table 11.7.

Potassium chloride causes only a small change of viscosity with
concentration, and the tracer diffusion coefficients of ions in potas-
sium chloride solutions are presumably governed by interionic

effects. In Figure 11.4 D|D°® is plotted against Vega for four ions;
the limiting slope given by equation 11.42 is also shown. Evidently
not even approximate reliance may be placed upon the limiting
theory in the range of supporting electrolyte concentration above
0-1 M. The sodium ion suffers only a slight retardation amounting
to 2 per cent at | molar KCIl, while the hydrogen ion suffers 17
per cent retardation at the same concentration,

If we consider the same ion in different supporting clectrolytes,
the curves for sodium chioride and lithium chloride fall progressively
below that for potassium chloride, suggesting that the viscosity is
important. Indeed, the results for iodide ion fall on a single smooth

318



VISCOSITY IN CONCENTRATED SOLUTIONS

curve for both LiCl and NaCl as supporting electrolytes, when
plotted against viscosity instead of concentration; the same is true
for sodium ion and for chloride ion, but not for hydrogen ion. The
results for potassium chloride as supporting electrolyte do not lend
themselves to this form of plotting, as the viscosity is nearly constant.

Tt also appears that in lithium and sodium chloride solutions,
sodium ion is less affected by the viscosity of the supporting electro-
lyte than are iodide or chloride ions. A very tentative explanation
is that in a concentrated solution the sodium ion will tend to have
as its immediate neighbours chloride ions which have little effect on
the local viscosity; the chloride and iodide ions, on the other hand,
will be predominantly surrounded by sodium ions or lithium ions
which cause a marked increase in the local viscosity. This sugges-
tion is consistent with the ideas of BROERsMA®),

CONDUCTANCE AND VISCOSITY IN
CONCENTRATED SOLUTIONS

In conductance, the interionic effects are even more complicated
than in tracer-diffusion, for one is measuring the motion of all the
ions, cations in one direction and anions in the other. Surprisingly,
however, the equations developed for dilute solutions continue to
give a reasonable account of the conductance up to quite high con-
centrations, though of course without the nearly perfect quantitative
fit which can be obtained at low concentrations. An equation which
proves fairly successful is that proposed by WisHAw and STokEs!®;
this is equation 7.27, with the relaxation-factor (1 4+ AX/X) given
by Falkenhagen’s earlier expression 7.13, and with the introduction
of the relative viscosity of the solution:

Ann® = (A° - %) (l * %’é’) (11.50)

Though the equation has little theoretical justification at high con-
centrations it is most effective, requiring only the single arbitrary
parameter a to reproduce the conductances of fully dissociated I : 1
electrolytes up to concentrations of many moles per litre with an
accuracy of a few per cent, as shown in Figure 11.5. There is a
tendency for the measured conductances of viscous salt solutions to
be slightly higher than the equation predicts, if the a value is selected
to give reasonable fit at the lower concentrations. A better fit can
be obtained by using a fractional power of the relative viscosity, but
this amounts to introducing a second arbitrary parameter.
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A bibliography of recent conductance and viscosity data for a
number of concentrated solutions appears in Appendix 6.3.

MUTUAL DIFFUSION IN CONCENTRATED ELECTROLYTES

In the ordinary diffusion of a salt in a concentration gradient, both
ions must move in the same direction at the same speed, to maintain
electrical neutrality. The main interionic effect is therefore the

" B ! i i

—— Equation (11.50) with A volves indicoted
= = = Equation (1150} without allowance for viscosity
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Figure 11.5. Eguivalent conductivities of concentrated 1 : 1 electrolytes

harmonic averaging of the ion mobilities in accordance with equa-
tion 11.4; the electrophoretic effect is relatively small, and levels
off to a nearly constant value at high concentrations as shown in
Figure 11.1, The relaxation-effect, which presents the greatest
theoretical difficulties in conductance and tracer-diffusion, is for-
tunately absent since the ionic distribution remains symmetrical.
From the success which the theory of the electrophoretic effect has
in representing transport numbers, we may reasonably argue that
it is equally valid in diffusion, even at several moles per litre. We
therefore make use of equation 11.21 in the ensumg discussion of
diffusion in concentrated solutions.
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For concentrated solutions a number of effects, negligible for the
dilute solutions so far considered, become of great importance.
These are:

1. That solvent molecules will in general move in the opposite
direction to the solute.

2. That some of the ions may carry with them a permanently
attached layer of solvent molecules, which acts as a part of the
diffusing solute entity.

3. That the viscous forces may be considerably modified by the
presence of large numbers of ions.

Our theoretical treatment of these phenomena will be based on
that due to HarTLEY and CrANk'®). We consider first a non-
electrolyte solution containing only two types of diffusing entity,
the molecules 4 and B and also restrict ourselves to the case where
the partial volumes, P, and Pp, of both components are constant;
this means in practice that the coefficients discussed will be ‘differ-
ential’ values referring to diffusion between two solutions differing
only slightly in concentration. In this case the diffusion coefficient
measured experimentally will be in terms of the flux across a plane
P so fixed that the total volumes on each side of it remain constant;
that is, across a plane fixed with respect to the apparatus. This
measured diffusion coefficient is denoted by DY for component 4,
and by D for component B; and we have, denoting the fluxes of
moles of 4 and B across unit area of the plane P by J¥ and J§:

2
o’
C,4 and Cpg being the concentrations of 4 and B in moles per unit

volume. The fluxes of volumes of A and B through the plane P are
therefore:

J{=-Di%4 Jy=-DpE

—_ DZV‘ a‘sc:f and DVVB aCB

But since there is no net transfer of volume across the plane P, it
follows that the sum of these two quantities is zero:

ac,

DYP, =2 + D§Py =2 aCB ....(11.51)

Also, since C; and Cj are the numbers of moles of 4 and B in unit
volume of solution:
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Differentiating this with respect to x gives:
oG, oC
VA dx VB == =

and on comparing (11.51) and (I 1.52) it is evident that for both to
hold it is necessary that:

..(11.52)

DY = D}

except for the trivial cases P, = 0 or Pz = 0. Thus the diffusion
of a binary system where the partial volumes are constant can be
described by a single diffusion coefficient, which may be called the

g P

—r mc/va:my
—G incregsing a—l positive

== (4 rcreasing 3%" negative

s Jirection ¢f oiffusion of A

<= [irection of difYusion of 8
Figure 11.6

mutual diffusion coefficient, and denoted simply by DV; the same
value of DY will be found whether one measures and calculates
from the concentration of component 4 or component B.

Next, Hartley and Crank introduce the idea of an ‘intrinsic
diffusion coefficient’ of each component, here denoted by D} and
D’%. The passage of component A through the volume-fixed plane
P just discussed must necessitate the passage of an equal volume of B
in the opposite direction, in order to preserve the fixed volumes on
each side of the plane. The total flow of each component is regarded
as made up partly of a true diffusion-flux and partly of a ‘bulk flow’
which originates in the volume-difference between the two com-
ponents. A plane @ may be imagined (though not as a rule con-
structed) so that no ‘bulk flow’ occurs through it; and the ‘intrinsic
diffusion coefficients’ D, and Dj are defined in terms of the flux
across unit area of such a plane. (A better physical idea of the
meaning of these intrinsic diffusion coefficients may be obtained as
follows: Imagine two solutions of slightly differing compositions to
be placed in a porous-diaphragm diffusion cell such as that shown
in Figure 10.1. Now imagine that the action of gravity is abolished
and that both ends of the cell are opened. The liquids will stay in
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place, having no reason to do otherwise, but there will be no
artificial restraints upon the motion of the liquids, such as are
normally imposed by the closure of the ends. Under these condi-
tions, the rates of transfer of the two components across the
diaphragm will be governed by the intrinsic diffusion coefficients
D/, and D’. In the normal use of the cell with the ends closed, the
rate of transfer of both components is governed by the mutual
diffusion coefficient D7.)

Since the partial volumes are constant, the concentration-

. C o
gradients -5f and a—xB must be opposite in sign; suppose that C,
increases to the left (see Figure 11.6), and Cy to the right, and that
the distance x is measured from left to right. Then on the right of
the plane @ there will be a rate of increase of volume, due to the

e
entry of 4, given by — P,D/, —394 and a rate of decrease of volume,

due to the outward passage of B, given by + PzD5% —C— The net

rate of increase of the volume V' on the right of Q is therefore
given by:

v’ aC

5 =- (VADA + PgDj} B) ... .(11.53)

This expression, since we are considering unit cross-section of the
plane @, also gives the rate at which the plane @ moves away from
the fixed plane P. Since no bulk flow occurs through @, the motion
of this plane with respect to P must be due to a bulk flow through P;
so that expression (11.53) also represents the bulk flow through P
from right to left. The bulk flow therefore involves a transport of

component 4 from the left to the right of P (i.e., in the direction of
diffusion of 4), given by:

J 4 (bulk flow) =

3,

b1 44
—Ca3r ot

This transport of 4 across P by bulk flow is superimposed on the
transport of 4 across P by ‘pure’ diffusion, which is given by:

J 4 (pure diffusion) = — D) aa%i
The total flux of 4 across P is therefore:
oCy c , Cp
. .(l 1.54)
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But the total flux J 4 across the fixed plane P also defines the experi-
mentally measured mutual diffusion coefficient DV:

ac

— _pv_4
J,(total) = — D Fy ....(11.55)
Combining equations (11.54), (11.55) and (11.52) now yields:
DV = D, + P,C,(Dp — Dy) ....(11.56)

Now the intrinsic diffusion coefficient D} of 4 at a finite concentra-
tion C, is related to its value DY at infinite dilution (C, = 0) by
the factor (d In a,/d In C4) which expresses the effect of the devia-
tion of the solution from ideal behaviour. It is also probable, but
by no means certain, that the bulk viscosity of the solution compared
with that of the pure liquid B should also be introduced; we denote
this relative viscosity by 5/7%. The activity a4 in the thermodynamic
factor may be expressed on any scale of concentration we like, since
the logarithmic differentiation will eliminate any constant con-
version factors; we choose the mole fraction scale (with mole
fractions N, and Np) for later convenience. This gives:

, dIn ¥,
2, = b S T
AInNofy o\ (11.57)
;o N NpJB B
D3 = D¥s —ginc, o

where DY is the diffusion coefficient of 4 at infinite dilution in B,
and DY is the (self) diffusion coefficient of B in pure B.

SinceC4 = , one finds on logarithmic differentia-

4
NP4+ NpPp
tion, and using Ny + N =1,

dInC, NPy —Pp) _ PsC,
dinN, T NP+ NPy N,
and similarly
dinCp _ P.Cp
dinNg N

Hence equation (11.57) becomes:

'NA dlnNAfAﬁ
VBCA dln.NA n

'NB dlnNBfBﬁ
VACB dlnNB n
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Furthermore, the Gibbs-Duhem equation gives:

din Nf, _dlnNgfp
dinN, _ dinN,

Using this along with equations (11.58) and (11.56) gives for the
mutual diffusion coefficient D :

dinNyfu 1% 1 Vs
DY = W . ? [D&B-NA (V;C—A VB) D%B-NBC ]

Since % =g~—: and CP, + CgPlp =1, the square bracket
simplifies giving finally:

din ¥,
D =gy j{rfl 173? [NsD%p + NaD%s) ....(11.59)

which, by symmetry, can also be written:

din ¥
D=3 chﬂ 74 [NaD%a + NpD%41 ... .(11.60)

This is Hartley and Crank’s expression (in a slightly modified form)
for the mutual diffusion coefficient at any concentration. If volume
effects and the counter-diffusion of the solvent are ignored, as was
done in the derivation of the expressions for dilute electrolytes, one
obtains an expression of the form:

dln.NBfB
dnC,

for comparison with (11.60), when we see that the more complete
expression differs from (11.61) in three respects: first, the activity
factor in (11.60) is a differential with respect to mole fraction
instead of concentration; secondly, the diffusion coefficient of the
solvent also appears; and thirdly, the relative viscosity of the
solution has been introduced.

The theory is capable of straightforward extension to the case of
the diffusion of a single electrolyte in solution, making allowance
for the possible hydration of the ions. We let B denote the solvated
electrolyte, 1 mole of which is associated with 4 moles of bound
water, and let 4 denote the free water. These we shall treat as the
diffusing entities. In accordance with the notation used in the
discussion of the chemical potential of solvated ions (Chapter 9),
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primed symbols will be used to denote quantities in which account
is taken of solvation. Equation (11.60) now becomes:

dlIn NBfB 7).4
dln Np /]

The mole fraction Np, like the term Ng which we have used in the
derivation of formula (11.60) means simply the ratio of the number
of the diffusing entity B to the total number of diffusing entities of
both species. Since the diffusion of the ions of the electrolyte is
restricted by the condition of electrical neutrality, it is permissible
to treat the partial volumes, concentrations, efc., as those of the
hydrated electrolyte as a whole, without considering the separate
ionic quantities. The only place in (11.60) at which consideration
must be given to the fact of ionization is in the expression
d In Ngf3; this may be written d In Npfp = d In aj, since we have
remarked that any scale of activity can legitimately be used. Now
the solute is hydrated and ionized; let it produce » ions per ‘mole-
cule’ so that ag = (a,)” denotes the conventional activity as com-
puted for the unhydrated solute. Then because of the hydration,
and for an aqueous solution, d In ap = dIn ag + %d In @, (where
a, = water activity). Also by the Gibbs-Duhem relation:

DY =

- [NeD%a + NpDi4)

dinag, = — dinag

55 51
whence

dlnag = (1 —0-018tm) dInag = (1 — 0-018km)vdIna,
..(11.62)

where a, is the mean activity of the unhydrated solute.

In formula (11.60), we also have to consider the meaning to be
given to the limiting intrinsic diffusion coefficients D%, and DY ,.
In the case of mixtures of liquids which are non-electrolytes their
meaning is clear. For an electrolyte solution, however, it is neces-
sary that formula (11.60) shall reduce to the Nernst limiting value
as Ng = 0. This means that because of the factor ¥ in (11.62) we
must put for electrolytes D$, = D°v where D°® is the Nernst
limiting value; or more completely, if we include the electro-
phoretic corrections, D}, = (D* 4+ A, + A,)fv. DY, is the diffu-
sion coefficient of water in the infinitely dilute solution, i.e., in the
absence of any interfering non-ideal effects and volume restraints:
we therefore put it equal to the self-diffusion coefficient of pure
water, Df 0. Now, with the special meaning which applies here
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to the concept of ‘mole fraction’, we can put N4 and Vg in terms
of the ordinary molality and the hydration number 4:

, m ) 55-51 — km
Ne= 55T —tmrm VA= 5550 —dmam (1169
Hence
1 1
lle ....(11.64)

dlnm 14 0018(1 = &)m
we therefore rearrange (11.60) to read:

dinagy dlnm DY%.1 %
vV — - —— e —— ! ===
D" = Dya g dlan[N4+N | - (1169)

and put D}, = D%y, DY, = Do, N4 and Npas given by (11.63),

dlnm . , .
dm N as given by (11.64) and dlnap as given by (11.62),

obtaining:
dlna Do 7%
v E3 _0 =80 _
D —D"(dlnm)(l 0-018km) [l+0018m( o h)] ”
..(11.66)

Equation (11.66) was first derived from equation (11.60) by Acar4#,
In (11.66), electrophoresis is neglected; if it is included, we merely

dl
write (D° + A, + Ay + . . ) for D% The activity factor > l" %t
may of course also be written in the alternative form nm

(1 + mdIny/dm)

The diffusion coefficient DY given by (11.66) represents that which
would be obtained if the volume-concentration and flux in the
diffusion experiment were computed on the basis of the hydrated
solute; however, since the volume-concentration of the electrolyte
is unaffected by any considerations of hydration of the ions, it is
the same as the diffusion coeflicient D obtained by the ordinary
computation with the concentration in moles of anhydrous solute per
c.c. and the flux also in moles of anhydrous solute per cm? per sec.

For a uni-univalent electrolyte at m values small enough to justify
neglecting the square of (0-0184m), and including the electrophoresis
corrections in the main D° factor, but neglecting them in the small

(11.66) becomes:

correction term » D° ,

De ]
...(11.67)

0
= (D" + A, + Ay (1 +mﬂ)[1 + 0-036m (D 0 -h)]”
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11 THE THEORY OF DIFFUSION OF ELECTROLYTES

We shall now use equation (11.67) in interpreting the D values of
1 : 1 electrolytes at concentrations up to a few moles per litre. The
value of the self-diffusion coefficient of water has been the subject of
much recent research. PartiNngTON, HUDSON and BagNALL®! ob-
tained 2-43 X 10-% cm? sec~! at 25°, with an estimated accuracy of
-+ 0-5 per cent, by using the magnetically-stirred porous diaphragm-
cell method of Stokes with heavy water as tracer; Wang!4? obtained
by the Anderson capillary-tube method the values (at 25°):
(2:34 £ 0-08) x 10-% using heavy water, (2-44 4 0-07) x 10-%
using tritiated water, and (2-66 4 0-12) X 10-% using H 018,
The mean of Wang’s three values is 2:45 X 10-5, in excellent
agreement with that of Bagnall and Partington; we shall therefore
adopt the value of 24, X 10-5 for D§,¢ at 25° in equation (11.67).

In the application of this equation, we note that all the quantities
except the hydration number 4 are capable of calculation from
experimental limiting mobilities and thermodynamic data; the
terms A, and A, also involve assuming some value for the ion size
parameter a, but since this appears only in small correction terms,
the exact value chosen is not highly critical. We shall use the a
values given in Table 9.5.

d
The factor ( 14+ m ::ny) can be computed from the tabulated

activity coefficients, or from the osmotic coefficients, ¢, since by a
simple application of the Gibbs-Duhem relation we obtain:

dlny \/mdlny_ dé vm dé
(H' m)_l+Td\/m $ptmam=¢+t"3 quym
..(11.68)

Any of these equivalent forms can be used, different ones being best
adapted to different concentration regions. The slopes involved
can be obtained graphically or by the numerical method of
d
RuTLEDGE"Y, Values of D, D° A,, A,, (l +m m)’) 1’6 and
the ratio: K
dlny

f(D)-_—Dm/[(Do+A1+A,)(1+m - )] ... .(11.69)

are given in Table 11.8 at a number of concentrations, m, for
sodium chloride at 25°. It will be seen from equation (11.67) that

the plot of % f(D) versus m should be a straight line of slope
0-036 (Df,0/D® — k). It should be noted that the D values, ek., of
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this table are given at round molalities rather than at round volume
concentrations as in Appendix 11.2; the quantities A, and A, are
calculated at round values of («xa) which are converted to concen-
trations and thence to molalities, then graphically interpolated to
the round molalities.

A comparison of the last two columns of Table 11.8 shows that
the relative viscosity factor can play an extremely important part.

Table 11.8
Application of Equation (11.67) to Sodium Chloride Solutions at 25°

diny, | 17 fD) 7

m | Dobs. 1 4, B [ 1Hm=g= 5 leql(11.69) | /D) 3o
0 1.610*| O 0 1-000 1000 | (1-000) | (1-000)
001 | 1-547 |—0-003( + 0-009 0-955 1-001 1-001 1-002
005 | 1-506 | — 0-006 | + 0-024 0927 1-004 0997 1:001
0-1 1-484 | — 0-008 | + 0-032 0917 1-009 0-989 0-998
02 1-478 | — 0-010| + 0-040 0914 1-018 0-985 1-002
03 1-477 | — 0-011] + 0-043 0915 1-027 0-982 1-009
05 1-474 | — 0-013| + 0049 0-927 1-046 0-965 1-009
07 1-475 | — 0-014| + 0-050 0-946 1-065 0-946 1-007
1-0 1-482 | — 0-015( + 0-052 0970 1-094 0-927 1-014
1-5 1-494 | — 0-016| 4+ 0-052 1-031 1-147 0-879 1-008
2:0 1-511 } —0-017| + 0-051 1-096 1-205 0-838 1-010
30 1.538 { — 0-018} + 0-049 1-245 1:341 0-752 1-008
40 1.567 | — 0-019} 4 0-047 1410 1-509 0678 1-023

© Nernst limiting value = D*
AD) = Dona. [[0* + 8, + 8) (1 + m4F22)]
For calculating A, and A,: a = 3:97A.

We have taken over the bulk viscosity of the solution from the
theory for non-electrolytes, but it is by no means certain that this
step is justified: the change of the bulk viscosity brought about by
adding ions is not necessarily a fair measure of the change in
frictional resistance experienced by the ions. For this reason we
shall give two parallel sets of results, one in which we write:

D
2 f(D) = 1 + 0-036m (—ﬁt-," - ) ....(11.70)
7 D
to obtain %, and another in which we write:
D
f(D) =1 4 0:036m (%’—h') o (1LTD)

to obtain an alternative hydration number #'.
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In view of our earlier discussions of viscosity effects, we might
expect the actual hydration numbers to be between 4 and 4, but
nearer to the former.

In the case of sodium chloride we see that both f(D) and -1-71’3 Sf(D)

approach unity at m = 0 in a satisfactory manner; it must be
remembered that the experimental error in ) is about 0-2~0-3 per

1
cent and that in the factor (l +m d d':ny) is probably 0-2 per cent,

at least for the more concentrated solutions. Consequently we
should be satisfied if the functions f{D) or % S(D) are linear in

m with a scatter of about 0-5 per cent, and extrapolate to unity
with a similar tolerance. It should also be remembered that the
calculation of the electrophoretic corrections is of doubtful validity
for the higher concentrations where also A, is rather sensitive to
the value of the ion-size parameter, and that our neglect of the
squares of terms in 0-018m, in obtaining equation (11.67) from
equation (11.66) may well involve some departure from linearity
at the higher molalities. For all these reasons, it seems advisable to
use only the data up to 1 M for the evaluation of h and #'. We

ﬁnd for sodium chloride, from a graph of — f(D) versus m,
=5 J(D) =1 + 0-014m (average deviation 4 0- 2 per cent up to

1 M) and f(D) = 1 — 0-072m (average deviation 4 0-2 per cent
up to 1 M), whence putting D*/D® = 2:44/1-:610 = 1-51 we
obtain:

hwacr = 1'1; or A'yaer = 35,

It follows that either of these values, inserted in equations (11.70)
and (11.69) in the case of %, or in equations (11.71) and (11.69) in
the case of &' will reproduce the observed diffusion coefficients of
sodium chloride with an average accuracy of 0-2 per cent, t.e.,
within experimental error. The results for the ten 1 : 1 halides in
Appendix 11.2 are also capable of representation by these equations,
in the concentration-range up to 1 M, the values needed for the
two alternative parameters & and &’ being given in Table 11.9. The
‘deviations’ listed indicate the percentage accuracy with which the
equations are capable of reproducing the observed diffusion
coefficients, using the given values of & or #'. It is clear that there
is little to choose between the two equations on the score of accuracy.
Equations (11.69) and (11.71), in which the viscosity factor is
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omitted, give at first sight a more reasonable set of hydration
numbers, in that the values of £’ increase in the order: iodide <
bromide < chloride as would be expected from the order of the
sizes of the bare ions. On the other hand, the reverse order, as
found for the 4 values, is the same as that found in the treatment of
activity coefficients in terms of hydration (Chapter 9). Furthermore,

Table 11.9
‘Hydration Numbers’ from Diffusion

Solute KQl | KBr K1 NaCl | NaBr | Nal | LiCl | LiBr | NH,Cl| HCI | HBr

4 h 08 12 1-5 1-1 1-2 2:2 29 29 05 2-] 2-3
verage
#mlum 0-2% | 0-4% 06%102% [ 03% | 0:5% { 05% | 0:6% | 0:2% | 0-2% | 0-2%
laximum
deviation | 0:3% | 0-5% 12%105% | 06% |1 0:8% | 1:0% | 1-3% | 0:5% (0:4% | 0:5%

4 h* 06 03 -03 |35 28 30 63 56 0-2 37 32
verage
}!:m.?“m 0-2% | 0-4% 06%]02% | 03% | 05%|03%]|05% | 0:2% | 0-2% | 0:2%
aximum
deviation | 0:4% | 0:-5% 10% | 04% | 0-8% | 06% | 0:4% | 09% | 0-5% | 04% | 0-5%

the 4 values are all positive, whereas 4’ for potassium iodide is
negative and so cannot be physically interpreted as a hydration
number; and the 4 values are more nearly additive for the con-
stituent ions than are the 4’ values. The following sets of ionic
hydration numbers are capable of giving the 4 value for any salt
in Table 11.9 within 0-1, except for sodium iodide and bromide
where the additive values differ by 0-3 and 0-2 respectively from
the observed.

Jonic Hydration Numbers from Diffusion

Ton NH} K+ Na+ Li* Cl- Br- I-
(a) 05 09 1-2 2-8 00 02 0-7
(&) 0-0 0-4 0-7 2:3 0-5 07 12

The two sets (a) and () both lead to the same sums for positive and
negative pairs; the latter set based on A(NH{) = 0, is perhaps the
more reasonable.

The above treatment of diffusion in concentrated solutions, while
serving to indicate the more important effects which have to be
considered, is in no sense final or completely satisfactory. The
parameter 4 is useful in that it enables one to represent the observed
diffusion coefficients within about one half of one per cent up to
one molar concentration by means of equations (11.66) or (11.67).
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It does not follow that % therefore necessarily represents only the
hydration of the solute; there may be other short-range effects
which would result in the appearance of a multiplier of the form
(1 — am) in the expression for the diffusion coefficient. Compre-
hensive investigations of the diffusion of non-electrolyte solutions in
the light of equation (11.59) will no doubt help to provide informa-
tion on such effects.

In the case of the salts, the interpretation of 4 as the number of
water molecules moving with the ion as part of the diffusing unit
‘may be tentatively accepted. No surprise need be felt that these
values from diffusion are smaller than those obtained from the
treatment of activity data in terms of hydration, since in the latter
treatment 4 was introduced as the effective number of molecules
bound by the ion-solvent forces, and would therefore include
contributions from water molecules beyond the first layer, which
would not be firmly enough bound to move as a unit with the
jon. These ‘hydration numbers’ 4, are, however, somewhat lower
than the majority of estimates of ionic hydration by other
methods.

For the halogen acids, it is no longer legitimate to interpret 4 as
the number of water molecules moving with the diffusing ions, for
one would then be obliged to claim that at least 1-6 mole of water
were moving with the hydrogen ion. But the hydrogen ion moves,
in the main, by a series of proton-jumps from one water molecule
to another, and the volume transfer in this process is negligible. It
is of course possible that in addition to this proton-jump mechanism
some ordinary motion of clusters of water molecules with a proton
at their centre occurs; but one would have to assume such clusters
to be rather numerous and large to account for an apparent hydra-
tion number of 1-6. A more likely explanation, for which we are
indebted to Dr. J. N. Agar#!, is that water molecules close to a proton
are not available as arrival points for another proton after one of
its jumps; this would lead to the ease of such jumps diminishing
more or less linearly with concentration and so producing a decrease
in the diffusion rate, similar in magnitude to that occurring with
salts because of the motion of water of hydration.

CONCENTRATED SOLUTIONS OF POLYVALENT
ELECTROLYTES
The theory of diffusion for higher valency types in concentrated
solution is even more tentative than for the 1 : 1 electrolytes, One
reason for this is that the theory of the electrophoretic corrections
is less satisfactory, even for very dilute solutions; also experimental
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data of any worth-while accuracy are very sparse. Only for three
salts (18,20, 45 at 25° are adequate experimental data at present
available. The observed diffusion coefficients are plotted as curve
I in Figure 11.7 which also shows some theoretical curves.

Curve IV represents the function:

Degge. = D° (1 4+ mdiny ") (1 — 0-018km)

[1 + 0-018m (3 D§'° — h)] ... (11.72)
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Figure 11.7. Observed and calculated diffusion coefficients of calcium chloride
at 25°: curve 1, ex, l awvell equation (11.73) with h = 0; curve 111,
cqualwn(ll 3) with cumeIV equation (11.72) withh = 9

without a viscosity factor, for n = 9; curves II and III show the
function:
diny

Dulc. = D° (1 +m T—) (l -—-0018’!7")

[1 + 0-018m (-—— -h)] ...

with » = 0 and h = 4 respectively. Electrophoretic corrections
have been omitted. It will be seen that all these functions approxi-
mately reproduce the form of the experimental curve, giving a
rise followed by a maximum. Quantitative agreement is, however,
far from satisfactory.
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12
WEAK ELECTROLYTES

THE idea of a weak acid developed in the early days of physical
chemistry when it was noticed that a very large number of acids,
most of them organic, obeyed a rule to which Ostwald was led by
applying the law of mass action, a%/(1 — a) = K, to his extensive
measurements of the conductivity of acids. For the so-called strong
acids, the ionic concentrations, judged by conductivity values and
using the relation a = A/A?, led to values of the ionization ‘con-
stant’ which varied markedly with the dilution. This was one of the
‘anomalies of strong electrolytes’ and many attempts were made to
circumvent the law of mass action and preserve the ionic theory
before it was realized that interionic forces were so important in
solutions of strong electrolytes and were, indeed, sufficient to resolve
this anomaly.

Interionic effects are, however, not negligible even in the case of
weak acids. The effects enter in two ways. Taking one example
from a series of measurements which later we will discuss in more
detail, the specific conductivity of 0:02 N acetic acid at 25° is
0-00023132 in marked contrast to a solution of hydrochloric acid
of the same concentration for which K,, = 0-0091448. The con-
ventional equivalent conductivity of acetic acid is obtained by
multiplying its specific conductivity by the factor 1000/0-02 to give
11:566. It is known from other measurements that the equivalent
conductivity of acetic acid at infinite dilution is A® = 390-71 so
that if the sum of the equivalent conductivities of hydrogen and acetate ions
ts the same at all concentrations, the concentration of each of these
ions is:

CRe = Cp- = lOOXf" = 0-000592 mole I-1

and only a fraction, a = 0-0296, of the acetic acid molecules are
dissociated.
Introducing the law of mass action, we get:

o’
l —a
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INTERIONIC EFFECTS AND WEAK ELECTROLYTES

‘Two errors occur in this derivation. First of all, the equivalent
conductivity at an ionic concentration ac (approximately 0-000592 N)
is not 390-71; it is slightly less because the interionic forces reduce
it from its limiting value at infinite dilution; it will be shown later
that it is 387-16 so that « = 0-02987 and K = 1-840 x 10-5,

Another interionic effect is allowed for by introducing the activity
coefficient product into the ionization constant:

JarIa-0%C
K= 222
yaa(l — @)

Later a value of approximately 0946 will be obtained for
Y+ Ya-[yga: this makes X' = 1:740 x 10-5,

These two corrections act in opposite directions; whilst they are
not large in magnitude, they introduce changes into the ionization
constant well beyond the very small errors of experiment found in
the best measurements.

We see, therefore, that the Ostwald method was saved by the
fact that the ionic strength of a solution of a weak acid is very small
and the interionic forces are therefore small: it is essentially the
appreciable magnitude of the interionic forces in a solution of a
strong acid which leads to the failure of the law of mass action, the
so-called ‘anomaly of strong electrolytes’.

The situation is even less happy if we try to measure an ionization
constant by the usual combination of a hydrogen (or quinhydrone)
electrode in a buffered solution of the partially neutralized acid
together with a calomel electrode connected by a ‘salt bridge’. We
cannot be sure to what extent the liquid junction potential between
the salt bridge and the solution has been eliminated and as, more-
over, it is usual to use moderately large concentrations of the
buffered acid, the activity coefficient term is appreciable. The trend
to-day is to discard cells with liquid junctions and to devise suitable
combinations which are in principle concentration cells without
transport. This trend can be over-emphasized and one should not
lose sight of the use which can be made of cells with liquid junctions
if results of only moderate accuracy are required. Such cells are
easy to set up, results are obtained rapidly, and for many purposes
give a good approximation to the ionization constant. But if
results of the highest accuracy are wanted, the cell without liquid
junction should be selected.

The perfection of technique in relation to ionization constants can
be appreciated by reading two papers on this subject, one!’ using
clectromotive force measurements and the other® relying on
conductivity measurements. Each paper is a classic.
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12 WEAK ELECTROLYTES

IONIZATION CONSTANTS FROM CONDUCTIVITY
MEASUREMENTS

MaclInnes and Shedlovsky had the advantage of great experience
in conductivity measurements on non-associated electrolytes. They
then measured the conductivity of acetic acid at 25° in the range
¢ = 0-00003 to ¢ = 0-2. Because of the incomplete ionization of
this electrolyte, the limiting conductivity, Af., could not be
determined by direct extrapolation of these data. Instead, it was
determined as A+ + 4.-, these figures being obtained by applying
Kohlrausch’s law to the known limiting conductivities of the strong
electrolytes, hydrochloric acid, sodium chloride and sodium acetate.
A first approximatior: to the degree of ionization of acetic acid was
then obtained by the formula: « = A/A® The approximate
nature of this relation a:ises from the fact that the actual solution
contains a concentration of ions, ac, which, though small, is not
zero; the exact relation is &« = AfA; where A; is the equivalent
conductivity of a hypothetical fully ionized solution of acetic acid
at a concentration ac. MacInnes and Shedlovsky estimated A; by
combining empirical equations for the conductivity of the strong
electrolytes, hydrochloric acid, sodium chloride and sodium
acetate, thus obtaining an improved approximation to « and a new
value of ac; these successive approximations to a converge rapidly.

They then computed K, the ionization constant, from the formula
242

L 3 . .. . .
K, = l—%ﬁ—‘ , using for the activity coefficient the value predicted by

the Debye-Hiickel limiting law at the concentration ac. The more

complete theory of the conductivity available today somewhat simpli-

fies the calculation of A;, and we shall use the experimental results

of Maclnnes and Shedlovsky to illustrate this simpler procedure.
For A, we shall use equation (7.36) in the form:

Ay = A°* — (B,A° + B,)Va/(l + BaVs)

Since the actual ionic concentrations are very low (ac << 0-002),
the value of A; will not be very sensitive to the exact value of a,
and an estimated value of 4 A may be employed. The activity
coefficient, y,, at the ionic concentration ac may similarly be
computed from the Debye-Hiickel expression:

logy, ~logf, = — AVw/(l + BaVw)

again with a = 4 A.
In Table 12.1 the major stages of the calculation are shown for
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some of the concentrations studied by Maclnnes and Shedlovsky.
It will be seen from this table that measurements at concentrations
less than ¢ = 0-006 lead to K, values constant within the experi-
mental error, and we can put X = 1-752 X 10-5. However, the
results at higher concentrations show a small downward trend with
increasing concentration. This is probably due to neglect of the
activity coefficient of the undissociated molecule, the use of f,
instead of y,, the possible effect of changing viscosity on the con-
ductivity of the solution and even dimerization of the acid®. All
these effects are likely to be approximately linear in the concentra-
tion of the acid, so that by plotting the value of log K in the last
column of Table 12.1 against the concentration, an extrapolation

Table 12.1
Calculation of Ionization Constant of Acetic Acid at 25°

¢ Aobs. [AJA° ~ A AlAj=ai —2logf, | K, x 10°

0-00002801 | 210-38 0-5384 39013 | 0-5393 0-0039 1:753
0-00011135 | 127-75 0-3270 389-81 |0-3277 0-0061 1-75¢4
0-0002184 96-493 | 0-2470 389-62 | 0-2477 0-0074 1-752
0-0010283 48-146 | 0-1232 389-05 | 0-12375 00113 1-751

0-002414 32217 | 0-0825 388-63 | 0-08290 0-0141 1-752
0-005912 20-962 | 0-0537 388-10 | 005401 00178 1-750
002 11-566 | 0-0296 387-16 {0-02987 00241 1-740
0-05 7-358 | 0-0188 386-27 | 0-01905 0-0302 1-726
01 5-201 | 0-0133 385-46 | 0-013493 ( 0-0357 1-700
02 3651 | 0-0093 384-54 | 0-009494 | 0-0420 1-653

should eliminate these effects. Such treatment of the results leads to
K, = 1-753 x 10-%; since we have worked with the molarity as the
concentration unit, this ionization constant is on the molarity scale.
On the molality scale it would, by equation (2.42), be 1-758 x 10-5.

IONIZATION CONSTANTS FROM ELECTROMOTIVE FORCE
MEASUREMENTS

The electromotive force method has the advantage of greater ex-
perimental ease. It depends essentially on the construction of a cell:

H,|HA, NaA, XY|X

where HA is a weak acid and X is an electrode reversible to one ion
of the electrolyte XY whose ionic concentration is known, i..,
usually XY and HY must be strong electrolytes. Since the cell:

H,|HCl|AgCl, Ag
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has been studied so extensively, it is natural that the study of weak
acids should commence with the cell:

H,|HA(m), NaA(m"), NaCl(m")|AgCl, Ag

This is essentially a cell containing hydrogen ions derived from the
weak acid and chloride ions from sodium chloride, together with
two electrodes reversible to these ions. The potential of the cell is
therefore:

E = E° — k log yg«yo1-my-mgy- .. (12.0)
We now introduce the law of mass action:
K. — YEYATHA ..(12.2)

YHA™MHA

where yg, is the activity coefficient of the undissociated part of the
weak acid and not the ionic activity coefficient product, yg.y4-.
Equations (12.1) and (12.2) give:
E — EV 4 klog “OTHA _
my-

Since mgy. = m", my- = m' + mg., mg, = m — my. then, unless
the acid is moderately strong, my- &~ m’ and mg, ~ m, and:
y 7EA HA ’

E—E+klog=— = — klog K, — klog””"'y ....(12.3)

YE+YA-

To take one example from the paper of Harned and Ehlers, at

= 0-04922, m' = 0-04737, m" = 0-05042, E = 0-57977 at 25°
and E°® = 0-22239 whence the left-hand side of the above equation
is 028164 V and, to a first approximation, K, = 1729 x 105,
From cell measurements with different concentrations of the com-
ponents, values of log K, not corrected for the activity coefficient
term, are plotted against the total ionic strength and the curve
extrapolated to zero concentration to give the limiting value of
log K,. For acetic acid at 25°, Harned and Ehlers found
K, = 1754 x 10-% which agrees remarkably well with the result
of Maclnnes and Shedlovsky.

The method has the advantage of simplicity and speed; it is not
difficult to extend the experiment over a temperature range by
measuring the potential at 5° intervals from 25° to 60°, then coming
down at 5° intervals to 0° and back again to 25°, with a triple check
at 25°. There is some reason to believe that the electrodes work
best over the 0°-40° temperature range. If very accurate results
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are needed, the same cell can be measured with hydrochloric acid
as electrolyte and a new determination of E® made, thus obviating
any minor difference due to the method of preparing the electrodes.
The quinhydrone electrode can be used® with acids like chloroacetic
acid which are reduced by hydrogen.

Instead of equating m,- to m’ and mpg, to m, it is more correct
to put my- = (m’ 4+ mg.) and mg, = (m — mg.), mg. being calcu-

lated cither from mg. ~ K, % or from E =~ E® — k log mg.m". For

stronger acids, like formic acid, a series of successive approximations
may be necessary. For acids of even lower pK, the difficulty of
calculating mg+ becomes more formidable as has been recognised by
Bates® and by Kine and King®. For example, sulphamic acid has
pK = 0988 at 25° and an approximation to mg+ is not good
enough; it could be evaluated from the e.m.f. data if yg+yq-
could be calculated by a Debye-Hiickel expression with a finite a
term in the denominator. Unfortunately, the extrapolated value of
pK is not independent of the a value selected, e.g. pK = 0-988 if
a = 3-85A and pK = 1084 if 4 = 6:00A and there is no way of
finding which is the correct a value from the e.m.f. data alone.
Conductivity measurements have, however, been made on sul-
phamic acid? and, as we have already seen, an activity coefficient
term is also needed in the calculation of the ionization constant. The
resulting pK for sulphamic acid is again dependent on the a value
selected but in this method an increase in a decreases the apparent
pK whereas the converse is true in the e.m.f. method and King and
King noted that the two methods led to the same extrapolated pX
value (0-988) if a = 3-85A in both calculations. This they took as
the most probable pK value although they noted that the agree-
ment might be fortuitous in that the ¢ value referred to sulphamic
acid ions in one method and to these ions and those of sodium
chloride in the other method.

If the acid is very weak, boric acid® for example, allowance must
be made for hydrolysis:

A- 4+ HO = HA + OH-
Now mg, = m + mog- and my = m' — mog- and mgg- comes from
Km'
Kym
example phosphoric acid in its second stage of dissociation'?, the
activity coefficient term in equation (12.3) is no longer small: we

YH+YCI-YH,PO;
YH+YHPO;-
341
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Debye-Hiickel approximation: —logy ~~ Az*y/I, or even the
extended Debye-Hiickel equation (9.11) for each ionic activity
coefficient. But these are details which affect the computations;
the principle of the method is remarkably simple and straightfor-
ward. It should be added that special experimental technique is
needed for the first ionization constant of carbonic acid®, when it
is necessary to maintain a constant H,~CO, ratio in the gas around
the ‘hydrogen’ electrode. The amino-acids are dealt!™ with simply,

+
by considering them as dibasic acids derived from NHyR-COOH.
An interesting problem occurs when a polybasic acid has ionization
constants not fardifferent from one another, so that the acid molecule
and its several derived ions may all be present in significant amounts
during the neutralization. This effect is very marked with citric acid,
and has been treated by BaTes!12,

The electromotive force method has been applied to a number of
weak acids, often over a temperature range and the field of mixed
solvents has been explored. The extent of this work is illustrated in
Appendix 12.] in which are collected some of the more recent data
pertaining to a temperature of 25° as well as the numerical values
of the parameters of an equation which gives the temperature
variation of the dissociation constant over a range from 0° to 50°
or 60°. With few exceptions, the values recorded in this appendix
were obtained by one of the two methods outlined above—conducti-
metric or potentiometric with proper allowance for the interionic
forces.

The application of the method to a weak base involves nothing
fundamentally different for a base such as ammonia has the
ammonium ion as its conjugate acid and:

NH; + H,0 = NH; + H,0+
with an ionization constant:
K = YHE* YNH, Mg+ MNH,
L=
YNH; ™NH;
whereas if the ionization is treated as that of a base:

Kb = Kw/Ka

The cell:
H,|NH,OH (m), NH,Cl (m’)|AgCl, Ag

in which the hydrogen ions come from the solvent and are in
equilibrium with the hydroxyl ions of the base, works well if
adequate presaturators are provided for the stream of hydrogen gas
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to prevent loss of ammonia from the cell and if a correction is made
for the solubility of silver chloride in the ammoniacal solution, for
which purpose the instability constant of the ammine Ag(NH,);
must be known: the hydrolysis of the ammonium ion requires a
further correction and the appreciable vapour pressure of ammonia
has to be studied if the electromotive force is to be corrected to
unit hydrogen pressure. With attention to these matters, 2 reliable
set of potentials can be measured over a temperature range, 0 — 50°,
Bates and PincuiNG®® found K, = 1:77 % 105 at 25° To
reduce the correction due to solubility of the electrode material,
the silver-silver iodide electrode has been used by Owen!* who
found K, = 1:75 X 105, Another method, which avoids difficulties
due to volatility of the base and dissolution of the electrode-material,
is that of ‘partial hydrolysis’,} In the cell:

H,|NH,A(m), NaCl|AgCl, Ag

where NH,A is the ammonium salt of a weak acid with ionization
constant K 4, because of the equilibria between the various species
in this solution, four equations can be deduced:

K an+ mNH. an+ al
a —_— = .
yNm: mNm;  Pnm; 1 — o
ag+ YA~ Ma- 1l —«
K‘A=__—y—._=an+ Ya- o -2 ....(12.33)
m -2
HA 2

m = mygs + Mnp; = Mpa + M,-
and the condition of electrical neutrality:
mg+ + myp; = Mog- + My-

From the last equation it can be seen that myg: = m,- only if,
the solution is neutral; if, as in this case, the solution is alkaline,
myg; is slightly greater than m,-:

(ot — ay)m = mgog- ....(12.3b)

From these four equations, it follows to a very good approximation
that:

KK, = a}+
or, more accurately:
P U Rl
K,KA—aﬁhaz. 1 a

343
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whence

1
5 (PKa + pK,) = (E — EO)[k + log mgr- + log yor-

1 o 1 —a
—QIOgaz'l——a,

As the last term is of the order 0-001, it suffices to calculate a,
approximately from equation (12.3a) and then «, from (12.3b).
It is desirable that a, be greater than 0-1 to ensure adequate buffer
capacity but if the degrees of hydrolysis are too large, the electrode
material becomes soluble: hence pK, and pK, should differ by
less than two units. The first experiments were made with the base
tristhydroxymethyl)aminomethane, (CH,OH); C.NH,, with the
addition of equimolar amounts of potassium p-phenolsulphonate.
Measurements were also made on the more conventional cell:

H,|MOH, MCIl|AgCl, Ag

The ionization constants found by the two methods were the same,
confirming that the method of ‘partial hydrolysis’ was satisfactory.
Subsequent measurements gave K, = 1:77 X 10~% for ammonia at
25°.

THE SPECTROPHOTOMETRIC METHOD

Ionization constants can also be measured by colorimetric methods
or by ultraviolet spectroscopy. Figure 12.1 shows the ultraviolet
absorption spectrum of p-nitrophenol!® in a number of buffer
solutions: it can be seen that as the pH decreases absorption in the
region of 3170A becomes more pronounced whilst that at 40704,
which is marked in alkaline solution, diminishes to zero in acid
solutions. This suggests that absorption at 3170A is due to the
uncharged p-nitrophenol molecule and that at 4070A to the nega-
tively charged anion, there being an isosbestic point at 3500A
where the extinction coefficients of the two species are equal and
the two can be mixed in any proportion (at constant total molality)
without change in absorption; thus the solution has the same
optical density at any pH. At a wave length not that of the isosbestic
point, however, the optical density does depend on the pH and:.

D= E€HR cHRl + ER~- CR-I

where D is the observed optical density, egg and gg- are extinction
coefficients, cggr and cg- concentrations and [ is the cell length.
Or:

D =Dyl —a) + Dy

344



THE SPECTROPHOTOMETRIC METHOD

where D,, D, and D are the optical densities of three solutions of the
same total concentration of acid, measured in cells of the same
length, D, referring to a solution of low pH, D, to a solution of
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Figure 12.1. Absorption spectrum of p-nitrophenol in solutions buffered at various pH values,
Concentration of p-nitrophenol : 0 36 N. (From Biges, A. 1., Trans. Faraday Soc.,
50 (1954) 800)

high pH and D to one of intermediate pH in which a fraction « of
the acid is present in the ionized form. The ionization constant of
the acid is then given by:

-2
#K = pH —log y—— — log y&-

where pH = — log yg+ mg+ refers to a standard buffer in which
the acid is dissolved for the measurement of D: the buffer should be
so selected that its pH is about equal to the pK of the acid. The
activity coefficient is calculated by Davies’ equation (9.13) although
it has been found better to use 0-2 as the coefficient of the linear
term. This may well be due to the fact that the method has so far
been applied to organic acids with anions larger than those of the
simpler electrolytes, requiring a larger a term: in Davies’ equation
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12 WEAK ELECTROLYTES

a = 3A, and the difference can be compensated by raising the
coefficient of the linear term. The pK value derived by this method
should be independent of the nature of the buffer mixture, at least in
the concentration range in which the assumptions about the
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Figure 12.2. lonization constant of p-nitrophenol from measurements in four buffer mixtures
A NaH,PO, : Na,HPO, : NaCl=1 : 09819 : 1|
B NaH,PO. : NagHPO, : NaCl=1 : 06376 : 1
C NaH,PO, : Na,HPO, : NaCl=1 : 1529 : 1
D NaH,PO, : Na,HPO,=1 : 1
(From RoBinsoN, R. A. and Bices, A. 1., Trans. Faraday Soc., 51 (1955) 901)

activity coefficient term can be expected to hold. Figure 12.2 shows
that this is true for p-nitrophenol!” in four buffer solutions up to a
total ionic strength of 0:1 and gives us with confidence pK = 7-14,
at 25°,
POLYBASIC ACIDS

Ionization constants can also be measured by potentiometric
titration: the method need not be described in detail, for it has
been dealt with elsewhere!8, but we will give a general formula for
the hydrogen ion activity of a solution of a polybasic acid when
titrated with alkali. Suppose an n— basic acid ionizes in n stages:
HA—-H, A—-H, ,A—.... > HA— A, losing a hydrogen
ion at each stage. Let the (rn 4 1) species carry p, ¢, r .... 2
negative charges. Thus if H,A were citric acid, n=3, p =0,
g=1,r=2,5s=3. HA need not be a neutral molecule; if it
were thc NH;-NH, cation, thenn=2,p = —2,¢g = —1,r=0o0r
if it were the NH CHz ‘COOH ion, then n =2, p = —-l, qg=0,
r = 1. In any case, there will be n equations of the form:

K
[HoA] = Z—’ [H,A]

[H,_,A] = 22 ”’[ H,,A] = 2k 22 (51,4)
H

[A] = u Yz-1 [HA] = K\K;...K,

n
ag+ Y. an+

Vs
Y2 4 A
Vs [ ]
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DIBASIC ACIDS

where square brackets denote concentrations and activity co-
efficients are introduced with proper reference to the charge on
each species as indicated by the subscripts. The total concentration
of acid is given by:

¢ = [HA] + [HisA] + . . . +[A]

and the condition of electrical neutrality is:
[H*] + xc = p[H,A] + g[H,,A] + . . . -+ [A] + [OH-] —pc

where xc is the concentration of alkali-metal cation resulting from
the addition of alkali during titration. If H,A is a neutral molecule,
p=0; ifitisa positively charged acid, such as the NH}-NHj
ion, p has a negative value and the last pc term refers to an anion
such as chloride which must accompany the positive ion. By
elimination of the concentration terms from these equations, there
results:

ZKK,. . .K)+ ...+ Rag? K\K; + Qaf! K, = Pajy+
where
P = {xc + [H*] — [OH"1}/y,
Q = {(1 — x)c — [H*] + [OH" ]}y,
R = {(2 - x)c - [H+] + [OH‘]}/%

g = {(n - x)«c - [H+] + [OH‘]}/%

If {(H*] and {OH~] are negligible compared to the terms in ¢ (and
this will usually hold for 4 << pH < 9) this equation reduces, for a
monobasic acid such as acetic acid, to:

(1 — x) Ky = xag+ly,
For a dibasic acid, it becomes:

(2 — x) K\Kolys + (1 — x) Kags[y, = -"a%l*/?’o
or:

lez + 2 —* yz an"' Kl x_ 2,_2 a%-ﬁ

again assuming that [H+] and [OH-] are negligible. Thus
(I — )7, ag+f{(2 — )7} can be plotted against xysak+/{(2 — x)7.}
and K, and KK evaluated from the slope and the intercept of the
plot, a method devised by Speakman.® Alternatively, we can
write:

K, = xag*l{y,[(2 — %) Kyfys + (1 — x)an+/p,]}
= [xag®ly, — (1 — 2)K, ag+[p)]/[(2 — %) Ky/,]
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12 WEAK ELECTROLYTES

whence K, and K can be evaluated by successive approximations.
The corresponding equation for NH3-NH3 would be:

(2 — %) KyKolyo + (1 — %) Kiap+[y, = xakefy,
and for the NH;-CH,"COOH ion:

2 — K Kofyr + (1 — x)Kuage/y, = xaf/ys
The ionization of a dibasic acid occurs by two paths:

Ry

H+ + |
/ RzH R.
R,H 4 Ry

1

R,H -
x RH o
« H+ + l

2

and it must be emphasized that the four ionization constants are
not measured by direct experimental methods. Experiment does
give the two ionization constants:

x = R RH) + [RH Ry
' [R,H-R,H]
o _ AR
?7 [RyRH] + [RHR)
where the square brackets denote concentrations and the activity
coefficients have been omitted for the sake of brevity. Clearly,
K=K, ,+ Kp and 1/K, = 1/K; + 1/Kp and, since the free
energy difference between (2H* + R;-R;) and R,H'R,H must be
independent of the nature of the intermediate ion, K ;Ko = Kg K,
If the acid is symmetrical, R, = R,, as in oxalic acid and its
homologues, then K, = Ky and Ko = K, so that K, = 2K, and
Ky = 1/2:K,. If the negative charge on the R‘R,H ion is very
far distant from the remaining hydrogen atom, so that it is without
effect on the second ionization, we would expect K, to equal K,
and K to equal Kp. In this extreme case, we would then have
K,JK; = 4*. The effect of the negative charge would, however, be
to make it more difficult for the second hydrogen to ionize, so that

and

* The general formula for an n-basic acid is:
2 3 4n
K, =—__K, K= —3

-1 722
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DIBASIC ACIDS

K,> Ko and Kz> Kp, whence K;/K; > 4. This is what is
found: for azelaic acid, COOH(CH,),COOH, the first constant is
six times as large as the second whereas for oxalic acid it is one
thousand times larger.

The acid, R;H-R H, need not be symmetrical nor, indeed, need
it be an uncharged molecule, for in the case of glycine hydrochloride
we regard the cation, NH,-CH;COOH, as a dibasic acid and
formulate the ionization as:

. <c:oo-
H* + C
coon—" "\NH} ~Z, coo-
CH,< /t H+ + CH,<
NH;,;\ COOH"% NH,
H* + CH,<

2
COO- '
The CH2<NH+ species is called a zwitterion®®; whilst it has zero

net charge, it is.highly dipolar with a dipole moment of the order of
13 Debye units and cannot be regarded as a particle with no long
range forces, a treatment which may be valid for the neutral

COOH
molecule, CH,<NH . As before, KK = KgKp, but it is no
3
longer valid to equate K, to K5: in practice these are usually of
different orders of magnitude. The relative amounts of zwitterion
and neutral molecule coexisting in the solution are given by:

[NH{CH,CO0"] K, K,
[NH,CH,COOH] ~ K5~ K¢

and it will be observed that the ratio is independent of the hydrogen
ion concentration. The inequality of K, and Kz and of Ky and K
makes the problem more difficult to treat in that one further
assumption has to be introduced. This usually takes the form that
the effect of the carboxyl group on the ionization of the NH{ group
is not altered by esterifying the carboxyl group: for example, that
Ky for the ethyl ester of glycine hydrochloride, a quantity which
can be measured directly, is the same as Kz for glycine hydro-
chloride itself, a quantity which cannot be measured directly.
Another method?® is to extrapolate from the ionization constants of
the ethyl, propyl and butyl esters: it should be noted that, with
p-aminobenzoic acid, the methyl ester does not fit into the
sequence of the other esters. With some assumption of this nature,
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12 WEAK ELECTROLYTES

ionization constants of an aminoacid can be determined and thence
the fraction of the zwitterion present.?? For the aminoacids which
go to form the proteins, the first ionization produces almost entirely
zwitterions to the practical exclusion of the neutral molecules: to
be exact, in the case of glycine the ratio of zwitterion to neutral
molecule is 2:6 x 105, It is different for the aminobenzoic acids,
for the o-, m- and p-isomers the fraction of zwitterion is 0:17,
0-70 and 0-12 respectively.

Returning now to a consideration of the symmetrical dibasic
acid, BjerruM?® recognised that the failure of the ratio K,/K, to
equal the theoretical value of 4, can be explained by introducing
into the free energy term an allowance for the electrical work to be
done in dissociating the hydrogen ion under the influence of the
charged carboxyl group distant R away: this work :will be e?/(¢R),
the probability of finding a hydrogen ion at the second carboxyl
group will be increased by the factor exp{e?/(¢kTR)} and the second
ionization constant will be decreased by the same factor: hence we
expect:

K, e’
x, =~ texp :.skTR}
The effect of a dipolar substituent on the ionization constant of a
monobasic acid has been dealt with similarly by Eucken®; if 4 is
the dipole moment and { the angle of inclination, Eucken derives
the equation:

5 - o 5

2
GanE and INGoLD?® have measured the ionization constants of the
series of dibasic acids from malonic to azelaic acid. For glutaric
acid and the higher homologues, Bjerrum’s equation gives reasonable
values of R but for malonic and succinic acid the R values are much
too low. Similarly Eucken’s equation, applied to acetic and chloro-
acetic acids, gives too small a distance between the dipole and the
carboxyl group. The theory would therefore appear to be sound
in its application to long, thin molecules but not to shorter, more
spherical molecules. That is to say, the theory applies when the
clectrical forces operate mainly through the solvent and we can
use the macroscopic dielectric constant of the solvent in Bjerrum’s
equation. This is not justifiable for a more or less spherical molecule
and Kirkwoop and WESTHEIMER?® have elaborated Bjerrum’s
work. They consider a model in which the acid occupies a spherical
or ellipsoidal cavity in the solvent, the cavity having a dielectric
constant, € == 2, the value of liquid paraffins. ‘The equations they
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EFFECT OF SOLVENT ON THE IONIZATION CONSTANT

deduce represent observed ionization constants with reasonable
assumptions about the size and configuration of the molecules.

THE EFFECT OF THE SOLVENT ON THE IONIZATION
CONSTANT

The addition of another liquid to water usually reduces the dielectric
constant; for example, a water-dioxan mixture containing 82 per
cent dioxan has a dielectric constant of only 9-5. If this mixture is
used instead of water as a solvent for a weak acid, the electrostatic
forces between the cations and anions are increased and more
opportunities are provided for the formation of covalent bonds. A
decrease in the dielectric constant of the solvent should, therefore,
be accompanied by a decrease in the ionization constant of a weak
acid dissolved in it. This prediction has been amply confirmed by
experiment. To quote only one example of the very large changes
which are observed, the ionization constant of acetic acid in water
at 25° is 1-754 x 10-%; in 82 per cent dioxan it is 3-1 x 10711, It
is natural therefore to seek some relation between the dielectric
constant and the ionization constant, but before considering this it
would be well to study first the energy changes which accompany
the transfer of a strong acid from one solvent medium to another.

Much attention has been given recently to the properties of
hydrochloric acid in different solvent media (see Appendix 8.2),
by studying cells such as:

H,|HCI in 20 per cent methanoljAgCl, Ag.

Not only do such cells give information about the energy changes
occurring during the transfer of hydrochloric acid from one solvent
to another, but they are a pre-requisite if the Harned-Ehlers cell is
to be used for studies of weak acids in mixed solvents. Moreover,
we shall see later that the problems associated with this cell are
closely related to those of the unbuffered cell:

H,|acetic acid in sodium chloride solution]AgCl, Ag.
Previously the potential of the cell:
H,|HCI in water as solvent|AgCl, Ag

has been written:
E = E} — 2k log ym

except that now we have introduced a subscript m to emphasize
that the concentration and the activity coefficient are measured on
the inolality scale. But there is no reason why we should not use
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12 WEAK ELECTROLYTES

the mole fraction scale and indeed it may have theoretical advan-
tages, so that we could have:

E = E} — 2klog fNg
The third possibility is:
E = E} — 2k log yc
We have therefore three standard potentials:
E} = Lt [E + 2k log Ng]
N0

E% = Lt [E + 2klog m]
m—0

E?= Lt [E + 2klogc]
o0

From the definitions of Nz, m and ¢ it follows that:
E?, = EY% + 2k log 1000/ W,
E? = E), + 2klogd,

Similar measurements could be made for hydrochloric acid in
another pure solvent such as methanol; the three E° values would
of course not be the same as in water; moreover, all the activity
coefficients would be measured relative to unity at infinite dilution
in pure methanol. _

Now suppose we had the hydrochloric acid cell with a 20 per cent
methanol-80 per cent water mixture as solvent. We have a choice
of two methods of defining any one of the three standard cell
potentials. We could ignore the composite nature of the solvent and
treat it just as a medium in which to dissolve the acid. By measuring

the potentials at a series of acid concentrations we could obtain the
standard potential as:

SE = *E}; — 2k log §f Ng
and E% = Lt [*E + 2k log Ng] .. (124)
Ny=0

This ungainly notation is used to indicate by the superscripts
that the measurements are made in a mixed solvent medium and
the subscripts mean that the activity coefficient is measured
relative to unity at infinite dilution in this particular solvent
medium. The corresponding equation for pure water as solvent
would be:

vE = wE} — 2k log % f Np
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EFFECT OF SOLVENT ON THE IONIZATION CONSTANT

We might, however, prefer to consider the 20 per cent methanol
cell in another way. We might say that it is nothing more than the
cell with water as solvent to which has been added a certain pro-
portion of methanol. As the ‘water cell’ has been studied so
thoroughly, why not retain *E%? We are entitled to do so, writing:

E = EY — 2k log § f N

but it is most important to recognize that the activity coefficient of
the acid in the mixed solvent is now measured relative to unity at
infinite dilution in water and not relative to unity at infinite dilution
in the mixed solvent. The standard potential is now given by;

EY, = Lt [*E + 2k log Ng + 2k log §f] ....(12.5)
Ny—0

where the last term does not disappear at infinite dilution in the
mixed solvent. Instead, we see from equations (12.4) and (12.5)

that:
©EY — *E% = Lt 2klog $f
Ny=0

Since the standard potentials both in water and in the mixed
solvent are calculable from experimental measurements, then
Lt log wf is also calculable. Is it a quantity of any significance?
Ny=0

it] represents the activity coeflicient of hydrochloric acid at infinite
dilution in 20 per cent methanol solution relative to unity at infinite
dilution in pure water. At infinite dilution in either medium the
interionic effects are absent. We are therefore measuring the effect
of transferring a pair of ions from one solvent to another under
conditions where the only effects are ion-solvent interactions.
OWwEN®? calls this ‘primary medium effect’. We naturally suspect
that there ought to be a relation between the primary medium
effect and the dielectric constants of the solvents. This is an im-
portant matter to which we shall return, but first let us consider if
there are any other kinds of medium effect. Consider the cell:

Ag, AgCl|HCl in water|H,|HCI in 20 per cent methanol|AgCl, Ag

with the acid at the same mole fraction in each solvent. The cell
reaction consists of the transfer of hydrochloric acid from the
aqueous to the methanolic solution and the potential of the cell is:

*E — ©E = *E%}, — EY} — 2k (log §f — log ¥ f) ....(12.6)
By making the mole fraction of hydrochloric acid the same in each
half-cell, we have eliminated any energy change due to concentra-
tion changes, that is to say the energy change is zero except for
changes departures on departures from the laws of ideal solutions.
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The mole fraction scale is particularly suited for considering such
changes. But even if we can avoid energy changes resulting directly
from a difference in concentration in the two half cells, the last
term of equation (12.6) still represents a complicated operation—
the transfer of hydrochloric from a finite concentration in water
to infinite dilution in water, its transfer from infinite dilution in
water to infinite dilution in 20 per cent methanol and finally a
transfer from infinite dilution in 20 per cent methanol to a finite
concentration in this solvent. But we can simplify this by noting
that the potential of the cell could equally well be written:

‘E — vE = — 2k (log Wf — log W.f)
and we have already found that:

wEY —*E} = Lt 2klog §f
so that: Nz—0

log!SI= Lt log Sf+log'—§j—( (12.7)
AR AR S v

The term on the left Owen calls the ‘total medium effect’, total in
the sense that it measures the total change in chemical potential
attending the movement of hydrochloric acid at finite but equal
concentrations in two solvents. Equation (12.7) shows that it is
composed of two effects, the primary medium effect given by the
first term on the right of the equation, determined by the difference
of the ion-solvent interactions at infinite dilution in each solvent
and, in addition, a further effect given by the last term of equation
(12.7). This Owen terms the ‘secondary medium effect’. Its signifi-
cance is this: §/f measures the difference in the ‘non-ideal’ part of
the chemical potential of hydrochloric acid at a finite concentration
and at infinite dilution in 20 per cent methanol. It will be given by
some form of the Debye-Hiickel equation and one factor which will
be important will be the dielectric constant of the medium. But
¥ f measures a difference in the ‘non-ideal’ part of the chemical
potential for the same concentration change in pure water and
again the dielectric constant is important. In fact, the secondary
medium effect should be given to a first approximation by
§/ 1825 x 10 (Ve, Ve,
oa gy = e ()

when the subscripts, s and w, designate the solvent. Thus if the
Debye-Hiickel equation accounts for the activity coefficients in the
separate solvents, it will give an equally good measure of the
secondary medium effect.

354



EFFECT OF SOLVENT ON THE IONIZATION CONSTANT

These considerations are summarized as follows: the total
medium effect on the transfer of an electrolyte from a finite concen-
tration in one solvent to a similar concentration in another solvent
is a composite one. The secondary medium effect results mainly
from a difference in ion-ion interactions in the two solvents and is
determined to a large degree by the dielectric constant of each
medium. The primary medium effect is independent of concen-
tration and results from a difference of the ion-solvent interactions;
it also should be largely dependent on the dielectric constants.

The simplest explanation of the primary medium effect is given
by the Born equation for the energy of transfer of an ion of radius
r from one solvent medium to another:

e”(i_l)l
2 \ep &)1

or for a mole of a 1 : 1 electrolyte:

ey —my =N (L )24 )

€, Ew/ \1 Ty

Thus, if we could assume that the radius term does not change with
the nature of the solvent, the standard cell potential should be a
linear function of the reciprocal of the dielectric constant. Measure-
ments have been made in recent years of E} for a number of
solvent mixtures. The interpretation of the data is not easy. At one
time it was thought(?® that, by postulating that the hydrogen ion
of hydrochloric acid was associated with one water molecule and
assuming that the water activity could be equated to the mole frac-
tion of water in the solvent mixture, the function (*E} — £ log V)
would be the correct one to use. With the data available in 1941
this seemed true: the data for a number of mixed solvents, plotted
in this way, fell on a single curve. More recent measurements on
more solvent mixtures suggests that the problem is not so simple(?®;
indeed, FEakiNs and FRENCH® discard the Born term and find a
relation between SE?, the standard potential on the molar scale, and
¢w, the volume fraction of water in the mixed solvent:

SEY = WEY — 25k log 4,

the coefficient, 2-5, denoting that 2-5 molecules of water accompany
the transfer of a hydrogen ion from one solvent to another. This
relation holds for eleven solvent mixtures down to ¢, = 0-7:
exceptions are glucose, glycol and dioxan-water mixtures.

We can now consider the effect of the solvent on the ionization
constant of a weak acid. The free energy change on the dissociation
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of such an acid is — RT In K; this is the energy change when a
mole of undissociated acid in its standard state is replaced by an
equivalent amount of its ions each in the hypothetical standard

8
state. Then RT In 5%‘. (*K and *K being the ionization constants in

water and in a mixed solvent respectively) measures the change in
free energy when a mole of undissociated acid is transferred from
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Figure 12.3. log:—xx- as a function qfﬁ-

the mixed solvent to pure water and the ions are transferred in the
opposite direction. Furthermore, if we work on the mole fraction
scale for the ionization constant, these transfers occur between
states of the same mole fraction and there is no energy term corre-
sponding to ‘ideal gas expansion’. Moreover, the transfers occur
between states of unit activity coefficient; there is, therefore, no

term to be introduced for interionic effects. The term RTlog;]]E(

should measure the effect of the solvent on the ions and the un-
dissociated molecules. Finally, we lose no generality if, in a com-
parison of acids in different solvents, we put K = 1 for each acid
in water.

1
Figure 12.3 is a graph on which are plotted against - the ionization

€
constants of a number of weak acids each relative to unity for the
ionization constant of the acid in water. The points do cluster
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round a line although there are considerable departures from it:
the straight line in the figure would, by Born’s equation, assuming
r, = 3:73 A for the hydrogen ion, lead to 1-2 A for the carboxylic
anions, a small but not impossible value. Just as with the behaviour
of hydrochloric acid in different solvent media, Born’s equation
gives a first approximation to the properties of weak acids in
different solvents, but it is evident that some highly specific effects
must be allowed for if we are to give a complete account of weak
acids.

THE EFFECTOF TEMPERATUREONTHE IONIZATION CONSTANT

Potential measurements of the Harned-Ehlers cell (see p. 340) have
been made over a temperature range (usually 0-60°) for a number
of weak acids, and the ionization constant can be calculated at each
temperature. Since:
Raan_ 3 (AR T) _ AR
3T 3T T

the information is not limited merely to a series of ionization
constants at different temperatures but can be expanded to embrace
the heat content change on ionization (at infinite dilution) and (if
the analysis is sufficiently detailed), the temperature coefficient of
the heat content, i.e., the difference in heat capacity between the
ions and the undissociated molecule. Many equations have been
proposed to represent the temperature variation of the ionization
constant, but it has not always been appreciated that the very
method by which these constants are reported in the literature
imposes limitations on the equations we can use. The experimental
results are a set of potentials at regularly spaced temperature
intervals. It has been asserted that these can be represented within
the experimental error by a quadratic in the temperature; indeed,
in some cases the reported potentials may have been smoothed by
means of this quadratic. The potentials being proportional to a free
energy change, then this also must be quadratic in the temperature
within the experimental error. Hence we can write!®!);

A@ = —RTInK = (4 —CT + DT?
and by ordinary thermodynamic methods it follows that:
A8 = (C — 2DT)

AR® = (4 — DT?)
ACS = (— 2DT)
2:303R log K = —;+C—DT ....(12:8)
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A number of equations have been proposed to express the ionization
constant as a function of temperature and many of them do repre-
sent the observed data faithfully: there may be theoretical grounds
for preferring them, but equation (12.8) is more closely related to
the experimental results and is therefore adequate as a compact
method of recording a set of results. Only one example is known,
cyanoacetic acid®?, where additional terms are needed to represent
the data. Equation (12.8) predicts that there will be a maximum
value of the ionization constant at a temperature Ty, = VA/D
at which it will be given by:

2-303R log K = C — 2V 4D

At this temperature AH® = 0. For many weak acids this maximum
is found about room temperature: for example, it is 22:5°C for
acetic acid. In Appendix 12.1 we give the values of the parameters
necessary for calculating the ionization constants of some weak acids
and bases.

This equation is usually valid over the temperature range 0° to
about 60° but it has been tested over the more extended range 0°
to 90° for acetic acid in 50 per cent glycerol-water solution(®®,
Table 12.2 shows how well equation (12.8) represents the experi-
mental results,

Table 12.2
lonization Constant of Acetic Acid in 50 per cent Glycerol-water Solution
log K, = — 22142 4 3.4148 — 0:014268T
K, x 10¢

Temp.
obs. cale.
0°C 4778 4-784
10 5097 5-105
20 5-316 5-303
30 5-378 5-375
40 5-330 5-333
50 5184 5-187
60 4951 4953
70 4-654 4-653
80 4315 4-307
90 3935 3931
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THE UNBUFFERED CELL CONTAINING A WEAK ACGID
The cell:

H,|HA(m), NaCl(m)]|AgCl, Ag I
where HA is a weak acid, seems on first inspection to involve only
the simplest considerations, for we write the potential:

E = E® — klog ya+yar-masm

We have made the salt molality equal to the total acid molality
to economize on symbols: the cell works equally well if the con-
centrations are different. yg.y¢- has some special properties: it is
the activity coefficient product of hydrochloric acid in a solution in
which the hydrogen ion concentration is very small since the only
hydrogen ions are those formed by the dissociation of the weak acid.
In Chapter 15 we shall see that the activity coefficient of hydro-
chloric acid in a solution of sodium chloride in which the molalities
of both components are allowed to vary but the total molality is
kept constant, is subject to a very simple empirical law:

% lOg YEYC0- = — 0-1393 + 0'0377’130;

The numerical quantities are specific for 25° and the particular
total molality considered; 0-5M in this case. It is worth while

calculating the activity coefficient of hydrochloric acid in some
acid-sodium chloride mixtures at a total molality of 0-5 M:

mgcl Myl Ya0
0-5 0 0-757
0-25 0-25 0-741
0-10 0-4 0-732
0-05 0-45 0-729
0-01 0-49 0-726
0-001 0-499 0-726
0 05 0-726

If HA is acetic acid and m = 0-5, the hydrogen ion concentration
is about 0-003 M so that clearly we can equate yggq to 0-726. The
point to be emphasized is that ygg is practically independent of
acid concentration as long as this is small: moreover ygg can be
obtained from experiments on hydrochloric acid-sodium chloride
mixtures. A measurement of the potential of Cell I therefore gives
information on three matters!3. First of all it gives mg., the hydro-
gen ion concentration in a solution of a weak acid and the salt of
a strong acid, as:

— klog mg. = E — E° + klog ygsye- + klogm
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Secondly, by introducing the law of mass action in the form:

mﬁo

A —mg ~ e
yi being an abbreviation for yg.yx-[Yma, and introducing a
Debye-Hiickel approximation for y,, we can extrapolate to [ =0
to get K,. Figure 12.4 shows this extrapolation for 0-1 M acetic acid
in sodium chloride solution, the limiting value of log K, being
— 475 and K, = 1:72 x 10~5. Thirdly, using this value of the
ionization constant, we can calculate y,. It has been shown that
this activity coefficient term behaves in some ways like the activity
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Figure 12.4. Extrapolation of data from unbuffered cell to give the ionization
constant of acetic acid

coefficient of hydrochloric acid in a salt solution; with increasing
salt concentrations it first diminishes in value, passes through a
minimum at about 0-5 M and then increases to values which may
exceed unity if the salt concentration is very large. The term differs
from the activity coefficient of hydrochloric acid, however, in one
important respect; at any given value of the total ionic molality,
the activity coefficient of hydrochloric acid in different salt solutions
is in the order:
YHCKLICY) = YHCKNaCl) > YHOKECI)

whereas the reverse is true of the y, term. Cell I is therefore an
important source of information about the behaviour of weak acids
in salt solutions but unfortunately the exact treatment of the
problem is not as simple as we have suggested. So far we have
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THE UNBUFFERED CELL CONTAINING A WEAK ACID

assumed that the term pg.yq- introduced early in the theory, is
not influenced by the presence of the undissociated acetic acid
molecules, i.e., we have ignored the medium effect on both
ya+ya- and on y,. These complications have been considered by
OWwEN({?" 34 and are worth while describing in some detail because
they illustrate the importance of the medium effect. Moreover,
whilst this is not the best method of finding an ionization constant,
it does give information not obtainable from the Harned-Ehlers cell.
In the following discussion we follow the treatment given by
Owen?", The correct equation for Cell I is:

E = YE® — klog gym+ gyc-mpem

where the activity coefficient term differs from that used before
(and which should have been written $yg. ¥yc-). We now put
this equation in the form:

—klo mn.—zklog"’"m E — “E® 4 2% log ®ygc) + k log m
g — g By g

The second term is the total medium effect on hydrochloric acid.
The right-hand side of the equation is identical with our first
estimate of — k log mg. which we now see to be erroneous by a
factor dependent on the medium effect. The right-hand side,
however, contains quantities all of which are known or are measur-
able; it will be convenient to call it — & log mg..

Next we write the equilibrium equation as

2 log mg+ — log (m — mg.) + 2log 2y, = log “K
or

2 log mp+ — log (m — mg.) + 2 log &ya

= log "k — 2 log 2YEIC =Y w}'nm wYHCl w¥A
w}'ECl YA

We ignore the medium effect on mg+ in so far as it concerns the
(m — mg.) term. Using a Debye-Hiickel approximation for ¥y,
the left-hand side can be plotted against the total molality and
extrapolated to 7/ = 0: we have already done that in Figure 12.4
for 0-1 M acetic acid and the extrapolation can be repeated for each
molality of acetic acid at which measurements have been made.
(Four such extrapolations are shown in Figure 12.5.) The limiting
value at 7 = 0 is:

“yHC WA
log YK — 2 Lt log &5—--= ....(129
8 10 8 aviicr Sya (12.9)
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12 WEAK ELECTROLYTES

t.e., we have got the correct ionization constant except for a term
which contains the primary medium effect. An extrapolation like
that shown in Figure 12.4 has eliminated the secondary medium
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Figure 12.5. Extrapolation of data at four molalities of acetic acid to eliminate
the secondary medium effect
effect. If we have a set of such extrapolated values at a series of
acetic acid molalities, we now make a second extrapolation by plot-
ting the quantity in (12.9) against the acetic acid molality (Figure
12.6). The result of this second extrapolation at m = 0 is log ¥X.
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Acetic acid molalily
Figure 12.6. Extrapolation of data at six molalities of acetic acid to eliminate
the primary medium effect

In order to perform the second extrapolation in Figure 12.6,
values at I = 0 were read from Figure 12.5. Values could, however,
be read for a given non-zero value of I, plotted like Figure 12.6 and
extrapolated to zero acetic acid molality. What would be the
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significance of these extrapolated values? They represent values of

m + . - .
(log ;jﬁ;; + log gyi) at zero acid concentration but finite

salt concentration. But log ¥y, was replaced, for the purpose of
extrapolation, by a Debye-Hiickel approximation which can now

m C e .
be taken out again to give (m—ﬁ;‘—) This, divided into ¥K,

— mge
gives the true value of 5 = yg. y4-[yua in water as solvent at a

given sodium chloride concentration.

THE IONIZATION CONSTANT OF WATER

Water is a very weak acid and the determination of its ionization
constant requires special methods. The equation for the potential
of the cell:
H,|NaOH(m), NaCl(m')|AgCl, Ag:
combined with
K, = YB+YoR-MH+MoH-
aq,0
gives:

E—Ev+klog— = —k]ong—klog%}:—c}};)—af! ....(12.10)

and extrapolation of the left-hand side of this equation against the
total ionic strength gives — klog K, as the limiting value when
I = 0. Figure 12.7 shows two such extrapolations for cells containing
lithium hydroxide-lithium chloride and potassium hydroxide-
potassium chloride. The ionization constant of water has been
deduced from measurements on a number of such cells®! with
good agreement (see Appendix 12.2), and some measurements have
been made with mixed solvents, in particular dioxan®®®, In water
itself at 25° the ionization constant is 1-008 X 10-'4; in 20 per cent,
45 per cent and 70 per cent dioxan itis 23-99 x 10-6,18-09 x 10-3?
and 1395 X 10! respectively.

The ionization constant increases with temperature and can be
represented® by an equation of the form of (12.8)

4471-33
T

The heat content change at 25° is AH® = 13522 cal mole~? and the
heat capacity change is ACP = — 46:53 cal degree~! mole™.
This equation predicts a maximum in K, at 239°C, a temperature
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12 WEAK ELECTROLYTES

well outside the usual range: however, from experiments on the
hydrolysis of ammonium acetate®”, evidence has been found that
the ionization constant of water has a maximum value about 220°C.
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Figure 12.7. Extrapolation of electromotive force data to give the ionization
constant of water at 25°

IONIC ACTIVITY COEFFICIENT PRODUCT OF WATER IN
SALT SOLUTIONS

Equation (12.10) can be used to get yg. yog-/am,0. The left-hand
side of the equation contains only experimentally measurable
quantities and K, has been calculated. yg.yq- can be found by a
method similar to that described when discussing the unbuffered
weak acid cell. This yg«yc- is the activity coefficient product of
hydrochloric acid at the very low hydrogen ion concentration of
these alkaline solutions in the presence of a considerable amount of
chloride and since this is separately measurable, the jonic activity
coefficient product of water can be calculated. It is a quantity
which varies with the total ionic molality very much as does
yE*Ya-, but at any selected total molality it has the highest value
in caesium chloride solutions and the smallest in lithium chloride
solutions. In this respect it resembles yg. y,-/yga for a weak acid.

THE HYDROGEN ION ACTIVITY OF SOME SOLUTIONS
Cells such as: H,|Aqueous buffer solution|AgCl, Ag R |

give log(ag+yci-) = log (mgsyp+y-) without ambiguity and
with an accuracy depending only on the accuracy with which the
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THE HYDROGEN ION ACTIVIT'Y OF SOME SOLUTIONS
e.m.f. and the concentration of chloride ion can be determined, for:
(E —“E% [k + log mg- = — log (ag+yq-) - ... (12.11)

Sometimes — log (ag+yc)-) is written p(ag+Yq-) or pe(ag+ya-) to
emphasize that the value of E® is for water as solvent, and activity
coefficients are given relative to the standard state in water.

pag+ differs from p(ag+yc-) by log y¢-, which cannot be found
without some extrathermodynamic assumption. For aqueous solu-
tions at 25° BATES and GuGGENHEIM®® proposed the convention:

~ log yg- = AVI|(1 + 1-5VT) e (12.12)

This is equation (9.7) with a = 4-56 A, and represents the activity
cocfficients of sodium chloride with remarkable fidelity up to
I = 0-1. Thus the Bates-Guggenheim convention is equivalent to
assuming that y - in any solution is equal to Yy, in a solution of
sodium chloride of the same total ionic concentration (I < 0-1).

Both p(ag+yq-) and pag. are therefore known if the e.m.f. of a
cell of type I has been measured. Many such measurements have
been made; moreover, by making such measurements at several
chloride ion concentrations, a simple extrapolation can be made to
give pag+ at its limiting value at zero chloride ion concentration.
Appendix 12.3, Table 1 gives pay: values for seven buffer solutions
made from well-defined, readily available substances.

Cells with liquid-junction are in more frequent use. Consider:

H,|Solution X|saturated KCl|calomel, Ex R § |

H,|Solution S|saturated KCl|calomel, Eg LI
a combination which is essentially the cell:

H,|Solution X|saturated KCl|Solution S|H, R A%

The hydrogen electrode is often replaced by a glass electrode. The
operational definition of pH is:

pH(X) — pH(S) = (Ex — Eg)lk  ....(12.13)

where pH(X) is the value of pH to be determined in the solution of
X and pH(S) is the value assigned to some standard, S. The
British practice®® is to adopt a single standard, 005 M potassium
hydrogen phthalate, and to assume that for it:

pH(S) = pag+ = 4000 + 5 x 10-5(t — 15)z 0<t<55
= 4000 4 5 x 10-5(t — 15)* — 0-002(¢ — 55)
55 <t < 95

BaTEs®, however, relies more on three standards: the phthalate
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12 WEAK ELECTROLYTES

solution, the equimolal phosphate mixture and the borax solution.
For each of these, it is assumed that pH(S) = pay+, using values of
pay” given in Appendix 12.3, Table 1.

The question now arises as to how closely pH(X), defined opera-
tionally by equation (12.13), can be identified with pag+. A partial
answer can be obtained by making pH measurements with § the
standard phosphate mixture and X either the phthalate or borax
standard. The results seem to depend, to some extent, on the way
the liquid-junction is made, but, with care in making the junction,
agreement within less than 0-0]1 between pH and pay: is possible
in the pH range 4-9. Above pH 9, pag- seems to be higher than
pH and the equation:

pags = pH + 0-014 (pH — 918)  ....(12.14)

has been proposed!4! to correct pH meter readings.

Whether pH = pag:+ at pH < 4 is a question more difficult to
answer. It seems certain that, for 0-05 M potassium tetraoxalate,
pag+ is higher than pH by 0-02. It is not certain whether this is a
peculiarity of the tetraoxalate buffer solution or a difference in-
herent in all solutions of low pH. For calibration of electrodes for
use at low pH, solutions of 0-01 M hydrochloric acid, p(ag+yq-)
= 2.087, pay+ = 2:043 and 0-1 M hydrochloric acid, p(eg+yc-)
= 1-197, pay+ = 1-087, are useful. Appendix 12.3, Tables 2 and 3
contain some other useful reference values.

If the solvent is non-aqueous or only partially aqueous (the term
‘non-aqueous’ can conveniently cover both categories), plag+yq-)
can be obtained without ambiguity from cells like type I but with
a non-aqueous solvent. But there are now two values of p(ag+y-) ;
if we use PE® as in equation (12.11) then we get p,(ag+yc-),
where activity coefficients are relative to the standard state in water;
if we use *E° we get p,(ag+yc-), where activity coefficients are
relative to the standard state in the non-aqueous solvent.

pag+ (strictly speaking, p,ag+ sometimes written paf) is also a
well-defined quantity, equal to p,(ag+yc-) + log s¥-, provided
that we use a conventional value of ,y-. This can be done by
using equation (9.7) for log ;yq- with @ = 4:56 A as before and
values of the 4 and B parameters suitable to the temperature and
the dielectric constant of the medium. Some pag.+ values in 50 per
cent water-methanol4?! have been determined for acetate, succinate
and phosphate buffer solutions over both a temperature and a
concentration range. At 25°, pag+ values were as follows: equimolal
(0-025 M) acetic acid, sodium acetate and sodium chloride, 5-529;
equimolal (0-025 M) sodium hydrogen succinate and sodium
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THE HYDROGEN ION ACTIVITY OF SOME SOLUTIONS

chloride, 5:734; equimolal (0-01 M) potassium dihydrogen phos-
phate, disodium hydrogen phosphate and sodium chloride, 8-021.

If deuterium oxide is the solvent, the basic measurement is the
e.m.f. of a cell of type I but with a deuterium gas electrode and a
solution of deuterium chloride in deuterium oxide. The standard
potential of the cell is determined; at 25° it is 0-21266 V compared
with 0-22234 V for ordinary water. Cell I is then used with a
deuterium gas electrode and a buffer solution in deuterium oxide to
give values of p(ap+yq-), whence values of pay:+ are derived using
a modified Bates-Guggenheim convention. The acetate and
phosphate buffer solutions were studied“® from 5°-50°. At 25°
we have: 0-05 M CH;COOD + 0-05 M CHyCOONa, pap+ = 5230
and 0-025 M KD,PO, + 0-025 M Na,DPO,, pap+ = 7-428

An operational pH scale for non-aqueous solvents could be
defined by cells such as II, III and IV, using the same solvent in all
cell compartments. It is not known to what extent pay+ and pH in
non-aqueous solvents would be self-consistent.

More is known about the cell44):

H,} X in non-aqueous solvent|saturated aqueous KCl|
aqueous calomel electrode ....V

The operational pH is still: pH(X) — pH(S) = (Ex — Eg)/k,
where Ey is the e.m.f. of cell V and Ej that of cell III containing a
standard buffer solution such as the phosphate mixture in aqueous
solution. We suppose that the non-aqueous solution contains at
least a small amount of chloride ion so that measurements of
plag+ya-) can be made in cells without liquid-junctions. If we
use PE?, we get p,(ag+yq-)-

Cell V must have a liquid-junction potential E; at the interface
between the aqueous and non-aqueous solutions. The best that we
can hope for is that (pH — E,/k) will measure hydrogen ion activity:

pH — E,[k = pu(ag+yar-) + loguya-

But log ,ya1-/s¥c1 = 108 Y- is the medium effect—the ‘primary’
medium effect of equation (12.7). Hence,

PH — pu(en+yar) —logwva- = Ejlk + log mya- -...(12.15)
The first two terms on the left can be measured, the third is deter-
mined by convention. log,ya- depends only on the nature and
composition of the solvent and it is not unreasonable to hope that
E; will likewise be independent of the nature and amount of the

solutes. Experiment shows that this is so for water-methanol,
water-ethanol and water-dioxan solvents. This, however, only
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12 WEAK ELECTROLYTES

proves that E; is, at least to a good approximation, a constant for
any one solvent medium. Equation (12.15) can be rearranged thus:
pslag+) or pag = pH — & ....(12.16)
where 6 = E;[k — log ,yg+
Again, 3 should depend only on the nature and the composition of
the solvent and its value can be determined by measuring pH and
pag values for a few solutions, using cells with and without liquid-
junctions, respectively. Thus a correction factor can be provided
to convert pH values into pay; for each solvent composition. Some 4
values for water-methanol solvents are as follows:

Wt. per cent
methanol 10 20 30 40 50 60 70
] 0-00, 0-01, 003, 0-08, 012y 0-14, O-1ll,

As an example, for 521 per cent methanol, § = 0-130. A
solution of 0004996 M borax and 0-009992 M potassium chloride
in this solvent gave p,(ag+yq-) = 9-525, pag = 9-432. The pH
value as measured by a combination of cell 111 (aqueous phosphate,
pH 6-865) and cell V gave pH = 9-565. Applying the correction

= 0-130, gives pay = 9-435, which compares very well with that
obtained from a cell without liquid-junction,
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13

THE ‘STRONG’ ACIDS

THE comnmon acids, hydrochloric, nitric, perchloric and sulphuric,
have many properties in common with other electrolytes but their
dissociation into hydrogen (or H;O*) ions and their ability to act
as solvents themselves, endow them with some characteristics which
are described separately in this chapter.

AQUEOUS HYDROCHLORIC ACID

The thermodynamic properties of aqueous hydrochloric acid show
a striking resemblance to those of lithium chloride. (See Appendix
8.10.) The osmotic and activity coefficients of hydrochloric acid,
the chlorides of the alkali-metals and ammonium chloride form a
very regular group of non-intersecting curves, the coefficients at any
given concentration decreasing in the order:
H* > Li+ > Na+ > K+ > NH{

The activity coefficients can be quantitatively accounted for by the
combination of the Debye-Hiickel theory with the concept of ionic
hydration which was discussed in Chapter 9. The values of the
‘hydration parameter’ (%) required in equation (9.25) at 25° are:

HCl, 8-0; LiCl, 7-1; NaCl, 3-5; KCl, 1-9; and NH,CI, 1-6.
It will be recalled that these values represent an allowance for the
total ion-solvent interaction; we are claiming that the thermo-
dynamic properties of the solution are the same as those which
would be expected if the ‘molecule’ of solute consisted of two ions,
solvated with a total of £ molecules of water, rather than asserting
that in fact the kinetic entities are (taking lithium chloride as an
example) an unhydrated chloride ion and a lithium ion solvated
with 7-1 molecules of water. On this basis the high value for the
hydration number of the hydrogen ion in hydrochloric acid is not
unreasonable. The familiar formula H,O+ is no more than a
statement that at any given moment the proton must be on one
water molecule or another; it is quite likely that its presence would
lead to an intensification of the temporary bonds of that molecule
to its neighbours, so giving the hydrogen ion a large thermodynamic
hydration number.

BascoMBE and BELL3}, and WYATT!?), have found that the vari-
ation of the Hammett acidity function with concentration in strong
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AQUEOUS HYDROCHLORIC ACID

acid solutions (up to 8 M) is consistent with hydration of the proton
to H+(H,0),. A similar conclusion is reached by van Eck, MENDEL
and Boog1® from X-ray diffraction studies of concentrated hydro-
chloric acid. Such a clustering would not seriously limit the
mobility of the ion in conductance or diffusion, since most of the
transport of hydrogen ion occurs by a ‘jumping’ of the proton from
one water molecule to another rather than by the bodily motion
of the whole cluster (see p. 121). The introduction of some such
abnormal transport mechanism for the hydrogen ion is unavoid-
able if the extremely high mobility of this ion is to be explained.
However, it presents an interesting problem: why is the concen-
tration-dependence of both the conductivity and the transport
number of hydrochloric acid so successfully accounted for by the
theory developed in Chapter 7 for normal electrolytes, in which the
transport is by ordinary motion of the ions through the solvent?
On examination of the form of the theoretical expression, an answer
suggests itsclf.

The equivalent conductivity of an ion of an electrolyte is given by
equation (7.25); A—;{ is the relaxation effect, AX being the extra
field acting on the ion due to the field of the surrounding ions. This
is a purely electrostatic effect, and will be just as effective in stimu-
lating proton-jumps as it will in causing normal ionic motion;

consequently the factor (l + AX)—{) will be applicable to hydro-

chloric acid. The term (i —

6N 1 + «a
effect. This is a hydrodynamic effect, and as such will affect the
chloride ions but cannot be expected to apply to the proton-jump
part of the motion of hydrogen ions. However, it has never been
claimed that the proton-jump mechanism is the only cause con-
tributing to the conductance of the hydrogen ion: if a cluster of
water molecules is associated with a proton, that cluster will move
in an electrical field even if the proton does not jump. In fact, only
relatively few protons need jump to produce the observed conduc-
tivity: the rest of the hydrogen ions will be moving in the normal
manner, probably with a mobility comparable to that of lithium
ions. Now the electrophoretic term in equation (7.25) does not
involve the mobility of the ions directly: we might write the first
factor as:

) gives the electrophoretic

F? K
(142 - )
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where 23 is the abnormal or proton-jump part of the limiting
conductivity, and 43 is the part contributed by the normal motion;
the electrophoretic correction is the same however the total value
of Ag. is distributed between the two processes. This will mean that
equation (7.25) is applicable to the hydrogen ion in hydrochloric
acid. In fact, the equation, even in the simplified form (7.36) gives
an excellent account of the change in equivalent conductivity with
concentration up to several tenths molar. The same argument will
of course explain the success of equation (7.40) in reproducing the
observed transport numbers. The value of the ion-size parameter
required in the transport number equation is 4-4 A and in the
conductivity equation it is 4-3 A; this is very nearly the value
(447 A) demanded by the Debye-Hiickel equation for the activity
coefficient. It is only at fairly high concentrations that the con-
ductivity begins to drop more rapidly than equation (7.36) would
predict.

The conductivity of hydrochloric acid solutions has been
thoroughly studied by Owen and SweeToN{1d) over a wide range of
concentrations and temperatures (see Table 13.1). Below about

Table 13.1
Equivalent Conductivity (A) of Concentrated Aqueous Hydrochloric Acid Solutions

¢ 5° 15° 25° 35° 45° 55° 65°

0 297-6 3619 | 4260 | 489-0 | 5502 | 6093 | 6666
0-25 266-2 3221 3774 | 4311 482-8 | 5319 | 5782
1-00 235-2 284-0 332-3 3794 | 4249 | 4682 509-2
2:25 1920 § 2309 | 2700 | 3086 346-1 382-1 416-3
4-00 143-5 1716 | 200-1 228-6 2569 | 2842 3101
625 97-9 1160 134-7 153-6 172:5 191-2 209-5
9-00 613 722 83-5 94-9 106-6 1182 130-0

From Owen, B. B. and Sweeron, F. H., J. Amer. chem. Soc., 63 (1941) 2811.

The A° values given in the original paper differ by up to 0-2 unit from those
in the table above, which are obtained by applying equation (7.37) to measure-
ments on solutions below 0-1 N.

0-1 N their results can be accurately represented by equation (7.36),
the parameter a taking the value of 4-3 A at all temperatures from
5° to 65°. In these relatively dilute solutions, therefore, the acid
behaves as a normal non-associated electrolyte. At higher concen-
trations, however, the conductivity falls more rapidly than equation
(7.36) predicts. Thusin 4 N solution at 25° the observed equivalent
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conductivity is A = 200-1; even the introduction of the bulk visco-
sity (9/n® = 1-255 at 4 N and 25°C) as in equation (11.50), brings
the calculated value down only as far as A = 258, still some 25 per
cent high. In view of the comparatively good success of equation
(11.50) with other concentrated non-associated electrolytes (see
Figure 11.5), it seems that some special explanation of its failure for
hydrochloric acid must be invoked. Association into hydrogen
chloride molecules cannot be the explanation, for the vapour
pressure of hydrogen chloride over the 4 N solution is far too small
to admit of any significant concentration of such molecules in the
liquid. However, the special proton-jump mechanism by which the
hydrogen ion is mainly transported (see Chapter 6) provides a
reasonable explanation: at the high electrolyte concentrations in
question, a substantial proportion of the water molecules must be
oriented round ions in positions which leave them unable to par-
ticipate in the normal coordinated or ‘hydrogen-bonded’ water
structure: such molecules would presumably not be available as
arrival points for the ‘jumping’ protons, the mobility of which would
therefore be considerably reduced. This suggestion is due to
Onsacer!®, who further points out that the specific resistance of
hydrochloric, sulphuric and nitric acids reaches a maximum of
about 13 Q-cm at high concentrations: this leads him to estimate
the dielectric relaxation time of water as 1-45 X 10-1% seconds. The
value obtained from high radio frequency measurements is of the
order of 10-1! sec at room temperatures, so that Onsager’s estimate
is too low. It was, however, obtained by ignoring the contribution
of the anion to the conductivity; the effect of this approximation
would at least be in the observed direction, although it would be
difficult to estimate its magnitude.

SULPHURIC ACID AS AN IONIZING SOLVENT

Sulphuric acid is of exceptional interest in the study of electrolytes.
Its behaviour in aqueous solutions is naturally of great practical
importance in view of its widespread use in chemical industry;
while from a theoretical view-point perhaps even more valuable
information has been gained from the study of sulphuric acid as a
solvent for electrolytes.

Most of the present extensive knowledge of the properties of
solutions in sulphuric acid is due to some recent comprehensive
studies by GILLESPIE and his collaborators®, They found a freezing-
point of 10-36°C for pure sulphuric acid. (KunNzLEr and G1AuQUE®
found 10-35°.) The freezing-point is depressed by both water and
sulphur trioxide in excess of the exact stoichiometric composition
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H,SO,. The pure liquid has a remarkably high electrical conduc-
tivity,
K% = 001033 Q! cm~

K194 = 0-00580 Q! cm~!

This conductivity is raised by both excess water and excess sulphur
trioxide, though according to Kunzler and Giauque the minimum
electrical conductivity occurs not quite at the composition of pure
sulphuric acid but at 99-996 4 0-001 per cent H,SO,. The di-
electric constant has recently been determined® ® as ¢, (25°C) =
101, so that it is one of the few solvents with a dielectric constant
higher than that of water. Its viscosity is also unusually high,

17(250) = 0'2454’ poise,

some twenty-seven times that of water at 25°

Thus the properties of most direct relevance to the behaviour of
dissolved ions, viz., the self-dissociation, the dielectric constant, and
the viscosity, are all substantially greater than the corresponding
properties for water, and this fact is reflected in a number of
interesting ways.

The conductivity of pure sulphuric acid is attributed to the
ionization:

2H, SO, = H;SO; + HSO7

for which an apparent molal scale ionization constant
K = [H;SO{]{HSO;] = 1-7 x 104
has been estimated. Another reaction,
2H,S0, = H,0* -+ H5,07

is believed to occur simultaneously, with an ionization constant of
8 x 10-5. This extensive self-dissociation considerably complicates
the interpretation of both cryoscopic and conductivity results for
solutions in this solvent; the total concentration of self-dissociation
products is estimated as 0-043 molal, in striking contrast with the
value of only 2 x 10-7 for the sum of the hydrogen and hydroxyl
ion concentrations in water.

Sulphuric acid has good solvent powers for both organic and
inorganic compounds: sulphuryl chloride and trichloracetic acid,
for example, dissolve as non-electrolytes, while alkali and alkaline-
earth metal bisulphates and perchlorates, nitric acid, water, sulphur
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trioxide, n-propylamine, benzoic acid, acetone, and alcohols
dissolve as electrolytes. An interesting and unusual feature of the
electrochemistry of solutions in sulphuric acid is that, because of
the strong proton donating character of the solvent, the anion
formed in the electrolyte solutions is almost invariably the bisulphate
ion, examples of some ionization-reactions being:

KHSO, - K+ + HSO;

H,O + H,SO, - H,0+ + HSO;

C,H,0OH + 2H,SO, - C,H;HSO, + H,0+ + HSO;
HNO, + 2H,SO, - NO} + H,0+ + 2HSO;
NH,CIO, + H,SO, - NH} + HCIO, + HSO+

At present the only feasible way of studying the thermodynamics of
such solutions is by freezing-point depression measurements, an
extensive study of which, with modern experimental techniques, has
recently been made by Gillespie and his co-workers. The ionization
equations quoted above are derived from their studies. Gillespie’s
school reached the conclusion that interionic effects were negligible
within experimental error, as had been previously suggested by
Hammerr and Devrup'”, and postulated an extremely high
(‘ferroelectric’) dielectric constant for sulphuric acid to account for
this. No reliable measurements of the dielectric constant were at
that time available, but the recent measurements by BRaND, JAMEs,
and RUTHERFORD!® by radio frequency methods at wavelengths as
low as 10 cm have overcome the experimental difficulties of measur-
ing the dielectric constant of this highly conducting liquid, and show
that the value is approximately & = 110 at 20°. Whilst higher
than that of water, this value is certainly not of the ‘ferroelectric’
order of magnitude, being comparable with that of liquid hydrogen
cyanide: in the latter solvent (see Chapter 7) interionic attraction
effects are by no means negligible. Brand, James and Rutherford
point out that a probable explanation of the ‘pseudo-ideal’ be-
haviour of electrolytes in sulphuric acid is that the ionic strengths
of the solutions used in the cryoscopic studies are necessarily high
(greater than 0-05) because of the strong self-dissociation of the
solvent; in this region of ionic strength the activity coefficient and
osmotic coefficient would be expected to vary only slowly with
concentration, as is the case in water. They have, in fact, shown
that the osmotic coefficients of a number of electrolytes in sulphuric
acid solutions are in very fair accord with Guggenheim’s modification
of the Debye-Hiickel equation (equation 9.13).
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CONDUCTIVITIES OF SOLUTIONS IN SULPHURIC ACID

Gillespie and his co-workers have also made important studies of
the conductivity of electrolytes in sulphuric acid, supplemented by
measurements of transport numbers, viscosities, and densities. Once
again the strong self-dissociation precludes the measurements at
low ionic strengths which have proved so valuable with aqueous
and other solutions; nevertheless some important conclusions have
emerged. In spite of the high viscosity of sulphuric acid, equivalent
conductivities are of the same order of magnitude as those found in
water. This result is explained when the transport numbers are
considered: in Hittorf measurements on the alkali and alkaline-
earth metal bisulphates, the highest cation transport number found
was 0-030 for the potassium ion in 0-6 molar potassium hydrogen
sulphate. The equivalent conductivity of this solution was found
to be A = 78 (at 25°), so that the cation contribution to the con-
ductivity is only 2-3 units. I'n aqueous solutions of this concentration
the potassium ion contributes about 50 units to the conductivity.
The ratio of the mobilities of the potassium ion in water and sul-
phuric acid is therefore comparable to the inverse ratio of the
viscosities of these solvents, and can be regarded as normal. No
marked variation of the transport number with temperature in
the range 25°-60° was observed, although a slight increase may
occur.

The observed high conductivities must therefore be attributed
mainly to the abnormal transport mechanism for the anion: as
remarked above, the anion in electrolyte solutions in sulphuric acid
is nearly always the bisulphate ion, HSO;. A ‘proton-jump’
mechanism'® such as almost certainly exists for the hydrogen and
hydroxyl ions in water, is the natural assumption, and is consistent
with the known association of sulphuric acid molecules through
‘hydrogen bonds’. The Hy,SO} ion, i.c., the proton solvated with
one sulphuric acid molecule, shows a similar high mobility attribut-
able to the same type of mechanism.

Equivalent conductivities in sulphuric acid are strongly concen-
tration-dependent, that of potassium hydrogen sulphate, for
example, dropping from A = 158 at 0-1 to 63 at | molar.
This drop is considerably more rapid than could be accounted for
by interionic effects, and occurs even in the case of ammonium
hydrogen sulphate where the viscosity of the solution scarcely
changes with concentration, so that it cannot be attributed to
increasing viscosity. It therefore seems to arise from some effect of
the ions on the proton-jump process responsible for the anion
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mobility. A somewhat similar effect exists in aqueous solutions of
hydrochloric acid, but does not become serious until substantially
higher concentrations are reached.

The viscosities of solutions of metal bisulphates in sulphuric acid
are highly specific properties of the cation: the ammonium ion
scarcely alters the viscosity, while the alkali-metal and alkaline-
earth metal cations produce an approximately linear increase in
viscosity with concentration. The slope of the viscosity-concentra-
tion curves increases in the order

NH} < K+ < Na* < Lit < Bat++ < Srt++

being especially great for the last two members, one molal solutions
of which have at least seven times the viscosity of the solvent, This
suggests strong ion-solvent interactions, further evidence for which
is found in the apparent molal volumes of the cations, which are in
all cases lower than the volumes estimated from crystallographic
radii, and are, indeed, in most cases negative. These apparent
volumes are consistent with an increasing amount of solvation, with
resulting electrostriction of the sulphuric acid molecules near the
ion, in the same order as is suggested by the viscosities. If the
ammonium ion is assumed to solvate with one molecule of H,SO,,
the results lead to solvation numbers of 2, 3, 3, 8 and 8 for K+,
Nat, Lit, Bat+ and Srt++ respectively. The transport numbers are
also consistent with this order for the solvation, and it is the same
order as is found for the solvation of metal ions in water, thus indi-
cating that the cation solvation is electrostatic in nature.

NITRIC ACID AS A SOLVENT

The depression of the freezing-point of nitric acid on the addition
of either water or dinitrogen pentoxide has been studied by
GiLLEspPIE, HUGHES and INgoLD®. Their nitric acid had a freezing-
point between — 41-71° and — 41-81° (ForsytH and GiauQue{®
record — 41-65°). Dinitrogen pentoxide causes about twice the
depression due to an equimolar amount of water; the effect of the
former is consistent with dissociation into two ions, but water seems
to be dissolved in the molecular form. A more accurate representa-
tion of the data is obtained by assuming that the ions of dinitrogen
pentoxide are solvated with four molecules of nitric acid whilst the
water molecule seems to take up only two molecules of nitric acid.
It is believed that ionization occurs according to the equation:

N,O, - NO} + NO;
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and these workers suggest that, if the nitrate ion is solvated with
two molecules of nitric acid as seems likely from the observations of
CHEDIN and Vanponi'!) on the vapour-pressure lowering of nitric
acid solutions of potassium nitrate, then the nitronium ion must
also take up two molecules of nitric acid. Further evidence comes
from the electrical conductance of nitric acid which is increased
very much on the addition of dinitrogen pentoxide®®) whilst the
addition of water up to 10 per cent by weight causes very little
change in conductance.

Another interesting feature is the marked rounding-off of the
freezing-point curve in the vicinity of 100 per cent nitric acid,
indicating considerable self-dissociation:

2HNO, s NO} + NOy + H,0
for which an equilibrium constant,
K= myNo¢ * MNos * M0 = 0-020

{(in mole kg-? concentration units) has been estimated.

RAMAN SPECTRUM OF NITRIC ACID AND ITS AQUEOQUS
SOLUTIONS

Like the extinction coefficient of a solution for the absorption of
light, the intensity of a Raman line should be proportional to the
concentration and not to the activity of the molecule or the ion in
which the line originates?®, There is a strong line at 1050 cm-! in
the Raman spectrum of aqueous nitric acid which is also found in
the spectrum of the alkali nitrates in aqueous solution: the intensity
in concentrated acid solutions is, however, less than in a solution
of alkali nitrate of the same concentration. It is likely that the line
is characteristic of the nitrate ion and the diminished intensity in
concentrated nitric acid solution is taken as evidence of the forma-
tion of undissociated molecules. In this way an jonization constant
of K = 235 has been calculated'# in good agreement with K = 22
from nuclear magnetic resonance measurements14); the acid is
about 50 per cent ionized at 11 N. In the same way perchloric acid
has been found to be incompletely dissociated!!s, 19 with K = 38;
it is therefore considerably stronger than nitric acid and its dissocia-
tion falls to 50 per cent only at 15 N. The incomplete dissociation
of nitric acid is reflected in its activity coefficient; a plot of the
stoichiometric activity coefficient against concentration does not
fit into the family of curves formed by other 1 : 1 electrolytes, but
McKay5) has shown that the fit can be realized if the proper
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ionic activity coefficient, with allowance for incomplete dissocia-
tion, is used.

The Raman spectrum of pure nitric acid consists of eight more
or less sharp lines and a diffuse band. Six of the lines and the band
are attributed to the nitric acid molecule and there is general
agreement about the assignment of most of them to various vibra-
tional modes. Valuable work has been done by INcoLD and his
school® and the spectrum can be summarized as follows:

610 cm-!: bending of the O—N—OH angle

680 bending of the O—N—O angle

925 stretching of the N—OH bond

1300 symmetric stretching of the NO, group
1675 anti-symmetric stretching of this group

3400 (band) OH stretching, the band being diffuse because of
intermolecular hydrogen bonding

1535 first overtone of the out-of-plane vibrations of the
NOjg group.

The remaining two lines are not due to the nitric acid molecule:
that at 1050 cm-! is assigned to the nitrate ion and that at 1400
cm~! to the nitronium ion, NOZ. Both lines are weak and are
caused by some self-dissociation of the molecule:

2HNO, -» H,0 + NO} + NOj

The assignment of this sharp, highly polarized line to the
nitronium ion is supported in several ways. A number of solid
nitronium salts have been isolated: (NOj ClO;), (NOg HS,07),
((NO3%), 5,07-) and (NOg SO4F-), and in each case the Raman
spectrum shows a line at 1400 cm~! together with, of course, lines
characteristic of the anion. Moreover, the salt-like character of
(NO% ClOg) has been confirmed? by an x-ray crystallographic
study. The Raman spectrum of solid dinitrogen pentoxide gives
both lines suggesting that in the solid state this substance has the
very interesting salt-like structure, (NOj NOjy) analogous to phos-
phorus pentachloride, (PCl} PCl;) and again x-ray crystallo-
graphy supports this structure®®®, Ingold has also studied this
problem in another way: in pure nitric acid both the Jines at 1050
and 1400 cm~! are weak, but on the addition of approximately
10 mole per cent of either perchloric acid or selenic acid, the line at
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1400 cm~! was enhanced and that at 1050 cm~! was suppressed.
This is exactly what we would expect from the reactions:

HNO, + 2HCIO, - H,0+ + NOj} + 2CIO;
HNO, + 2H,S¢O, — H,0+ + NO} + 2HSeO;

If sulphuric acid were used instead of perchloric or selenic acid, a
similar reaction would be expected:

HNO, + 2H,SO, - H,0+ + NO} + 2HSO;

but it was observed that both lines were enhanced. At first sight
this might seem to be anomalous but it is readily explained when it
is realized that the bisulphate ion, HSOy, itself has a Raman line
at 1050 cm™!, a fact which has created some confusion in that
experiments on HNO;—H,SO, mixtures have suggested that the
two lines are in some way coupled together. It required these
experiments in which anions were produced with no Raman line in
the region of 1050 cm~! to demonstrate that the two lines had
separate origins; indeed, if the nitronium ion is a product of this
reaction, it can, because of its centro-symmetric nature, give only
one Raman line. It is also significant that if dinitrogen pentoxide
is added to nitric acid both lines are enhanced because of the
dissociation:
N,O, - NO¢} + NOjy

The attribution of the 1050 cm~! line to the nitrate ion is amply
justified by its occurrence in the spectra of non-associated nitrates
in aqueous solution!®, and it was by this line that Redlich arrived
at a value for the dissociation constant of nitric acid in aqueous
solution.

THE RAMAN SPECTRUM OF SULPHURIC ACID

Ingold et al. list seven lines in the Raman spectrum of sulphuric
acid at 391, 416, 562, 910, 976 and 1376 cm~! with a broad band
at 112595 cm~1. The bisulphate ion, HSOy, has lines at 590,
895 and 1050 cm™}, the last being the only one not close to molecular
sulphuric acid lines and therefore the most useful one for detecting
the bisulphate ion; it is supposed to be due to a stretching of the
S—OH bond. The line at 590 cm™! lies close to the 562 cm-! line
of sulphuric acid and that at 895 cm~! is close to the 910 cm™1 line.
It therefore requires very careful examination of the microphoto-
meter records to find evidence for these bisulphate ion lines.
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The addition of sulphur trioxide to sulphuric acid leads to a
weakening of the molecular acid lines and when the solutions have
the composition of disulphuric acid, HgS;0,, the molecular sulphuric
acid lines are absent and have been replaced by a new set with a
strong line at 735 cm?, useful for characterizing disulphuric acid.

Addition of further sulphur trioxide leads to trisulphuric acid,
HS;0,, with a strong, characteristic line at 480 cm~! and another
at 530 cm~! which is also useful for identification although sulphur
trioxide itself has a line close to this. There is some evidence of the
existence of tetrasulphuric acid, HyS,0,; and even higher polymeric
forms before sulphur trioxide appears in monomeric and polymeric
forms. It is possible to make an assignment of the different Raman
lines to various molecular and ionic forms of these acids for details
of which the original paper should be consulted.

AQUEOUS SULPHURIC ACID

Young!! has described the construction of a Raman spectrograph
which gives results of high quantitative accuracy. Considerable
work has already been done on aqueous sulphuric acid solutions,
using the 910 cm™! line to identify the undissociated sulphuric acid
molecule, the 1040 cm™! line for the bisulphate ion, and a line at
980 cm~! for the sulphate ion, SO;~. Thus, by comparing the
intensity of the 980 cm~! line in a solution of ammonium sulphate
and in a sulphuric acid solution, the SO7~ ion concentration can
be calculated, assuming that the ratio of the intensities of the lines
is the ratio of the ion concentrations. The HSOy ion concentration
is obtained from the 1040 cm~! line and the concentration of
H;SO, molecules by difference. This latter concentration should
be proportional to the intensity of the 910 cm~! line, and the data
did satisfy this severe test. Perhaps the most concise way of repre-
senting the results of this work, which is fully supported by recent
nuclear magnetic resonance measurements!1%), is in the form of a
graph (Figure 13.1) from the Record of Chemical Progress!'® which
shows that, except in extremely dilute solution, the SO~ ion is not
a major constituent of these solutions; at moderate concentrations it
is the HSOy ion which predominates and only above ¢ = 14 does
the undissociated molecule contribute significantly. The dotted line
in the figure is calculated on the assumption that each molecule
of water added to pure sulphuric acid reacts according to the

equation:
H,SO, + H,0 - H,0+ + HSO
Since the second dissociation of sulphuric acid is relatively weak,
it is suppressed by the hydrogen ion resulting from the strong first
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dissociation. With a degree of ionization « for the bisulphate ion,
we have:

K = YEt¥so- (1 + o)m
YHSO; l —a

Since Figure 13.1 indicates that « &~ 0-:3 at 2 M, the activity coeffi-
cient part of this expression must have the low value of ~ 0-01, and
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Figure 13.1. Graph showing the proportion of HySO, molecules, HSOy ions
and SOy~ ions in agueous sulphuric acid solution. (From Youne, T. F.,
Rec. chem. Progr., 12 (1951) 81)

this must be mainly due to the low value of ygo_- since the ratio
yu+/yBso; must be near unity.

It is interesting that the thermodynamic behaviour of aqueous
sulphuric acid approximates to that of the 1: I electrolyte, hydro-
chloric acid; a similar effect occurs with ammonium sulphate and
ammonium chloride. If we treat a 1 :2 electrolyte formally as a
I : 1 electrolyte, its osmotic coefficient becomes ¢’ = 3¢/2, ¢ being
its value on the basis of a 2: 1 electrolyte (v = 3). In Figure 13.2
this modified osmotic coefficient ¢’ for sulphuric acid is compared
with the osmotic coefficient ¢ of the genuine 1:1 electrolytes,
ammonium chloride and hydrochloric acid, at concentrations up to
6 M. The curve is somewhat higher than that of hydrochloric acid
but is clearly of the same type. At its lower extremity it begins to
show a rise which is of course due to the increase of the second disso-
ciation with dilution. Above 0-5 M, there is much more similarity
between the sulphuric acid and hydrochloric acid curves than there
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is between hydrochloric acid and ammonium chloride. The differ-
ence between the latter is attributable to the great difference in the
extent of ‘thermodynamic’ hydration of the proton and the ammon-
ium ion, while the difference between the two acids is probably
mainly due to the fact that the bisulphate ion is larger than the
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Figure 13.2. Osmotic coefficients of sulphuric acid and ammonium sulphate idered as
effectively 1 3 1 electrolytes, From Wisnaw, B, F. and Stokes, R. H., Trans. Faraday
Soc., 50 (1954) 954

chloride ion. In passing, it is worth noting that at these high con-
centrations ammonium sulphate behaves much more like the 1: 1
electrolyte ammonium chloride than like a fully dissociated 1:2
salt: indeed, it is doubtful whether there is such a substance except
at great dilution. The ion-pair NH, SOy is considerably less stable
than the covalently-bound particle HSOy, as is evidenced by the
dashed part of the ammonium sulphate curve in the figure which

shows that dissociation into a | : 2 electrolyte is becoming significant
below 2 M.

IONIZATION CONSTANT OF THE SECOND STAGE OF
DISSOCIATION OF SULPHURIC ACID

Except at very high concentrations sulphuric acid is a non-associated
electrolyte in its first stage of dissociation, to which Youne and

383



13 THE ‘STRONG’ ACIDS

BLATZ!!® assigned an ionization constant of the order of 103. In its
second stage of dissociation it is a moderately weak electrolyte with
an ionization constant about 0-01. An acid of this strength produces
sufficient ions to make the computation much more difficult than
that for a much weaker acid like acetic acid. SHERRILL and
Noves® made a computation from conductance data which is
interesting in being one of the early calculations in which the
importance of the Debye-Hiickel theory was realized. The equiva-
lent conductivity A of a solution of sulphuric acid of molality m, in
which all the molecules have lost the first hydrogen ion by dissocia-
tion and a fraction, «, have lost the second hydrogen ion to form
the SO~ and a fraction (1 — a) remain in the HSOj state, is:

2A = (1 4+ )4g: + (1 — a)Amso; + 2adgo--

The observed transport number is obtained, at least in principle,
by measuring the net transfer of hydrogen ion to the region around
an electrode when current is passed. Part of this is due to transport
of HSOy ions in the opposite direction so that:

b, = L+ &g — (1 — &) dmso;
e 2A
and the two equations can be solved to give

. (1 + tg)A — Age
© Ame + Aso;-

The transport number is known, Ag. is found from the conductivity
and transport number of hydrochloric acid at a comparable ionic
concentration and Agg - from data for potassium sulphate. A
certain amount of successive approximation is necessary because
Ag. and Ago;- have to be interpolated at ionic strengths not known
at the commencement of the calculation.

The two equations of this method can also be solved to give:

(l - ln+)A - also‘--
lHSO; = (Y — )

Since the conductivity of a solution of sodium hydrogen sulphate is:
A= }'Ns’ + (l - a)lnsoi + aln+ + 21130--
and Aggo; is known from the sulphuric acid measurements, a second

value of the ionization constant of sulphuric acid can be got from
the conductivity of the sodium salt. Sherrill and Noyes arrived at
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K, = 0-0115 by both methods, but a recent recalculation(®! has
led to the opinion that 0-0102 would be a better value.

A second attack!®? on this problem follows the work of Harned
and Ehlers on acetic acid by using the cell:

H,|NaHSO,(m), Na,SO,(m’'), NaCl(m")|AgC], Ag

Whilst this cell gives very reproducible potentials, there are diffi-
culties in the calculation that are met with even in the case of an
acid like formic acid, but are enhanced when the acid is polybasic
and one of the ionization constants is of the order of 0-01. However,
by a tedious set of approximations, Hamer arrived at values of X
between 0° and 60°, that at 25° being 0-0120. Hamer’s data have
been recalculated(®!’ making allowance for the formation of some
NaSOj ions, to give K = 0-0102 at 25°.
A third method uses the cell:

H,[HCI(m), H,50,(m)|AgCl, Ag,

an interesting variant of the Harned-Ehlers cell which avoids the
correction for NaSOj ion formation, apart from which the calcula-
tion is similar to that used with Hamer’s cell. Davies, Jones and
Monk @ arrived at K, = 0-0103 at 25°.

Perhaps the most reliable value comes from the spectrophoto-
metric work of Young, KLoTz and SINGLETERRY!*® using a method
which is not unlike that of von HALBAN!*# ¢t al. for picric acid and
a-dinitrophenol, but which is not limited to weak acids giving
coloured solutions.

Two absorption cells are used, one filled with a ‘reference’
indicator solution (4 X 10-* N methyl orange) and between
3 x 104 and 6 x 10~*N hydrochloric acid, so that the pH is
about 3-4, and substantial proportions of each of the coloured forms
of methyl orange are present. The other cell contains a similar
indicator solution to which is added sodium sulphate. The intensity
of the light transmitted by this solution for light of wavelength
5200 A is determined by a photoelectrically registering spectro-
photometer. Since both the red and the yellow forms of the indicator
are present, by Beer’s Law:

I,
log 7" = acle, + (1 — a)ele,

where I, and 7 are the intensities of the incident and transmitted
light, ! is the cell length, « is the fraction of the total indicator
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concentration, ¢, which is in the yellow form, In-, this form having
an extinction coefficient g,, whilst (1 — a) is in the ‘red’ form, HIn,
which has an extinction coefficient &,. /¢, and /g, are determinable
by adding an excess of acid or alkali to the solution so that the
measurement of the transmitted light through the stock indicator
solution with about 5 X 10-¢ N hydrochloric acid and sodium
sulphate in amounts up to about 004 N is essentially a determina-
tion of the indicator ratio, c;n-/cmn = af(] — «). But this ratio
occurs in the equilibrium equation:

K — JE* M- ¢B+CIn-
In =
JHIn  CHIn
or logcg+ = log K, —log R — 2log y

where R is the ratio c¢pp-fcgs and »* is an abbreviation for

yﬂ‘ylp'bnln- Lo . . .
Using the same indicator solution but with no added sodium

sulphate, let the results of intensity measurements be represented by:

log c§y+ = log K1, — log R® — 2 log y°

The addition of sodium sulphate has therefore altered R in two
ways, a neutral salt effect on y resulting from change in the total
ionic strength, and a change in ¢g. resulting from combination of
hydrogen and sulphate ions. It is now assumed that the addition of
a salt such as sodium chloride changes y but not cg.; let it be added
in such amount that the total ionic strength is increased as it was
on the addition of sodium sulphate. Then the new R value is

given by: log o, = log K-m —log R —2logy

. J
Hence: log ! log 7 + 2 log
R¢ yo
and log — = — 2log™—

The method therefore gives cg., the hydrogen ion concentration of
the sodium sulphate solution relative to that of the stock solution,
say cg+ = rcfy.. But the bisulphate ion is subject to the equilibrium
uation:
1 K __Ja+Js0;-H+¢30; -
L

JHS0;¢HSO0;
or K, =E280r rle — (1 —r)ch]
JHSO; (1 —r€
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where ¢ is the stoichiometric sodium sulphate concentration.
Fortunately c¢fj+ is small and can be determined to a sufficient
approximation with a glass electrode. The activity coefficient term
is estimated by a Debye-Hiickel approximation (equation 9.7) and
by an extrapolation to zero concentration, the true value of K, is
determined. Table 13.2 gives the mean values quoted by
Singleterry.

Table 13.2
Second Ionization Constant of Sulphuric Acid

Temp. K,

5° 0-0185 4 0-0005
15° 0-0139 4+ 0-0004
25° 00104 + 0-0003
35° 00077 4 0-0002
45" 0-00565 + 0-00007
55° 0-00413 + 0-00001

The limits shown in this table correspond to the agreement
between two sets of measurements made by Singleterry, in one of
which sodium chloride was used as ‘neutral’ salt and in the other
barium chloride. The ionization constants can be represented by:

751
log Ky = — 121 | 50435 — 00182027
T

with the following thermodynamic properties for the dissociation
process at 25°.

AR® = — 5237 cal mole~?
ACY = — 497 cal deg™! mole-!
AS® = — 266 cal deg~! mole-?

Singleterry estimated AH® = — 5188 and — 5319 cal mole-! from
the two sets of measurements; the entropy change is almost the
same in each of his calculations, but he derived — 459 and — 57
cal deg~! mole-! for the partial molal heat capacity so it is evident
that a mean value should be used with caution. This equation
predicts that K, should have a maximum value of 0-14 at — 112°.
It is of course dangerous to extrapolate so far from the range of
temperatures in which this equation is valid; nevertheless it is
evident from a plot of log K, against the temperature that the
maximum cannot be attained without a considerable reduction of
temperature below 5°,
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The high value of this ionization constant results in some anoma-
lous properties of sulphuric acid in comparison with non-associated
electrolytes. For example, the apparent molal volume of a simple
electrolyte in aqueous solution is usually a linear function of the
square root of the volume concentration; this statement, sometimes
known as Masson’s rule?®, often holds up to surprisingly high
concentrations. The behaviour of sulphuric acid is very different,
as was shown by KLotz and Eckert!?®., The circles in Figure 13.3
represent their experimental measurements and the lower straight

—
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Figure 13.3. Apparent molal volume of aqueous sulphuric acid. I in molarity units
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line is the calculated apparent molal volume of the hypothetical
fully dissociated (2H+ 4 SOj-) electrolyte, obtained by applying
the additivity rule to the apparent molal volumes of potassium
sulphate, hydrochloric acid and potassium chloride. It is evident
that only at the most extreme dilutions will the apparent molal
volume of sulphuric acid be at all close to that expected of the
completely dissociated acid. At concentrations experimentally
accessible the volume is considerably higher and becomes linear in
the square root of the concentration at high concentrations when
the solution contains effectively only H+ and HSOy ions. Klotz and
Eckert were able, from the known degrees of dissociation, to calcu-
late the apparent molal volume of the hypothetical fully dissociated
(H+ + HSOj) electrolyte, shown by the upper straight line of
Figure 13.3. Thus they have demonstrated that the anomalous posi-
tion of the experimental points can be resolved by assuming two
straight lines to represent the variation of the volume function with
+/I and apportioning the contribution of each species according to
the known fraction present.
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The surface tension of aqueous sulphuric acid exhibits greater
complexity. The surface tension of a salt solution usually increases
linearly with the molality, the slope being characteristic of the salt,
but for hydrochloric and nitric acids the surface tension decreases
with increasing concentration and the slopes are not quite straight
lines.

The curve of the surface tension of sulphuric acid solutions
against the concentration is markedly temperature dependent; at
0° and at low concentrations the curve has a negative slope leading
to a minimum surface tension at about 0-6 M after which the surface
tension increases again to a flat maximum at about 7M. The
minimum is not found at higher temperatures, although the initial
branch of the curve at 18° is almost sigmoid in shape, and the
maximum occurs at higher concentrations as the temperature is
increased. By employing an additivity principle similar to that used
by Klotz and Eckert, YounG and GRINSTEAD" were able to
calculate the surface tension of solutions of the hypothetical, fully dis-
sociated acid (2H+ 4 SO;-) from data for hydrochloric acid, sodium
sulphate and sodium chloride and to show that the surface tension
should decrease with increasing concentration. That of the fully
dissociated acid (H+ + HSOj), however, should increase with
concentration. Qualitatively we can see that the observed minimum
may well result from the balance set up between the positive slope
of the (H+ 4+ HSO;) curve and the negative slope of the
(2H+ 4 SO;-) curve. Young and Grinstead were able to go
further than this and to show that, from the known degrees of
dissociation at various concentrations, it could be predicted that at
0° the minimum should be at 065 M (observed 0-5-0-7 M) and
the lowering of the surface tension, relative to pure water, at the
minimum should be 0-15 (observed 0-2]1 dyn cm~?). The maximum
is more difficult to account for quantitatively; in these solutions the
SOz~ ion is negligible in amount, the HSOj is present in consider-
able quantity but is diminishing in extent relative to the undissoci-
ated sulphuric acid molecule. Pure sulphuric acid has a considerably
lower surface tension than water and the formation of the un-
dissociated sulphuric acid molecule should lower the surface tension
of the solution, i.e., it should act contrary to the elevating effect of
the (H+ 4+ HSOj;) acid and hence there should be a maximum
surface tension. The quantitative calculation is made difficult
because the behaviour of two-component liquid mixtures is not yet
thoroughly understood, but Young and Grinstead were able to
show that the value of the maximum surface tension and the
concentration at which it is found are in accord with the idea that

389
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it could be compounded of values due to the two solute species,
bisulphate ions and undissociated molecules.

It should also be mentioned that the heat of dilution of sulphuric
acid to infinite dilution is very large. This is mainly due to the heat
liberated on the ionization of the bisulphate ion which is present in
considerable amount at ordinary concentrations, but, of course,
dissociates completely on sufficient dilution. By a similar process
of compounding the contribution of the (H+* + H* 4 SO7) and
(H+ + HSOy) species, Young and Blatz were able to give a remark-
ably good account of the observed heat of dilution of sulphuric acid
solution up to about 0-05 M.

Selenic acid seems to be an acid comparable in strength to
sulphuric acid, the second ionization constant being 0-0120 at 25°
according to PaMFILOV and AGAFONOVA(®8), Their measurements
extended over the range 0° to 30° and calculations based on their
results suggest AH?® = — 2080 cal mole-1, which is considerably
less than Young et al. found for sulphuric acid. Telluric acid has
very different properties: salts such as Ag,TeO4 can be prepared,
the first ionization constant is 2:31 x 10~® and the second is about
10-12, so that telluric acid is very weak even in its first dissociation (2,
Sulphurous acid®®® has ionization constants X; = 1-72 x 10-2 and
K; = 624 x 10-® whilst iodic acid®®,3% (K = 0-168) and tri-
chloracetic acid®® (K = 0-232) are two more examples of acids
intermediate between non-associated electrolytes and the majority
of the weak acids. By contrast, the ionization constants of periodic
acid® are K; = 0-028 and K, = 5-38 x 10-°.

Finally it may be mentioned that hydrofluoric acid is unlike the
other halide acids in being a weak acid with an ionization constant!3¢
of 6:7 x 10-4 at 25° and with a strong tendency to associate:

HF + F- = HF;
the ‘association constant’ bemg 3-9 at 25°. This leads to low values
of the stoichiometric activity coefficient as follows:
m 0001 0-003 0-005 001 0-03 005 01 03 05 10
y 0-544 0-371 0-300 0-224 0-136 0-106 0-077 0-044 0-031 0-024
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14
ION ASSOCIATION

THE concept of ionic association provides a relatively simple and
self-consistent method of dealing with the situation which arises
when ions of opposite sign are close together. In these circumstances
the energy of their mutual electrical attraction may be considerably
greater than their thermal energy, so that they form a virtually new
entity in the solution, of sufficient stability to persist through a
number of collisions with solvent molecules. In the case of a sym-
metrical electrolyte, such ion-pairs will have no net charge, though
they should have a dipole moment. They will therefore make no
contribution to the electrical conductivity, while their thermo-
dynamic effects will be those of removing a certain number of ions
from the solution and replacing them by half the number of dipolar
‘molecules’. With unsymmetrical electrolytes the position will be
more complicated, since the simplest and most probable type of
ion association, that involving only two particles, will result in the
appearance of a new ionic species of a charge type not previously
present; this will contribute to the conductivity, though less than
would its constituent ions in a free state. In such cases further
association to form neutral particles may also be reasonably
expected.

The question which immediately presents itself is: when can
two adjacent ions be called an ion-pair? This is rather like the other
question we have had to consider: when is a water molecule to be
regarded as part of the hydration shell of an ion? and we shall
give a rather similar answer, viz., that an ion-pair must be long-
lived enough to be a recognizable kinetic entity in the solution.
We have treated the hydration question by a simplified picture in
which different degrees of hydration are smoothed out to an average
number of molecules of water of hydration. Similarly we use the
idea, due to BJerrumM!}), that the average effects of ion-pair forma-
tion may be calculated on the basis that all oppositely charged ions
within a certain distance of one another are ‘associated’ into
ion-pairs, though in reality a momentarily fast-moving ion might
come within this distance of another and pass by without forming
a pair.
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BJERRUM’S TREATMENT

Bjerrum proposed that this critical distance, which we shall
denote by ¢, should be chosen as:

_ [2124]€*
9= kT

This is seen to be the distance at which the mutual electrical
potential energy of the two ions:

121241 €%/(29)

is equal to 2kT. The reason for this particular choice appears from
the following argument:
In discussing the Poisson-Boltzmann equation:

4m ziey;
2 —_ — — L _——
v Y = P ‘anzle exp ( kT )

we have said that no self-consistent solution is possible unless the
series expansion of the exponential is stopped at the first power of
v, or at the second for the special case of symmetrical electrolytes,
and that pursuing the expansion further, apart from the mathe-
matical complexity, leads to difficulty with the principle of linear
superposition. The Bjerrum treatment avoids these difficulties.
The density of i-ions around a selected j-ion is given as before by
the Boltzmann expression (4.5) and the number in a shell of thick-
ness dr at a distance r is:

o (140)

n; exp (— 5":—;_”) 4nrtdr
When r is small, Bjerrum neglects the effect of interionic forces on
the reasonable ground that the potential of the central ion will be
dominant and writes:
%€
er

?

so that the number of i-ions in the shell is:

z.e
4mn; exp (— iz:’Tr) ridr

Considering a series of shells each of equal thickness, dr, the number
of ions which on a time average find themselves in each succeeding
ring, can be calculated. In Table 14.1, we give the results for an
aqueous solution at 25° containing a 1 : 1 electrolyte, for the cases
where z; and z; are of opposite sign and of the same sign. The
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second column contains the value of the probability factor, the next
column the volume of a shell 0-1 A thick, and the last column the
number of ions to be found in each shell. (In making the calcula-
tion it has been assumed that the probability factor in the second
column is constant in any one shell of thickness 0-1 A; this, of

Table 14.1
Number of ions in shell x 10%
4mrtdr x 10%
r (A) | exp [e?/(ckTT) e -
P N =01x10cm) | 7, of opposite | Ions of like
charge charge
2 35-57 0-50 1-77 n; 0-001 n,
2-5 17-36 079 1:37 n; 0-005 n,
3 10-78 1-13 1-22 n, 0-01 n,
3-57 7-39 1-60 118 n; 0-02 n,
4 595 201 1:20 n, 0-03 n,
5 4-17 314 1-31 n, 008 n,
6 328 4-52 1:48 n, 0-14 n,
7 2:77 6-14 1-70 n; 022 n,
8 244 8-04 1:96 ng 0-33 n,

course, is not so, but this crude method of calculation suffices for
purpose of illustration.) It will be seen that when : and j are ions
of opposite sign, then with increasing r there is a decreasing proba-
bility of finding an i-ion in any unit of volume, but the volume of
the shell increases and the two opposing effects combine to give a
distance at which there is minimum probability of finding an i-ion
anywhere on a sphere surrounding the central j-ion at this critical
distance. The position of minimum probability is:

_ zizgle?
T 2¢kT

as can readily be shown by differentiating the function

2 Z.'Zyez
TXP\ T Ty

For a | : 1 electrolyte in water at 25° ¢ = 3-57 A; at distances
closer to the central ion the population of oppositely charged ions
increases rapidly (see Figure 14.1): the population also increases at
greater distances but the rate of increase is less. There is no such
effect with ions of like charge: there is small probability of finding
them close to the central ion and the population shows no minimum.
As regards the ions of opposite charge, if the distance of closest
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CALCULATION OF DISSOCIATION CONSTANT

approach is 3-37|z,2,| A or more, it is assumed that there will be
no ion-pairs. If the ions can approach closer than this, Bjerrum
would regard those within the sphere of radius 3:57|z,2,| A as
‘undissociated’ ion-pairs. It is to the ions outside that the Debye-
Hiickel theory is to be applied. (We use the expression ‘number of
ions’ although it would be closer to physical reality to say, at
greater length, the time average probability of finding an oppositely
charged ion within this critical distance.) Before we apply these
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Figure 14.1. Number of ions in a shell 0-1 A thick at a distance
Jrom a central ion

considerations to ion-pair formation, let us consider the magnitude
of the effect we are discussing. Consider a solution of a 1:1
electrolyte, 0-01 N in concentration corresponding ton, = 6 x 10%®
ionsfc.c. Even in the absence of any electrical force exercised by
the central ion, the ‘normal’ distribution would lead to the presence
of 0:0127 ions in the shell between 2 and 8 A, or, putting it more
realistically, a single ion has a volume of 1-7 X 10%cu. A at its
disposal. The attractive force of the central ion increases the con-
centration to an extent given approximately by averaging over the
figures in the penultimate column of Table 14.1, viz., 0-050 ions in
the shell. This figure is probably too large because Bjerrum has
simplified the treatment of the problem by subjecting the ions
surrounding the central ion to the potential of this ion alone,
whereas allowance for the interionic forces would act in the opposite
direction.

The degree of association (1 — «) is obtained by integrating the
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number of ions in all the shells from the distance of closest approach
up to the critical Bjerrum distance:

? 2y2,€*
(l—a)=4-1m,1:cxp( kT)r’d

_ 2zeet z,€?
T ek Tr

Put
x =

so that the integral becomes:

— ____.|le‘|€2 ? 2‘:dx
ekT b x4
where Iﬁél—ez =b
ekTa
[z2122]€* _
and ckTqg — 2
Thus
4n Ne [|z,25]€%\3
(1 —a)= 1000( kT ) 20
b
where Q) = f x4 dx
2

Values of the integral, Q(b), have been tabulated!. ¥ (see Appendix
14.1). The law of mass action gives:
o® yic
(1 —a)
assuming that the activity coefficient of the ion-pair is unity. The

calculation now proceeds in three stages:
1. In very dilute solutions, &« & 1, y s 1 and

1 1—a 4nN |z,24]€%\3
¥~ T~ Tooo X ( BT Q) ....(14.2)

For any value of a (< ¢) there are corresponding values of b and

=K

1
Q(b) and hence of %50 that X is a function of the closest distance of

approach of the ions.
2. From the two equations:

ol y%
(=il
A/ (o)
and had ]ng-_—- —]TE—W
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the degree of association (I — &) at any value of ¢ can be calculated
by successive approximations. As the theory is not expected to
apply to solutions that are not dilute the distinction between the
activity coefficients f and y can be ignored.

3. From the equation (cf. eq. 2.40):

Jo& = fors. €

knowing a and f from the second computation, we can calculate
Jobs.» the activity coefficient which should result from experimental
measurements, assuming complete dissociation, on an electrolyte

7

Dsgree gf ossociation (1-a)

\
4 7 2 J [

f —

Figure 14.2. Effect of distance of closest approach on the degree of association
at 0-1 M for a | : 1 electrolyte in water

possessing the value of a adopted at the commencement of the
calculations. Bjerrum has given extensive tables of the degree of
association of 1 : 1 electrolytes in water at 18° and the activity
coefficients which should be observed on the assumption of complete
dissociation. The tables cover the range 0-0001 to 2 N for values
of a between 0-47 and 2-82 A. Figure 14.2 shows how the degree of
association varies with 2 at m = 0-1. At a =2 A, only about
2-5 per cent of the ions are associated; a has to be reduced to 1-4 A
to increase this to 10 per cent and only at about 0-6 A do the jon-
pairs preponderate over the free ions. Such small ionic radii are
unusual and therefore we should not look to aqueous solutions
expecting to find outstanding examples of ion-pair formation in
1 :1 electrolytes.

Fuoss'? has recently pointed out that a continuous distribution
such as that shown in Figure 14.1 ignores the discrete molecular
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nature of the solvent: he suggests that two ions should be counted
as a pair only if they are in contact, with no solvent molecule inter-
vening. Configurations in which the ions are separated by only a
fraction of the diameter of a solvent molecule are highly improbable.
On this basis he finds for the dissociation constant K ofa | : 1 electro-
lyte the simpler result:

1 4nNa®s®

3000

For large values of b—i.e., in solvents of low dielectric constant, this
result differs from (14.2) by approximately a factor &, which is of
minor importance compared to the large value ¢. Some further
discussion of this new theory is given in Appendix 14.3.

One example can be quoted which illustrates Bjerrum’s theory in
solvents of dielectric constant not less than 57. The dissociation
constant of lanthanum ferricyanide, LaFe(CN),, has been deter-
mined recently!® ¢, not only in water as solvent, but also in aqueous
mixtures of ethanol, glycol, acetone, dioxan and glycine, the last
being used to provide solvents of dielectric constant greater than
that of water. The dissociation constants were derived from con-
ductivity measurements in very dilute solution and it was found
that K = 1:82 x 10-% in water as solvent, a value comparable with
that of formic acid. The critical distance for a 3 : 3 electrolyte is
32:1 A: calculation shows that a closest distance of approach of
72 A corresponds, on Bjerrum’s theory, to a dissociation constant
of 1-82 x 10-4 if we regard any ion distant between 7-2and 32:1 A
from an oppositely charged ion as forming, temporarily at least, an
ion-pair with its neighbour. It was also found that Walden’s rule
held for these solutions, A%)° changing very little from one solvent
to another, and it was therefore assumed that this distance of 72 A
would not vary with the nature of the solvent. X is then a function
of the dielectric constant which appears twice in equation (14.2),

2
in the l—z;%.i factor and in the Q(4) factor. The continuous line

....(14.2a)

in Figure 14.3 shows how K should vary with the dielectric constant
on Bjerrum’s theory, the points being the observed dissociation
constants. Considering how difficult to determine are these dis-
sociation constants, requiring accurate measurements at very low
concentrations, it is not surprising that there is some scatter of the
points, but the dissociation constant decreases with decreasing
dielectric constant in a way very close, indeed, to that predicted by
Bjerrum’s theory.

Solvents of lower dielectric constant should favour ion-pair
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formation to an even more marked degree. At the critical distance
3
defined by ¢ = %:I?e’ the potential energy of the ion-pairis 2 kT,

that is to say, the energy necessary to separate the pair is comparable
with their energy of thermal motion. Whilst in water as solvent the
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Figure 14.3. Dissociation constant of lanthanum ferricyanide as a funciion of the
dielectric constant of the solvent, compared with the prediction of Bjerrum’s equation

majority of ions, especially the solvated ones, cannot approach
within their critical distances, ¢ can exceed the ordinary ionic
diameter if the dielectric constant is lowered. A convincing proof
of this has been advanced by Kraus and Fuoss'? ® using conduc-
tivity measurements on tetraisoamylammonium nitrate in a series of
water—dioxan mixtures covering a wide range of dielectric constant
from 22 to 79. Solutions of concentration as low as ¢ = 10~% were
examined and the spread of the dielectric constant led to a tre-
mendous variation of the equivalent conductivity; for example, at
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¢ = 00005, A was 851 in water but only 0000129 in dioxan,
With changing electrolyte concentration in any one solvent the
conductivity exhibits curious changes. With pure dioxan as solvent
there is a minimum in very dilute solution (at ¢ = 2 X 10-5): the
curve of conductivity against concentration (best plotted as log A
versus log ¢) then shows three points of inflection at higher concen-
trations. On the addition of water to the solvent, that is, on
increasing the dielectric constant, the minimum is found at higher
concentrations and becomes less pronounced. Thus, with 4 per cent
of water (¢ = 3-5) the minimum is at ¢ = 3 X 10-2 and disappears
if there is 20 per cent of water in the solvent (& = 12).

It is with the conductivities in very dilute solution that we are
now concerned, 1.c., the conductivities at concentrations lower than
that at which we find the minimum. Very marked departures from
the limiting Onsager equation are found in solutions of low dielectric
constant; for example, the Onsager equation for a 9-5 per cent
water solution (¢ = 5-84) is:

A =30 —473+/c

predicting A = 20-5 at ¢ = 4 X 104 whilst the observed figure
was only A = 2-48. It is now assumed that this indicates ion-pair
formation and a series of approximations gives a dissociation con-
stant of the order of 10-%, Fuoss and Kraus had at their disposal
dissociation constants of tetraiso)amylammonium nitrate in nine
solutions. From each dissociation constant they were able, using
Bjerrum’s equation, to calculate that the distance of closest approach
was 6-4 A (the values ranged from 6-01 to 6:70 A). They plotted a
graph of log X as a function of log ¢, log X being calculated by
Bjerrum’s equation for a = 6-4 A and on this graph the experi-
mental values of X agreed remarkably well with the predicted curve.
Another method of showing this agreement is to calculate (see
Table 14.2) K for each solvent assuming a constant value of
a = 6-4 A and compare X with the experimental values. This is a
severe test of the theory, because the dielectric constant varies by
sixteenfold and the dissociation constant varies over a range of
10-15, Only at the lowest water content is there a difference which
could be called significant, and in this solution the minimum in the
conductivity curve is found at ¢ = 0-0007, so that the disturbing
factors to which the minimum is due may well have affected the
measurements at lower concentrations. This experiment of Kraus
and Fuoss must be regarded as establishing the essential soundness
of Bjerrum’s concept of electrostatic ion-pairs, though Fuoss!?®) now
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considers that the data are perhaps better represented by equation
(14.2a) than by Bjerrum’s result (14.2).

Ion-pair formation does indeed occur when most electrolytes are
dissolved in any solvent other than one of the few which have high
dielectric constants. Water is one of these; as it is also the cheapest

Table 14.2

Dissociation Conslant of Tetraisoamylammonium Nilrate in Dioxane- Water Mixtures

a=64A
% H,O € K (obs.) K (calc.)
0-60 2-38 2 x 10— 2 x 10—
1-24 2:56 1 x 10-1 2 x 101
2-35 2-90 1 x 1012 1 x 1012
4-01 3-48 2:5 x 10—t 1-4 x 101
6-37 4-42 3 x 10 1-7 x 10-8
9-50 5-84 1-65 x 10-¢ 16 x 10-¢
1495 85 1 x 10-¢ 09 x 10-*
20-2 11-9 9 x 10— 7 x 104
53-0 38-0 025 0-28

and most accessible of solvents, it is not surprising that much of our
information about electrolytic conductivity concerns aqueous solu-
tions. This is fortunate in one way because electrolytes obey com-
paratively simple laws in solvents of such high dielectric constants,
but it should not be allowed to obscure the fact that electrolytes are
incompletely dissociated in the majority of solvents. This is illus-
trated by Appendix 14.2 which lists the limiting equivalent con-
ductivities and dissociation constants of a number of salts in seven
solvent media. Even simple salts are weak electrolytes in solvents
of low dielectric constant: to emphasize this we quote a few examples
from recent work'a!;

Salt Solvent € Temp. °C K

KBr Acetic acid 6-20 30 I-1 x 10-7
KBr Ammonia 22 —34 18-9 x 10-¢
CsCl  Ethanol 24-30 25 66 x 10~
KI Acetone 20-70 25 802 x 10-3
KI n-Propanol 20-1 25 30 x 102
KI Pyridine 12-0 25 2-1 x 10-¢
Nal  Ethylenediamine 12-9 25 686 x 10—
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TRIPLE ION FORMATION

Simple electrostatic theory shows that a system of two charged
spheres placed symmetrically on each side of an oppositely charged
sphere, all three being of the same size, has an energy 50 per cent
greater than that of two oppositely charged spheres. Thus there is
reason to believe that triple ions (+ — +) or (— 4+ —), might be
formed in solvents of low dielectric constant. The following treat-
ment is taken from a paper by Fuoss and Kraus'®. Consider the
simplified case of an extremely dilute solution where the activity
coefficients can be equated to unity and the limiting conductivity
at infinite dilution is a sufficient approximation to the conductivity
of a fully dissociated salt solution at this low concentration; let the
solvent be one of low dielectric constant so that the degree of
dissociation of ion-pairs is very small and (I — a) = 1.
Then for the reaction:

MX = M+ 4+ X-
K =~ a¥%
If there is a possibility of the further equilibria:
(MXM)+ = MX + M+

and (XMX)- = MX + X-
(M+] [MX] _ [X-] [MX]

[MXM+] [XMX-]
an equality which implies that ions M+ and X~ are equal in size
and that there is equal probability of forming (MXM)+ or (XMX)~

triple ions.
The total concentration is:

¢ = [MX] + } [M*] + } [X-] + 2 [MXM+*] + § [XMX-]
Put ap = [MXM+]/c = [XMX-]/c

so that, if « and «4 are small,

let k =

o v/ (Ke)
kﬁeac and ap & P

Let A® be the limiting conductivity at infinite dilution of the simple
ions, i.e.,
A = Ay + 2%-
and A% that of the triple ions, i.e.,
A% = Mixme + Agux-
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Then the observed conductivity will be:
= aA® + ap AT

PR

which is of the form
A = Ac~V? 4 B2

This is the equation of a curve with a minimum and, by differentia-
tion, it can be shown that the concentration corresponding to the
minimum conductivity is:
4 kAN
‘min = B =AY,
a condition which gives three more important relations:
Anis)* AY
£ = (g58) £ = can e
Anin = 200 A® = 20 g(miny A
showing that at the minimum, the conductivity is due in equal parts
to single and to triple ions. Figure 14.4 shows a plot of A+/c against

and Apy = 24/(4B)
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Figure 14.4. The graph of A+/¢ against ¢ for tetraisoamylammonium nitrate in
waler—dioxan of dielectric constant 2-56

¢ for tetraisoamylammonium nitrate in a water-dioxan solvent of
dielectric constant 2:56. Up to ¢ = 0-0007, the points lie on a
straight line whose slope is 0-0119 and intercept 2:85 x 10-%. If
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A% is equated to 30 (by comparison with A for this salt in solvents
of similar viscosity) and A% is put equal to 10 on the ground that
the triple ions will move about three times as slowly, then

Cmin = A/B = 2:85 x 10-%/0-0119 = 2-4 x 10-4
Apip = 2v/(AB) = 3-68 x 10~
K=9x 10-15
k=8 x 10-

To show the magnitude of the two dissociations the values in Table
14.3 have been calculated.

Table 14.3
¢ x 108 a X 108 op X 10% Acare. X 10* Aovs. X 10¢
1-5 2-4 0-5 7-7 7-5
30 1-7 0-7 58 58
8-0 1-1 1-1 4-4 —
10 0-95 12 4-05 4-03
24 0-61 19 3-68 —
30 0-55 2-1 375 3-68
100 0-30 38 4-70 525

As the concentration increases from very small values, « decreases
more rapidly than o, increases and the conductivity decreases; at
¢ =8 x 103, o = ap, but the conductivity is still decreasing. It
is only when ¢ = 24 x 10-3 that the conductivity contributions of
the two types of ions are equal and the conductivity has a minimum
value, after which the formation of triple ions is dominant and the
conductivity increases again.

It must be noted now that, by selecting a solvent of such low
dielectric constant (and therefore low values of & and a;) the calcu-
lation has been capable of simplification by neglecting the interionic
effects. For a solvent of higher dielectric constant, interionic forces
are no longer negligible and the computation is not so straight-
forward.

Fuoss and Kraus were able to carry the argument one stage
further: by treating the approach of a negative ion towards the
positive ion of an ion-pair, subject to coulomb forces only, they were
able to show that there is a certain value of the distance which is
critical: once the approaching ion is within this critical distance it
is to be regarded as forming a triple ion. The dissociation constant
can be derived in the form of a complicated integral for details of
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which the original paper should be consulted. However, assuming
a critical distance of 9 A, good agreement with the experimental
values of k was found: thus for the water-dioxan mixture of dielec-
tric constant 2:56 for which k was found to be 8 x 10-5, theory
yielded 9-3 x 10-5. The critical distance of 9 A may seem very
different from 6-4 A which had to be used in dealing with ion-pair
formation. This, however, was a simple case of (+ —) union,
whereas the triple ion formation is an average process involving
(+ —+) and (— + —) in one of which two very large ions
participate.

An interesting question arises when two ions are competing to
form a triple ion. On a random distribution XMX- and YMY-
should be present in equal amount and XMY- at twice this con-
centration. This has been found®® to be true for tetra-n-butyl-
ammonium chloride and azide in benzene but for the chloride-
nitrate, chloride-perchlorate and nitrate-perchlorate mixtures the
XMY- triple ion is favoured.

QUADRUPOLE FORMATION

The existence of a minimum in the conductivity concentration
curve of an electrolyte has been explained by the formation of triple
ions. At higher concentrations the conductivity changes in a com-
plicated way and it is probable that higher aggregates are formed,
for example, quadrupoles (+ — + —). Definite evidence for this
has been found from the freezing-point measurements of solu-
tions of triisspamylammonium picrate in benzene!”. At extremely
low concentrations the freezing-points can be explained on the
basis of an equation!® for the j function of the freezing-point de-
pression if a reasonable model is assumed for the ion-pair—an
ellipsoid with axes in the ratio 2 : 1 containing a point dipole of
moment 12:9 Debye unmits'®. But at higher concentrations the
apparent molecular weight increases. It is assumed that this re-
action occurs:
2M+X~ - M+X-M+X-

Let a fraction, a, of the M*+X- jon-pairs associate in this way: then
we can write:
(1 —a)2%

k, =

As each ion-pair is replaced by%L quadrupoles leaving(l — «) ion-

pairs, the total number of particles becomes (l - g) This we
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equate to the osmotic coefficient and hence to (1 —j) or j = g
and (1 — 2j) = (1 — &) so that:
1 — 25)2
k‘ = .(____J)_f
J
or, rearranging:
J___
a =z =

Therefore the function j/(1 — 2j)2, obtained from the experimental
data, should be a linear function of the concentration. This is
exactly what Fuoss and Kraus® found—plotted in this way a
straight line was obtained up to a concentration of about 0-03 N,
the slope giving a dissociation constant of 0-105 for this particular
electrolyte in benzene,

ION-PAIR FORMATION IN WATER AS SOLVENT

The electrolytes so far considered as showing evidence of ion-pair
formation do so to a marked extent. The phenomenon therefore
occurs to a measurable degree even at low concentrations where the
conductivity and the activity coefficient of the few dissociated ions
can justifiably be described by equations known to be very good
approximations at such high dilutions. It is, however, suspected
that ion-pair formation does occur in some electrolytes, for example,
with potassium nitrate in aqueous solution, but to an extent much
less than in the examples we have already considered. The con-
ductivity of potassium nitrate follows the predictions of the Onsager
limiting equation much more closely and to much higher concen-
trations than we have any right to expect; this can be expressed
differently by saying that if the (1 + «a) factor is introduced into
the Onsager limiting conductivity equation, the a value required
(about 1-9 A) is just possible if the planar nature of the nitrate ion
permits a number of close encounters. The activity coefficient of
potassium nitrate is also much lower than we would expect. It is
believed by many that the behaviour of potassium nitrate can be
explained by postulating a small amount of ion-pair formation;
about 3 per cent at 0-1 N would suffice. Unfortunately, whilst it
would be comparatively easy to detect the ions if only 3 per cent
of the potassium nitrate were dissociated, it is not easy to detect the
ion-pairs if only 3 per cent are present in this form, except perhaps
in unusual examples where the ion-pairs have characteristic Raman
or ultra-violet absorption spectra. We have to measure the
diminution from 100 per cent to something of the order of 97 per
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cent for the proportion of ions present and, to add to the difficulties,
this has to be done in a range of comparatively high concentration
for the ion-pair effect to be noticeable, assuming that it does exist.
We must therefore try to estimate ionic concentrations of such
magnitude that our theories are inapplicable with any great
assurance; for example, if the ionic concentration is estimated from
conductance, it is difficult to prove that the 3 per cent deviation
from theoretical prediction is due to ion-pair formation and not to
some defect in the theory. The subject has indeed suffered from the
difficulty of knowing how to describe the behaviour of the ionized
part of the molecule at comparatively high concentrations.
Davies!® has used an empirical equation to describe the conduc-
tivity of a solution up to about 0-5N and by comparison with
observed conductivities, he has come to the conclusion that many
salts, including sodium and potassium nitrate, sodium and potassium
iodate, silver nitrate and potassium bromate are only about 97 per
cent dissociated at 0-1 N.

We have already seen that the theoretical equation (7.36) works
very well for aqueous 1 : 1 electrolytes of the non-associated type.
It would therefore seem reasonable to expect it to represent the
conductivity of an associated electrolyte if we put a equal to
the critical Bjerrum distance: for a temperature of 25°, we write:

4/ (o)
= A® . 0 1 60:65) ———Y~—
A, = A (0-2300A° 4- 60-65) 1 F Bavy/(0)
« being the degree of dissociation of the ion-pairs. But if we put

a = 3-57 A in this equation, we should also use the same value of a
in the equation for the activity coefficient:

Ay/(@)
T F Bay/()

which is required to calculate the dissociation constant:

—logf= ....(143)

o y%
F=0=9

ignoring the small difference between fand y. The results of calcu-
lations along these lines are given in Table 14.4 for potassium and
silver nitrate and for thallous chloride, using the conductivity data
of SuEDLOVSKY!!!? for the first two, and of GARReTT and
VELLENGA!!? and of Bray and WINNINGHOF!Y for the last salt.
The dissociation ‘constant’ hardly lives up to its name for the twa
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nitrates, since with increasing concentration it increases for potas-
sium nitrate and decreases for silver nitrate, but a reasonably good
‘constant’ results for thallous chloride. At low concentrations the
‘constant’ is very sensitive to small changes in either A or A'—a
change of 0-01 in either at 0-005 N corresponds to only 0-01 per
cent in a but to 5 per cent in (I — &) ! On Bjerrum’s theory dis-
sociation constants of the order of these we have obtained for

Table 14.4
Dissociation Constants of Potassium Nitrate, Silver Nitrate and Thallous Chloride at 25°
o =
¢ Aons. Acate. Aovs./Acale. 2 Ing K
Potassium Nitrate
0-005 138-48 138-86 09973 0-0664 1-42
0-01 135-82 136-61 0-9942 0-0909 1-38
0-02 132-41 133-67 0-9906 0-1230 1-57
0-05 126-31 128-51 0-9829 0-1792 1-87
0-07 123-56 126-23 0-9788 0-2040 1-98
01 120-40 123-60 09741 0-2327 2-14
Average 1-73
Silver Nitrate
0-005 127-20 12743 0-9982 0-0664 2:38
0-01 124-76 125-24 0-9962 0-0910 2-12
0-02 121-41 122-38 0-9921 0-1231 1-88
0-05 115-23 117-39 0-9816 0-1791 1-73
01 109-13 112-64 0-9688 0-2322 1-76
Average 1-97
Thallous Chloride
0-00507 143-10 144-85 0-9879 0-0665 0-351
0-00604 142-25 144-34 0-9855 0-0721 0-343
0-00750 141-13 143-65 0-9825 0-0794 0-345
0-01 139-00 142-65 09744 0-0901 0-302
0-01108 138-35 142-27 09724 0-0942 0-306
0-01501 136-03 141-05 0-9644 0-1074 0-306
0-01607 135-40 140-75 09620 0-1105 0-303
Average 0-322

potassium and silver nitrate would be given by electrolytes whose
ions could approach within 2 A, and this may be a reasonable value
if it is remembered that the nitrate ion is planar and some of the
encounters can be comparatively close ones. For thallous chloride,
however, the distance would be only about 1 A and this is not
consistent with the ionic dimensions. The hypothesis of ion-pair
formation can be checked in another way, since the product of «
and y, as calculated above, should equal the activity coefficient
measured experimentally and computed assuming complete dis-
sociation. For both potassium and sodium nitrate at 0-1 N, y
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calculated by equation (14.3) is 0-765, the ay product is 0-745 and
0-741 respectively compared with the observed activity coefficients,
0:739 and 0-734 (Appendix 8.10). Again the agreement is not good,
but for thallous chloride at 0-01 N, ay is 0-878 compared with the
observed value of 0-876.

The problem of incomplete dissociation has been approached
from another angle by studying reaction ratest!®). In a reaction
between a neutral molecule, S, and the ion X~ of an electrolyte
MX the rate depends, according to the transition state theory, on
the concentrations of S and X- and the activity coefficients
JsJx-lfsx-» SX~ being the transition-complex. In dilute solution f3
should be close to unity and X~ and SX- having similar charges,
their activity coefficients should be almost equal. Consequently the
rate of reaction should depend on the concentration rather than the
activity of X~ and any ion-pair formation between M+ and X-
should reduce the reaction rate in amount proportional to the
number of ion-pairs formed, unless the transition complex, SX-,
can also form an ion-pair with M+, Whilst this possibility cannot be
excluded and, indeed, seems to be realized in the saponification of
ethyl acetate’®, it should be negligible if the complex, SX-, is
large as in the catalytic decomposition of diacetone alcohol by
hydroxyl ions. Support for this belief comes from further experi-
ments on the hydrolysis of carbethoxymethyltriethylammonium
iodide, EtCO, CH,N(Et),I, whose transition complex has zero net
charge; conclusions drawn from these experiments agreed with
those in which diacetone alcohol was used.

In solutions of potassium or rubidium hydroxide this alcohol is
decomposed at a rate directly proportional to the stoichiometric
alkali concentration, the reaction constant per mole of hydroxide
varying only between 0-2165 and 0-2193 up to 04 N. Some
curious results were obtained with sodium hydroxide; concentra-
tions increasing up to 0-4 N leading to a decrease of the reaction
constant from 0-2182 to 0-2051; this may mean that sodium
hydroxide is only 94 per cent dissociated at 0-4 N and 98 per cent
at 01 N, corresponding to a mean ionic diameter of about 3-1 A
if the mechanism of association were Bjerrum ion-pair formation,
The ‘effective’ radius of the hydrated sodium ion of sodium
chloride, allowing for a penetration of 0-7 A (see Chapter 9) is
2:2 A, so that the hydroxyl ion could approach within 3-1 A if it
had a radius of 0-9 A, a not impossible value if the radius of the
water molecule is 1-4 A, But there seems to be an objection to this
idea. Whatever our doubts about the accuracy of some of these
ionic dimensions, the rubidium and potassium ions must be
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considerably smaller than the hydrated sodium ion and, therefore,
rubidium and cesium hydroxides should be even weaker electrolytes.
This is contrary to the findings of Bell and Prue and, indeed,
contrary to all our ideas about the alkali hydroxides. We will
return to this later. (See p. 423.) At present our interest is more
with calcium, barium and thallous hydroxide. With each of these
the rate-constant falls with increasing hydroxide concentration,
showing large departures from the value of 0-218 for the fully
dissociated hydroxides and suggesting a considerable degree of
association. Making reasonable assumptions about the activity
coefficients of the various species, Bell and Prue decided that the
dissociation constants of calcium, barium and thallous hydroxide
were 0-051, 0-23 and 0-38 respectively, the last corresponding to
about 87 per cent dissociation of thallous hydroxide at 0-1 N.
Working from these dissociation constants and the Bjerrum equation
(14.2) the distances of closest approach can be calculated and
compared with the crystallographic radii as follows:

Bjerrum distance of | Sum of cry:dtq{lographic
radii

closest approach
CaOH* 255 A 2524
BaOH* 5-55 2-88
TIOH 1-23 2.97

The a values needed for calcium and barium hydroxides are
reasonable, although it is curious that barium and hydroxide ions
do not approach nearer than 5-55 A. But the dimensions of the ions
of thallous hydroxide are such that they cannot approach closer
than 2:97 A without an interaction more profound than that
induced by coulomb forces. Bell and Prue concluded, therefore,
that a covalent link must be formed.

Another method of studying the incomplete dissociation of
electrolytes depends on measuring the solubility of a sparingly
soluble electrolyte in the presence of another electrolyte!1®), Calcium
and thallous iodate are examples of salts of conveniently low
solubility. From such measurements we derive the activity coeffi
cient in the presence of the added electrolyte because, if s, and s
are the solubilities in pure water and in the presence of the other
electrolyte and f; and f are the corresponding activity coefficients,
the condition for saturation is fos, = f5. These activity coefficients
are expected to conform to a selected equation considered to be
valid for all salts at low concentrations and a lack of such agreement
is taken to mean that an incompletely dissociated ‘intermediate
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ion’, ion-pair or molecule has been formed. The method can be
illustrated by reference to some measurements of the solubility of
thallous iodate in potassium chloride solution*?,

In pure water at 25° thallous iodate is soluble to the extent of
1-838 x 10-2 mole/l rising to ¢ = 2-359 x 10-2 in the presence of
potassium chloride at a concentration of 0-05422 N. The activity
coefficient, f,, is now calculated by the equation

0-5/1

011 o (14.4)

giving f; = 0-954 at a concentration corresponding to the solubility
of thallous iodate in water. From the solubility in 0-05422 N
potassium chloride, the activity coefficient of thallous iodate can
now be calculated as 0-743. This is the stoichiometric activity
coefficient assuming that the solubility measurements give ionic
concentrations. But using equation (14.4) for this total ionic
strength, an activity coefficient of 0-812 is calculated. The ratio of
these two activity coefficients is a measure of the amount of thallous
ions which have gone to form thallous chloride molecules. Hence
the dissociation constant of thallous chloride can be calculated. In
practice it is not quite as simple as this because corrections have to
be made by successive approximations to get the total ionic
strength; thallous iodate and potassium iodate give small amounts
of undissociated molecules and, in some experiments, e.g., when
thallous iodate is dissolved in potassium sulphate solution, allowance
must be made for KSOy ions. Bell and George give the following
dissociation constants:

0° 25° 40°
TISO; 0-042 0043 0-044
TIC 0-165 0210 0-230
TIOH 0155 0-150 0-142
TICNS 0115 0-160 0230
TIF — 08 —
TIFe(CN);-- 0-00065 0-00060 0-00054
CaOH+ 0-043 0-040 0-033
CasSO, 0-0060 0-0049 0-0041

From the solubility of calcium iodate in calcium hydroxide solution,
Davies and HovLe!'® obtained 0-050 for the dissociation constant
of CaOHH*, in good agreement with the value Bell and Prue found
from reaction rate experiments, whilst measurements have been
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made on magnesium and strontium hydroxide which fit in the
series: MgOH+ (0-0026), CaOH* (0-05), SrOH+* (0-11), BaOH+
(0-23).

ION-PAIR FORMATION WITH 2 :2 ELECTROLYTES

Reference has already been made to the difficulty of finding
equations which will describe the behaviour of the ionized portion
of a partly dissociated 1 : 1 electrolyte in any but dilute solutions.
Two additional difficulties are met with 2 : 2 electrolytes, such as
zinc sulphate. First, it is very doubtful if we have an equation
which will describe the conductivity of even a hypothetical non-
associated 2 : 2 electrolyte because, as we have seen in Chapter 7,
it is doubtful if we are justified in taking only the first two electro-
phoretic terms in equation (7.24), whilst the introduction of higher
terms cannot be justified as long as we use the modified Boltzmann
distribution given by equation (4.9). In other words we are at-
tempting the problem of a partially dissociated 2 : 2 electrolyte
without adequate solutions of the problem of a non-associated
2 : 2 electrolyte. Secondly, we are in considerable difficulty when
we try to find A° values for such electrolytes. This is not a problem
of theoretical significance but it does add to the complexities of the
task. For two electrolytes, cadmium sulphate and magnesium
sulphate, we can circumvent the latter difficulty because for the
first salt we can extrapolate the conductivity data® at very low
concentrations, and for the second salt we know the limiting
mobility of the magnesium ion from magnesium chloride data and
that of the sulphate ion from sodium sulphate data. Having
obtained A°® = 133-07 indirectly, we can use the measurements of
DunsmMore and James®? at concentrations below 0-001 molar,
applying the method already described for potassium and silver
nitrate. We write the conductivity equation (7.36) as:

V/(ae)

A = ]33'07 _— 484'8 mm “ e s (14.5)
and the activity coefficient equation:
4074/ ()
—~logf= T+ 9378/ () ....(14.6)

where the figure 9-378 corresponds to an @ value of 14-28 A—the
Bjerrum critical distance for a 2 : 2 electrolyte in water at 25°,
The equations can be solved for « by successive approximations to
give the results in Table 14.5. The values of K show a reasonable
degree of constancy with an average of 4-96 x 10-3,
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Of the seven measurements made by Deubner and Heise on
cadmium sulphate at 18°, those at the four lowest concentrations
agree with the predictions of the Onsager limiting law:

A = 11315 — 408-1+/¢

The other three points were at very low concentrations so that we
can use equation (14.5) without the (1 + xa) term to get 0-0066,
0-0051 and 0-0043 for the dissociation constant,

Table 14.5
Dissociasion Constant of Magnesium Sulphate at 25°

¢ x 108 Aob., Ao.lo, o -2 logf K x 100
0-8098 127-31 129-07 0-9864 0-0672 4-96
1-6336 124-27 127-60 0-9739 0-0919 481
26924 121-34 126-30 0-9607 0-1138 4-87
4-297 117-85 124-86 09439 0-1380 497
6-006 11492 123-70 0-9290 0-1575 5-08
8-380 111-61 122-43 09116 0-1791 5-21
0-8511 127-11 128-98 09855 0-0687 487
1-994 123-13 127-11 0-9687 0-1002 475
3-090 120-33 125-90 0-9558 0-1205 484
4-270 117-80 124-88 0-9433 0-1376 4-88
5-597 11550 123-95 09318 0-1533 5-01
7-197 113-14 123-02 09197 0-1689 502
8-846 111-02 122-21 0-9084 0-1825 5-23

K =496 x 10~

A new approach has been devised recently by Jones and Monk 2%
with the cell:
H,|HCI, MgSO,|AgCl, Ag

which measures the quantity yg.yg-mg. for a solution containing
H+, Cl-, Mg*+, HSO; and SO;- ions as well as undissociated
MgSO,. A series of successive approximations, along with a know-
ledge of the jonization constant of the HSOy ion is sufficient to give
the dissociation constant of magnesium sulphate. Jones and Monk
determined this over the temperature range 20° to 35°, finding
K = 0-0044 at 25°. A similar method has been used‘?" to study
the equilibrium between magnesium ions and phosphate, glucose-
1-phosphate or glycerol-1-phosphate ions, the dissociation constants
at 25° being 1-95 x 10-3, 3-31 x 10-% and 3-25 x 10-3 respec-
tively; for calcium glucose-1-phosphate®® K = 3-20 x 10-2at 25°.
These studies cover a wide temperature range and have much
biological interest.
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Mention should also be made of a spectrophotometric method 22
which takes advantage of the non-associated nature of bivalent
metal perchlorates. Copper perchlorate has a characteristic absorp-
tion band in the ultra-violet, presumably due to the copper ion.
If lithium sulphate (also, probably, a non-associated electrolyte) is
added to solutions of copper perchlorate it is found that the extinc-
tion coefficient increases as the amount of lithium sulphate is
increased. This is ascribed to formation of CuSO, molecules or
ion-pairs. Measurements have also been madef®® in solutions of
copper sulphate alone which lead to a dissociation constant of
0-0035 at 25° in agreement with 0-0039 calculated from conduc-
tivity data’®® at the same temperature and 0-0033 from cryoscopic
experiments(®®: it is shown that much higher values of the dissocia-
tion constant result if a smaller distance of closest approach of the
ions is assumed, the above values being calculated on the assump-
tion that the correct ¢ value to use in calculating osmotic and
activity coefficients of the free ions is the Bjerrum critical distance
of 14 A,

Supporting evidence has been found recently in two different
ways. The first is that, as we saw in Chapter 11, the diffusion
coefficients of magnesium and zinc sulphate are explicable if it can
be assumed that they form ion-pairs with dissociation constants of
the order of 0-005. Another piece of evidence comes from measure-
ments of the Wien effect. We omitted all mention of this when
discussing conductance: the ONsAGER-WIiLsON theory?® of this
effect is complicated but, very briefly, the effect is concerned with
the motion of ions under very high potentials such that the ions
move so quickly that the ‘ionic atmosphere’ does not have time to
build up completely or, at sufficiently high field strengths, the
atmosphere does not build up at all. This leads to an increase of
the ionic mobility, If the electrolyte is weak, another effect is
superimposed: ONsaGer(?” has shown that at high field strength
the ionization constant will be increased and he has obtained an
equation relating this to the field strength. It is not easy to see why
there should be an increase in the ionization constant but, putting
it rather crudely, the absence of the ‘ionic atmosphere’ round the
ion reduces the concentration of ions and, by a mass action effect,
favours further ionization of molecules. Patterson et al. have
improved the experimental methods of determining the Wien effect
and they find that, for magnesium, zinc and copper sulphate and
for lanthanum ferricyanide!®®, the observed Wien effect is much
larger than that predicted by the Onsager-Wilson theory. Taking
reasonable values for the dissociation constants of these electrolytes
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at very low field strengths, determined by the methods already
described, they use Onsager’s equation to calculate the increased
dissociation constants at high field strengths and hence the increased
ionic concentrations which give the high conductances. With this
correction good agreement with the Onsager-Wilson theory is
found, thereby indirectly supporting the ion-pair theory.

Another method(®® which promises well is that of sound absorp-
tion; 2:2 electrolytes, in contrast to other valency types, have two
maxima in their sound absorption spectra which can be definitely
assigned to interaction between the cation and the anion.

ION-PAIR FORMATION WITH UNSYMMETRICAL
ELECTROLYTES

The conductivity method should be applied to ion-pair formation
with unsymmetrical electrolytes with considerable caution: we have
seen in Chapter 7 that in deriving equation (7.36) we have dropped
higher-order electrophoretic terms on grounds of self-consistency,
although they are of appreciable magnitude. We are therefore less
successful in predicting the conductivities of unsymmetrical electro-
lytes; Table 7.6 shows that up to ¢ = 0-005 we can represent con-
ductivities with an average deviation of 0-3 units for calcium
chloride and 0-4 units for lanthanum chloride. Indeed, as the
calculated values are higher than the observed, it might well be
argued that even these salts are incompletely dissociated, provided
we could satisfy ourselves that the difference did not arise from the
unsatisfactory nature of the theory when applied to unsymmetrical
electrolytes. JEnkins and Monk!'®® made measurements on sodium
sulphate at concentrations as low as ¢ = 6 X 10-%; at the highest
concentration, ¢ = 6 X 10-4, the conductivity was 123-57 whilst the
limiting law (equation 7.29) gives 123-85. The introduction of a
(1 + «a) factor with @ = 4 A (equation 7.36) would raise the calcu-
lated conductivity to 124:14, 0-57 units higher than the observed—
a very narrow margin when we are in doubt about the higher
electrophoretic terms in the theoretical equation! These authors
also made measurements on lanthanum sulphate. At their highest
concentration, ¢ = 3 X 104, the observed conductivity was 72-81,
the limiting law gives 126-31 and a (1 + «a) factor with a = 6 A
would raise this to 129-07. In this case the difference between the
observed conductivity and that calculated by the limiting law is
substantial and one can accept ion-pair formation for this electrolyte
with much more confidence. Jenkins and Monk calculated
K =24 x 10-* in good agreement with 2-2 x 10-4 found by
Davies'3? from measurements of the solubility of lanthanum iodate
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in potassium sulphate solution!3®, To take one set of observations
from this work, the solubility is 12-153 x 104 mole/l in 20 x 10—4
molar potassium sulphate, whereas the solubility in water is
89006 x 104 mole/l. The solubility product is then

33£4(8-9006 x 10-4)* = 6-06 x 10-12

if we calculate the activity coefficient by the Debye-Hiickel limiting
law (equation 9.10). The solubility product in the potassium
sulphate solution is 11-64 X 10-!2 so that it seems that too much
lanthanum iodate has dissolved. It is now assumed that the true
concentration of lanthanum ions is reduced by formation of LaSO}
ions and, by successive approximations to get the total ionic
strength at which fis to be calculated, it is found that the correct
solubility product is obtained if the concentration of LaSO} ions
is 7499 x 10-*mole/l. The law of mass action then gives
K =212 x 10-%. It is worth while examining this calculation to
see what is the nature of the approximation made by using equation
(9.10). If we repeat the calculation using equation (14.4), modified
for the 3 : 1 electrolyte, lanthanum iodate, we find the solubility
product is 6-60 x 1012, the concentration of LaSO} ions in the
potassium sulphate solution is 7-753 X 10~4mole/l and K =
2:15 x 104 Thus we can derive a dissociation constant which is
almost independent of the assumption we make about the equation
for the activity coefficient and in good agreement with that deduced
by an entirely different argument from conductivity data.

Table 14.6
Dissociation Constants of Electrolytes in Water at 25°

Cation Thiosulphate Sulphate Malonate Oxalate
H* 0035 0012 002 052
Na* 0-21 019 — —
K+ 012 011 — —
Mg*+ 00145 00070 140 3.7
Ca++ 00104 0-0053 32.0 10-0
Sr++ 0-0092 - — 29.0
Ba++ 0-0047 — 1960 47.0
Mn++ 00112 0-0052 51 13
Co*+ 0-0090 0-0034 19 020
Ni++ 0-0087 0-0040 0-99 005
Zn*+ 0-0040 0-0049 2:1 013

(From Denney, T. O. and Monk, C. B., Trans. Faraday Soc., 47 (1951) 992)

It is the derivation of dissociation constants of large magnitudes,
t.e., for largely dissociated electrolytes, from conductivity values
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which are not far from those predicted for a completely dissociated
electrolyte, about which we have our doubts, especially if they are
unsupported by data based on solubility measurements. Because of
the unsatisfactory nature of the present theory of conductivity for
unsymmetrical electrolytes, the solubility method seems more
soundly based. It has been used extensively and in Table 14.6 we
give some dissociation constants derived mainly by this method,
taken from a compilation by DENNEY and Monk 33,

SPECTROPHOTOMETRIC EVIDENCE FOR ION ASSOCIATION

Just as the ionization constants of some weak acids can be derived
from measurements of the absorption spectra in the ultraviolet, so
can the dissociation constant of an incompletely dissociated salt
provided the two species involved absorb at different wavelengths.
Mention has already been made of the use of the absorption spectra
of copper sulphate solutions and a further example is that of the
PbCl+ ion which has maximum absorption at 2380 A compared
with 2080 A for the Pb++ jon.

An example of one method of using such absorption data (the
method of ‘continuous variations’) is as follows'3#: mixtures of lead
perchlorate and potassium chloride each 0-0005 molar are made in
various proportions with the total molarity constant, i.e., the solutions
are xc with respect to lead perchlorate and (1 — x)¢ to potassium
chloride. The optical density, D, is measured at a wavelength
near to 2380 A. Let « be the fraction of the lead which forms a
complex, PbCl, with a charge (2 — rn). Then the concentrations of
the various species are:

cpper = (1 — at)xe
‘pbel, = AXC
- = (I — x)¢ — naxc
and the optical density is:
D = gppes(l — a)xc + epygy o0¢

if we omit the length of the cell from this equation, i.c., we assume
a cell of unit length. Then

D — XCEpp+e = MC(&prL —_ £pbn)

The quantity on the left is the ‘excess’ optical density, the excess of
the observed density over that calculated on the assumption that
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the density is due entirely to lead ions and that there is no interaction
with chloride ions. epy.+ is obtained from a solution containing no
chloride ions (x = 1). Usually, if the experiment is made at a
wavelength characteristic of the complex, xcepps+ will be much
smaller than D and (D — xcepy,+.) will have a maximum value (or
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Figure 14.5. The ‘method of continuous variations’ applied to lead perchlorate—potassium
chloride mixtures in 90 per cent ethanol oj?l';ﬂal molarity 0-0005

2
+

a minimum value if gpyse > €pper,) When ax is a maximum. From
the law of mass action:

Kox = (1 — a)x[(1 — x) — nax]nc®

neglecting the activity coeflicients, whose variation with x should
be small in dilute solution, and ax has a maximum value when

1
x—n+l

Thus if the excess optical density (D — xcepy:+) is plotted against x,
there should be a maximum in the curve at a value of x from which
n can be calculated. Figure 14.5 shows such a graph for lead per-
chlorate-potassiumchloride mixtures in 90 per cent ethanol which
shows clearly that the maximum is at x = 0-5 and therefore the
complex has the formula PbCl+.
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This method gives us the composition of the complex but it does
not tell us how stable it is. To show how the dissociation constant
of a complex may be measured, we refer now to a paper: by
HersHensoN, SMITH and HUuME®® on the PbNOj# ion. The nitrate
ion itself shows maximum absorption about 3000 A and, whilst the
wavelength of maximum absorption for the PbNO{ ion has not yet
been fixed exactly, it is known that this ion absorbs at 3000 A. The
composition of the complex was determined by the method of con-
tinuous variations. Additional measurements were then made on
solutions, each of which contained 0-05 N sodium nitrate and lead
perchlorate in amounts from 0+1 and 0-6 molar, each solution being
brought to a total ionic strength of two by addition of sodium
perchlorate. It was hoped that by keeping the total ionic strength
constant, changes in the activity coefficients of the various species in
these mixtures would be negligible. These solutions contain lead
ions, PbNO¢ ions and nitrate ions each of which absorbs at 3000 A
although the contribution of the lead ions is only that of the foot
of the peak at 2080 A and enters as a minor correction. The optical
density, using a cell of unit length, is therefore:

D = eno;tno; + EpvNoiRBNO;

If ¢ is the stoichiometric concentration of lead perchlorate, then
the concentrations of the various species are:

¢No; + ¢poNo; = 005
Cpp++ + CPpNO; = C RS Cpp++
so that:
D - 0'058N0; = (é‘rbno: - Sno;)crbno
By the law of mass action:
0-05¢
‘pbNO; = (_c+—K)
so that:
0-05¢ _K ¢

D — 005¢x0; ¢pbNO; — €NO;  €PBNO; — ENO;

The quantity on the left-hand side plotted against the stoichio-
metric lead perchlorate concentration should give a straight line of
slope (eppNo; — €No;)~* and intercept K{ep,no, — eno;)~? from
which K and eppno; can be calculated, exo; being found by measur-
ing the solution which contains no lead perchlorate. In Figure 14.6
a line is drawn through the points calculated from the results of
Hershenson, Smith and Hume, using the absorption at 3000 A.
The slope and intercept of this line give X' = 0-62.
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ION ASSOCIATION FROM PARTITION EXPERIMENTS

The distribution, or partition, of an electrolyte between two
partially miscible liquids is an experiment which can give much
information about the state of the electrolyte; it is, however, an
experiment which has seldom been performed with the accuracy of
the other techniques we have been considering. Of the few accurate
measurements which have been made, those on the distribution of
the sodium and potassium salts of guaiacol (o-methoxyphenol)
between water and guaiacol deserve consideration'®®, At first sight,
it may seem curious that such a system should be selected, but
interest in it arose from the work of Osterhout on the transport of
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Figure 14.6. Determination of the dissociation constant of the PONO} ion

electrolytes in living cells where a guaiacol-water system was used
as a model of the protoplasm-cell sap equilibrium. These salts seem
to be fully dissociated electrolytes when dissolved in water (at least
up to the highest concentration employed, 0-14 N) whilst they are
weak electrolytes, perhaps with ion-pair formation, in the guaiacol
solvent, a conclusion which was reached from conductance measure-
ments, The partition experiment itself is simple; the sodium or
potassium salt is distributed between the two phases by rotating a
50 ml. glass tube containing the solutions for 15 h. in a thermostat
at 25° and the concentrations are determined by titration with
hydrochloric acid using a glass electrode differential titration
apparatus. In speaking of the water phase or the guaiacol phase it
should be understood that we mean the water-saturated-with-
guaiacol phase or the guaiacol-saturated-with-water phase respec-
tively. Three moles of guaiacol can dissolve one mole of water and,
whilst no direct measurements seem to have been made of the
solubility in the other phase, the dielectric constant of the saturated
aqueous solution suggests that a mole of guaiacol can be taken up
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by about two hundred moles of water. From these experiments two
quantities can now be derived—the dissociation constant of the salt
in the guaiacol phase and the partition coefficient. In the guaiacol
phase we have

ol y2c

K=l—a

and for the distribution between the phases:

=
0 — yl cl
where ¢ and ¢’ are the concentrations in the guaiacol and the water
phases and y and y’ are activity coefficients, which can be calculated
from the Debye-Hiickel equation assuming, on crystallographic
evidence, that a = 7 A,

¢
The quantity measured is § = p It can easily be shown that:

!’

So}' _Szllz
a—-s.-; and S(1 —a)—Kcy

A rough value of S, is got by plotting § against ¢'y’? and extrapolating
to ¢'y’? = 0; then, by a series of approximations a value of S, is
found which makes a plot of S(1 — a) against ¢’y’? linear and
passing through the origin. The slope of this line is S3/K. In this
way Shedlovsky and Uhlig found K = 5-5 x 10-8 for the potassium
salt and 3-5 x 10-% for the sodium salt,

SOME GENERAL REMARKS ON ION-PAIR FORMATION IN
AQUEOUS SOLUTIONS

We have mentioned two proofs of Bjerrum’s hypothesis, one
depending on measurements of a high valency type salt in solvents
of high dielectric constant and the other relying on experiments in
extremely dilute solutions of low dielectric constant. These examples
are very convincing, but it by no means follows that such demon-
strations validate the case for ion-pair formation with salts of a
simpler nature in solvents of high dielectric constant. There are
two reasons why we think it would be well to be cautious. When
lanthanum ferricyanide is dissolved in water it is believed that the
ions cannot approach one another closer than 7:2 A, but that those
separated by distances between 7-2 and 32:1 A are to be regarded
as forming ion-pairs. It should not be forgotten that in this region
there are a large number of water molecules. Assuming that the
solvent molecules occupy the volume they do in the pure solvent
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(30 cu. A/molecule) there are nearly five thousand water mole-
cules in the shell. There are also large numbers of solvent molecules
round an jon in the solutions with which Kraus and Fuoss worked.
For example, in a solvent of 4-01 per cent water and 95-99 per cent
dioxan, the Bjerrum critical distance is much larger than it is in
water. It is about 80 A for a 1 : ] electrolyte. We have seen that
for one electrolyte 6-4 A is a reasonable value to assume as the
‘exclusion’ distance within which other ions cannot penetrate: itis
the shell between 64 and 80 A which is concerned with ion-pair
formation. In this shell there are about 17,000 solvent molecules.
Of all the ions which penetrate into this shell and form, temporarily
at least, ion-pairs, a few will get very close to the central ion. But
in general the partners in the ion-pair will be held together by
clectrostatic forces operating through a large number of solvent
molecules—large enough to justify us in considering that the solvent
in this shell will have the properties, and particularly the dielectric
constant, of the solvent in bulk. The critical distance for a 2 : 2
electrolyte in water is 14-28 A and a sphere of this radius can hold
about 400 water molecules of which only a few will be firmly
attached to the cation. It is very different for a 1 : 1 electrolyte in
water where the Bjerrum critical distance is only 3-57 A and the
total volume of the shell in which ion-pair formation is expected is
only 190 cu. A. This volume has to contain the two ions forming
the ion-pair so that there is no room left for more than about four
water molecules. Are we justified in using the bulk dielectric
constant in a region where there are so few solvent molecules and
even these must be subject to dielectric saturation?

The second consideration to be advanced concerns the nature of
the anions of electrolytes where ion-pair formation is suspected. In
very few examples is the anion a simple one. Thallous chloride
could be quoted. A dissociation constant of about 0-3 has been
calculated from conductivity measurements and about 0-2 from
solubility measurements, and on Bjerrum’s theory it would be
necessary for the ions to approach within about 1 A, whereas the
sum of the crystallographic radii is 3-26 A. There does not seem to
be conclusive proof from Raman or absorption spectra that thallous
chloride forms covalently bound molecules, although this does seem
to be the explanation of this anomaly of the very close approach of
the ions. In the case of lead chloride very convincing evidence for
the covalent nature of the bonding of the PbCl+ intermediate ion
is provided by ultra-violet absorption spectra'3?, which give a
dissociation constant of the order of 0-03. Lead nitrate!3® also gives
evidence of PbNO} formation, and this is one of the few examples
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known where covalent bond formation is suspected with the nitrate
ion. To return to thallous chloride, the point we want to emphasize
is that this ‘simple’ electrolyte is a dangerous example to quote in
favour of Bjerrum’s theory; as Bell and George have pointed out,
it is difficult to reconcile the behaviour of this salt, if it is to be
explained by ion-pair formation, with the crystallographic radii:
covalent bond formation is an attractive alternative but not yet a
proved fact.

All other cases where ion-pair formation is suspected with 1 : 1
electrolytes in water concern polyatomic anions-nitrates, chlorates,
perchlorates, bromates, H,PO;~ anions. Whilst it may be possible
that the planar configuration of the nitrate ion allows a cation to
approach in one direction within distances less than 3-57 A, it is
difficult to see how this can happen with the bulky tetrahedral
perchlorate jon. Moreover, these suspected examples of ion-pair
formation are all found with cations which are either unsolvated or,
at the most, contain only a few solvated molecules. The heavily
hydrated lithium ion does not associate with anions, whilst the
perchlorates of the hydrated bivalent metal cations seem to be non-
associated electrolytes (the heavily hydrated calcium ion behaves
differently in CaOH* formation where the hydroxyl radical seems
to replace a water molecule). In general, the cations which enter
into ion-pair formation are those whose electrical forces are not
satisfied by hydration and are therefore free to produce polarization
in oxyacid anions. Some aqueous 1 : 1 electrolytes are peculiarly
liable to this polarization effect. The conditions for it are a cation
with little or no hydration, an anion with an inherently polarizable
structure and the possibility of approach within distances much less
than is found with hydrated cations. So many examples of so-called
ion-pair formation satisfy these conditions that one must ask if the
picture of ion-pairs is not too simple? To treat them as ion-pairs
may be a first approximation, but we suggest that it would be closer
to the truth to say they are examples of interaction between the
cation and an induced dipole in the anion.

THE HYPOTHESIS OF ‘LOCALIZED’ HYDROLYSIS

An inspection of the activity coefficient data in Appendix 8.10
shows that at a given concentration the values for most electrolytes
of the alkali metal family are in the order:

Li>Na>K>Rb>Cs

This is true for the chlorides, bromides, iodides, nitrates, chlorates,
perchlorates, ¢fc., and is consistent with the increasing hydration of
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the cation from caesium to lithium. But the reverse is true for the
hydroxides of the alkali metals, where we find the order:

Cs > K > Na> Li

and, as we have said earlier in this chapter, this is not explicable
by ion-pair formation: the low activity coefficients found when
ion-pairs are formed, are now found with lithium hydroxide and
its conductivity is so low that a dissociation constant of 1-2 has been
ascribed to it!3} although the cation is hydrated and too large to
permit ion association. To account for this RoBinsoN and HARNED3#!
introduced the idea of ‘localized hydrolysis’. In the hydration shell
around a cation the water molecules must be highly polarized with
the positive charges directed away from the cation:

+ - +
Na-.--OH----H

It is possible that the bound ‘hydrogen ion’ can exert sufficient force
on a comparatively small ion like the hydroxyl to lead to a short-life
binding: + - + -
Na----OH----H----OH

with the formation of a kind of ion-pair but differing in that the
water molecule acts as intermediary. The smaller the cation the
more polarized will be the solvent molecules so that the effect would
decrease from lithium to caesium. As such interaction would lead
to reduced activity coefficients, it would explain why lithium
hydroxide has a low and caesium hydroxide a high activity coeffi-
cient. It would also explain the observation of BELL and Prugt®
that the catalytic effect of sodium hydroxide on the decomposition
of diacetone alcohol is low compared with that of potassium or
rubidium hydroxide. The catalytic effect is even less with lithium
hydroxide 39,

This effect should operate not only for hydroxyl ions but for any
anion which is a proton acceptor. We do indeed find that this
reversal of order with Li < Na < K < Rb < Gs holds for the
formates and acetates and perhaps for the fluorides. It holds also®
for the osmotic coefficients of magnesium and barium acetates up
to 1 M, the magnesium ion being more heavily hydrated and there-
fore more disposed to this localized hydrolysis. Above 1 M the
osmotic coefficient of the barium salt is less than that of the
magnesium salt; this is due perhaps to the greater tendency of
barium ions to enter into Bjerrum’s type of ion-pair formation.
This is a good example of the complex behaviour which is met
in solutions when we study any concentration region except the
dilute. The reversal of order is also found with mixtures; the
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activity coefficient of the hydrogen and acetate ions of acetic acid
is less in a solution of sodium chloride than it is in one of potassium
chloride although no such reversal of order is found for the activity
coefficient of hydrochloric acid in these salt solutions. The reversal is
also found for the ionic activity coefficient of water itself, yg+yon-, in
these salt solutions. In brief, it seems to happen whenever the cation is
small and hydrated and there is an anion which is a proton acceptor.

It has been suggested recently®® that the hypothesis can be
extended to the alkali halides, the effect being comparatively large
with the lithium halides and negligible with the caesium halides;
thus the order of activity coefficients, Cl- > Br~ > I-, observed
with the rubidium and caesium halides is taken as the norm in the
absence of ‘localized hydrolysis’ and the reversal of the order in
the lithium, sodium and potassium halides is ascribed to such
hydrolysis; the hydrated cations should be more effective in this
respect but for a given cation the degree of hydrolysis should be
greater with the smaller anions.

COMPLEX IONS

It is not our intention to discuss in any detail the subject of complex
ions“ but mention should be made of some of the complications
introduced by the less stable complex ions. These are found among
the halides of the transition metals, particularly the halides of
cadmium and zinc, where ion-pair formation is followed by further
association into neutral molecules and negatively charged anions
until the coordination shell is completed. BaTes!4?) has discussed the
interpretation of electromotive force measurements on solutions of
cadmium iodide to which either cadmium sulphate or potassium
iodide is added and he has obtained values for the stability constants
of the CdI+, CdI, and CdIj species. Figure 14.7 illustrates his
conclusions. Up to about 0-005 M, most of the cadmium is present
as Cd++ ions although substantial proportions of the CdI+ ion are
found even at 0-001 M. With increasing concentration the pro-
portion of CdI+ ions increases to a maximum of 45 per cent at
0-01 M and then decreases, the cadmium iodide molecule now
becoming important and accounting for 46 per cent of the cadmium
at 0-5M. The complex ion, Cdly, is formed to a lesser extent
although at 0-5 M it is present to the extent of 24 per cent, It is
possible that further association occurs to CdI;- ions in more
concentrated solutions. This behaviour is typical of the halides of
zinc and cadmium although the ease of formation of complex ions
is in the order:

ZnCly > ZnBry > Znl,
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for the zinc salts and in the reverse order for the cadmium salts:
CdI, > CdBr, > CdCl,

This is also the order of the activity coefficient curves. Indeed, the
tendency to complex ion formation with zinc iodide, in contrast to
cadmium iodide, is so small that up to about 0-3 M it behaves as a
typical non-associated electrolyte, but complex ions do occur at
high concentrations as shown by its negative transport number
above 3-5 M (see Table 7.9). That zinc bromide forms complex
ions more readily and that this is even easier with zinc chloride is
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Figure 14.7. Dzagram showing the relative proportions of Cd++, CdI* and Cdl; ions
and Cdlg molecules in cadmium iodide solutions up to 0-5 M

shown not only by the order of the activity coefficient curves, but
also by the occurrence of negative transport numbers at about 2:8 M
with zinc bromide and at 2 M with zinc chloride.

Evidence for the formula of the complex ions of zinc halides in
concentrated solution has come from vapour pressure measure-
ments4®, Mixtures of a magnesium halide and the corresponding
zinc halide of constant total molality were made with different
Mg : Zn ratios and the vapour pressures measured with the results
shown in Figure 14.8. The magnesium halides are non-associated
electrolytes and give large vapour pressure lowerings. Moreover,
zinc perchlorate has activity coefficients close to those of magnesium
perchlorate, so that the hydrated zinc and magnesium ions must be
about the same size. It would be expected, therefore, that if no
complex ions were formed with a zinc halide, its vapour pressure
lowering would be about the same as that of the magnesium halide
and the graphs in Figure 14.8 would be almost horizontal straight
lines. Instead, a sharp decrease of the vapour pressure lowering
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occurs until the zinc and magnesium ions are present in equal
amounts and further replacement of magnesium by zinc causes very
little change. These results are consistent with ZnX;- ion forma-
tion. For example, at a total molality of 4, the vapour pressure

N/ e

L L] i
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Figure 14.8. Vapour pressure lowerings of mixtures of zinc and magnesium halides at
constant total molality

I = ZnCl,—MgClyatu = 7.
II = Znl,—Mgl, at M = 5.
I1I = ZnBry,—MgBr; at M = 5.
IV = ZnCl,—MgCl; at M = 5.

V = ZnCl,—MgCl, at M = 4.

(From Stokes, R. H., Trans. Faraday Soc., 44 (1948) 137)

lowering due to 4 M MgCl, is that due to 4 M—Mg+*+ and 8 M—
Cl-. With magnesium and zinc present in equal amounts, the effect
is that due to 2 M—Mg++ and 2 M—ZnCl;-, an cffect which
should be much smaller; with zinc chloride alone the vapour
pressure lowering is ascribed to 2 M—Zn*+ and 2 M—ZnCl;-, so
that there should be little difference after the Zn : Mg ratio excesds
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1:0. As Figure 14.8 shows, this is exactly what is observed with all
three zinc halides.

Further evidence for the ZnCl;- ion has been found from an
x-ray study'#) of the complex salt, (NH,)3ZnCly, in the solid state
where the ZnCl;~ ions form one unit of the lattice.

Cupric chloride readily forms the CuCl+ ion as spectrophoto-
metric evidence shows'® with additional evidence that CuCl,
molecules and CuCly and even CuCl;- ions also exist!®,

Scandinavian workers have been particularly active in studies
aimed at the elucidation of the compositions and stabilities of
complex ions in solution. The work of BJERRUM?! on the ammonia
and ethylenediamine complexes of a large number of metal ions
and the studies by SILLEN® and his associates of the complexes of
zinc and mercury ions with anions are of great value. Sillén’s
technique is essentially one of potentiometric titration using a cell
with liquid junction, The solution being titrated is kept at a rela-
tively high and constant total ionic strength by the presence of
large amounts of electrolytes such as perchloric acid or sodium
perchlorate; the ions whose interactions are being studied, ¢.g., the
Zn*+ and Cl- ions, are at relatively much lower concentrations. In
this way the uncertain effects of the variation of ionic activity
coefficients with concentration are eliminated, and the changes in
the concentration of the Zn+*+ ion as the chloride content of the
solution is varied can be followed by measuring the potential of a
zinc amalgam electrode relative to a reference calomel electrode.
Sillén and Liljeqvist thus arrived at the following estimates of the -
molar scale constants of various stages of the complex formation
between zinc and halide ions in 3 N sodium perchlorate solution
at 25°:

Zntt + Cl- = ZnCl+, K, = 065

Zn++ + 2CI- = ZnCl,, K, =0-25

Zntt + 3Cl1- = ZnCl5, Ks=14

Zn*++ 4 Br- = ZnBrt, K, =025
(further stages also occur)

Zntt + I-: for all stages, K < 0-05.

This work reinforces the conclusion that the complex formation
between zinc and halide ions is least in the iodide and greatest in
the chloride, as indicated by the other considerations discussed
above. The experiments were not, however, made at high enough
concentrations of the zinc and halide ions to reveal the stage

428



REFERENCES

Znt++ + 4X- = ZnX[-, for which there is a good deal of evidence
from the vapour pressure data for mixed solutions.

Similar work on the mercuric complexes has led to an evaluation
of the much larger equilibrium constants for mercuric-halide ion
interactions, as follows:

X= a Br I

Hg++ + X- < HgX*, logK,= 674 905 1287
Hg++ + 2X- < HgX,,  logK,=1322 1733 2382
Hg+t + 3X- @« Hg X5, logK, = 1407 1974 2760
Hg+* + 4X- < HgX;-, logK,= 1507 2110 29-83

With mercury, as with cadmium, the iodide complexes are the most
stable and the chlorides the least stable, though all are of very high
stability compared with those of zinc and cadmium.
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15

THE THERMODYNAMICS OF MIXED
ELECTROLYTES

A stupy of the chemical potentials and transport properties o
single electrolyte solutions is very important in providing a criterion
for judging theoretical predictions. The interactions prevailing in
an electrolyte solution are, as we have seen in earlier chapters, of
several kinds, and theory provides us with only a partial explanation
of them. It is not surprising therefore that mixtures of electrolytes
present even more difficult problems to solve. Mixed electrolytes
are, however, very important; they are found in numerous pro-
cesses in chemical industry, they occur in enormous quantities in
the water of the oceans and have an important role in the physio-
logical processes of body fluids and cell equilibria. It is also likely
that ion exchange resins can be treated as mixed electrolytes. A
start has been made with the study of conductance and diffusion
processes in mixtures of electrolytes, but it is the thermodynamics
of these mixtures which has been studied in the greater detail.

We commence with the system hydrochloric acid-sodium
chloride: the top curve of Figure 15.1 represents the activity
coefficient of hydrochloric acid in aqueous solution at 25° in the
absence of any other solute. We have already seen, in Chapter 9,
that the shape of the curve, the minimum at y = 0-755 when
m = 0-4 and the rapid increase of the activity coefficient at high
concentrations, can be accounted for by postulating that the ions
have a mean diameter of 447 A and that the cation is associated
with an average of 8 water molecules. The lowest curve of Figure
15.1 represents the activity coefficient of sodium chloride as a single
electrolyte in aqueous solution at 25°; there is a minimum at
y = 0-654, m = 1-2; a mean ionic diameter of 3-97 A and a hydra-
tion number of 3-5 suffice to represent the activity coefficient up to
high concentrations. We could, however, measure the activity
coefficient of hydrochloric acid in the presence of sodium chloride:
we could make a solution containing two parts of the acid to one
part of salt and study the variation of the activity coefficient of the
acid as the total concentration is changed: if we were to make such
measurements, we would get a curve like the one in Figure 15.1
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ACTIVITY COEFFICIENTS OF MIXED ELECTROLYTES

which is marked xgg = 0-667. In general the shape of the curve
is similar to that for hydrochloric acid by itself, but the curve is
somewhat lower: thus 3 M —HCI has an activity coefficient of
1-316 which is reduced to 1:225 for a solution of 2 M —HCI 4
I M —NaCl. It is more difficult to determine the activity coefficient
of sodium chloride in such mixtures, but it has been done, and the

|
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Figure 15.1. The activity cogfficients of hydrochloric acid and sodium chloride
in mixed electrolyte solution

curve marked xy,q = 0:667 shows that the activity coefficient of
the salt is raised by the substitution of hydrochloric acid for some
of the sodium chloride in the solution. Thus the activity coefficient
of sodium chloride as a single electrolyte at 3 M is 0-714 but this
becomes 0-816 in a solution of 2 M —NaCl 4+ | M —HCL This
behaviour is typical of these mixtures: as the proportion of sodium
chloride is increased the activity coefficient of hydrochloric acid
decreases so that the curve for xzc = 0-333 is even lower than that
for xgg = 0-667. But starting with solutions containing only
sodium chloride and then increasing the proportion of hydrochloric
acid in the mixture, the activity coefficient of sodium chloride
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15 THE THERMODYNAMICS OF MIXED ELECTROLYTES

increases so that the curve for xy,q = 0-333 lies above that for
xNac1 = 0°667. It is possible by a method of extrapolation to deter-
mine the activity coefficient of hydrochloric acid present in vanish-
ingly small amounts in a solution in which the electrolyte is virtually
all sodium chloride. Likewise the activity coefficient of sodium
chloride can be determined for the limiting case of zero salt con-
centration in a solution of hydrochloric acid. If this is done, the
curious result emerges that the activity coefficient of hydrochloric
acid in a solution containing virtually nothing but sodium chloride
is almost identical with that of sodium chloride in a solution con-
taining nothing but hydrochloric acid. These limiting cases, of great
theoretical interest, have to be represented by a single curve in
Figure 15.1, marked xgg = 0, xx,q = 0, because it would require
a large scale graph to show the difference between them.

We will represent the activity coefficient of an electrolyte B in a
solution containing only this electrolyte by yg«) and the activity
coefficient of B in the limiting case where the electrolyte has been
replaced entirely by a second electrolyte C, by y(g. (These
correspond 0 y,¢) and ), in the literature on the subject; we
have made the change because we have used y; to denote the
activity coefficient of the ion 1.) Thus the central curve of Figure 15.1
represents both ymgq and ynact whilst the top and bottom
curves represent ygcie 2nd Yxacue respectively. The following
table shows how close y a0 2nd ygNac1 2re.

m YHOU® YwHc1 YRacl  YRaclo) Ymesn = V [¥rcior YRacua]
05 0-757 0-726 0-727 0-681 0-718
1-0 0-809 0-752 0-751 0-657 0729
20 1-009 0-875 0-873 0-668 0-821
30 1-316 1-063 1-066 0-714 0-969

It also shows that they are very different from the activity coefficient
of either the acid or the salt as a single electrolyte. Moreover the
last column, which represents a mean of ygc and Yy
08 Ymesa = $[198 ymci0 + 108 xacua], shows that yymey and
YaNacy are closer to yacye) than to yxgcie-

This description of the hydrochloric acid-sodium chloride system
is typical of mixed electrolyte solutions except that the near identity
of yima and y(gxaq is not found to be quite as close in other cases.
Thus in the system hydrochloric acid—potassium chloride at a total

.concentration of 3 M, ygaa = 0:858, yaxa = 0-845, and in the
hydrochloric acid—caesium chloride system at the same concentra-
tion y(guc = 0-669 and y(gcscn = 0-634.

Before we commence a study of the methods available for
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measuring these activity coefficients, we may consider some theo-
retical implications of the Debye-Hiickel theory. In extremely
dilute aqueous solution where the effect of the ionic diameter is
negligible, the limiting law (9.10) is applicable and consequently
for a mixture of electrolytes of the same valency type a difference
between y(qp and yge at the same total molality can originate
only in a difference between the ionic strengths as measured on the
molarity and the molality scales, and this difference must be negli-
gible in such dilute solutions. In solutions not so dilute, equation
(9.7) should be applicable, but we must be careful what meaning
we give to a. Taking as an example a mixture of hydrochloric acid
and sodium chloride in the molal ratio x : (1 — x), it is tempting to
speculate that the activity coefficient ygg can be compounded of
two terms, one for the hydrogen ions with an ag_ dependent
mainly on the sizes of the hydrogen and chloride ions, because
encounters between oppositely charged ions are more frequent. The
other parameter, for the chloride ion, would be more complicated
because we would need something like [xag._¢ + (1 — x)ana—c1]
to account for the interactions of the chloride ion with each of the
cations. The latter quantity might also be used for the contribution
of the chloride ion to yy,¢ but in addition we would need the
aNa—q1 term to account for the sodium ion contribution. In any
such speculation it should be remembered that, as a simple con-
sequence of the chemical potential being a partial differential
coefficient of the total free energy with respect to a concentration,
it is necessary that, for a mixture of two 1 : 1 electrolytes?’: (see

p- 441)
alnyB) (3 In 'yc)
—_—=) =|—— ....(15.1

(3’7‘0 m omp mg ( )

It is therefore difficult to satisfy both this equation and equation
(9.7) unless a is almost the same for each electrolyte in the mixture;
the only permissible difference in the a values for each of the
components would enter because the concentrations in (9.7) are in
volume units and those in (15.1) are in molalities, but this would
not allow for any great difference in a. An extended equation of
the form of (9.11) gives us greater freedom to vary a, but there will
still be some restrictions on the 2 and & values.

GUGGENHEIM’S TREATMENT OF MIXED ELECTROLYTE

SOLUTIONS

Starting with equation (9.13), the a parameter being the same for
all electrolytes and the term linear in the concentration accounting
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15 THE THERMODYNAMICS OF MIXED ELECTROLYTES

for the specific interionic effects, GUGGENHEmM'?) has built up a
theory of mixed electrolyte solutions consistent with equation (15.1).
Following the BrONsTED'® Principle of the Specific Interaction of
Ions: ‘in a dilute salt solution of constant total concentration, ions
will be uniformly influenced by ions of their own sign and specific
effects are to be sought in interactions between oppositely charged
ions,” Guggenheim introduces specific interaction coefficients for
the activity coefficient of an electrolyte, B, in the presence of
another electrolyte, C:

1
Inyp = — % + [2xbyex- + (bn+x- + byey-)(1 — %)]m

Here M+, X~ are the ions of B, and N+, Y- the ions of C; for
simplicity we consider 1 : | electrolytes in aqueous solution at 25°.
m is the total molality and xm and (1 — x)m are the molalities of
B and C respectively. We deviate slightly from Guggenheim’s
treatment in using activity coefficients and concentrations on the
molality scale. It will be noted that in this equation there is no b
term for the interaction of an ion with another of its own sign; this
accords with Bronsted’s Principle. For the other electrolyte we
have:

In yo = — 557 + 201 ~ b= + xlbyox- + by

and it is easy to show that these two equations for the activity
coefficients yz and y¢ are consistent with equation (15.1). More-
over, the first term on the right-hand side of these equations is not
subject to variation with a change in x so we let ¥’ and ¢’ refer to
contributions resulting from the second term.

When x = 0 we get:
In yigp = (by+y- - bnox-)m, In ygig = 2byvy-m
and when x = 1:
In ypo = 2bpex-m, In yloc = (bnex- -+ bysy-)m

so that:
Inyp = In g5 + (In yg — In p(g5)x

with a similar equation for C:

Inye =Inyge + (In yo — In pae)(l —x)
436



FLECTROLYTES IN MIXED SOLUTIONS

The logarithm of the activity coefficient of either component in a
mixture maintained at constant total molality is therefore a linear
function of the composition. Furthermore,

In 0 = In yc

These equations can be recast in the form:
Inyp =Inyp + (2byex- — bnex- — byoy-)am
Inyo =1Iny¢ + (2byoy- — byex- — baoy-)(1 — x)m

showing that whilst a plot of log y5 or log y. against x should give
straight lines, their slopes will in general be different. Only if the
two electrolytes have a cation or an anion in common, M+ = N+
or X- = Y-, are the slopes equal in magnitude and opposite in sign.
It can also be shown, by the Gibbs-Duhem equation, that:

¢' = mibyex-x* + (byex- + byey-)*(1 — %) + byoy-(1 — %)%}

so that, in general, ¢ is not a linear function of the composition:
only if the two electrolytes have a common ion, e.g.,, X~ =Y,
does this reduce to:

¢ = m{byex-x + bnex-(1 — %)}
or ¢ =dc+ (¢p —dc)x

and the osmotic coefficient is now a linear function of the
composition.

EXPERIMENTAL METHODS FOR THE MEASUREMENT OF THE
ACTIVITY COEFFICIENTS OF ELECTROLYTES IN MIXED
SOLUTIONS

One very accurate method uses cells of the type:
H,|HCI(mp), NaCl(m)|AgCl, Ag
whose potential is:
E = E® — klog yheymp(mp + me)

Since EV is known from measurements on cells containing hydro-
chloric acid only, the potential of this cell gives the activity coeffi-
cient of hydrochloric acid in the presence of sodium chloride. The
method can be used for any electrolyte provided that electrodes are
available reversible to each of the ions of the electrolyte. One of
the earliest studies of this nature was made by GUNTELBERG' for
solutions of hydrochloric acid and lithium, sodium, potassium or
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caesium chloride, the concentrations being varied in such a way
that the total molality remained constant at 0-1 M. This research
is a model of experimental skill and accuracy.

Most of the work on these cells has been concentrated on either
(1) keeping mg constant and varying m. or (2) allowing both mp
and mg to vary subject to the condition that (mg + mg) = constant.
Very extensive measurements have been made by the Yale school
on both these types. Reference has already been made (Chapter 12)
to some of these when we were describing the determination of the
ionization constant of water. Solutions of hydrochloric acid 4-
alkali metal chloride and of alkali metal chloride 4 alkali metal
hydroxide (and the corresponding bromide cells) have been studied
in this way. Measurements have also been made for sulphuric acid
in lithium, sodium and potassium sulphate solution‘®.

SYSTEMS AT CONSTANT TOTAL MOLALITY

If we were to draw a vertical line for any one total molality across
the four upper curves of Figure 15.1, we would get four values for
the activity coefficient of hydrochloric acid in the presence of sodium
chloride subject to the condition that the molalities of both solutes
could vary, but the total molality remained constant. Measure-
ments at constant total molality give more detailed information
about ygq as it changes from its value from ypgcyq, in a solution
containing acid only, to its limiting value yggc), when the solution
contains only salt. The work of Giintelberg has been referred to
earlier: Harned and his co-workers have made numerous measure-
ments under this condition of constant total molality. From this
work has emerged what has been called Harned’s rule: the
logarithm of the activity coefficient of one electrolyte in a mixture
of constant total molality is directly proportional to the molality of
the other component. Or:

log yp = log ypw — apm¢ ....(15.2)
and when m; = m = total molality,

log (g = log yp() — agm ....(15.3)
so that:

log yg = log y(0)5 + *pmp ... (15.4)

and for the other component:

log y¢ = log yo(e) — ®emp = log y(a¢ + acme (155)
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agp and a being functions of the total molality, m, but not of the
individual molalities, mg, m. These equations are contained in the
theoretical deductions of Guggenheim, but they are found to be
valid over a wider concentration range than one would expect and,
as we shall see, at these higher concentrations the osmotic coefficient
does not behave as simply as Guggenheim’s equations for more
dilute solutions predict.

To illustrate these equations we refer to some recent work!® on
the subject in which the activity coefficient of hydrochloric acid in
the presence of potassium chloride at a total molality of m = 2 was
measured by the cell:

H,|HCl(mg), KCl(mc)|AgCl, Ag,

In the following table we compare the observed values of yyc with
those calculated by the equation:

log Yo = 0-00358 — 0-0580 mgq

myc 0-1 0-5 10 20
Yobs. 0-7838 0-8243 0-8822 1-008
Yeale, 0-7823 0-8252 0-8822 1-008

The agreement is within the experimental error of the measure-
ments. The rule has also been confirmed for potassium chloride as
added salt at total molalities of m = 0:1 to 3, for sodium chloride
atm = 0-1, 1 and 3 and for lithium chloride at these total molalities.
Hawkins'® has shown that the rule is valid for the hydrocholric
acid-potassium chloride system at m = 4 and 5 and for the hydro-
chloric acid-lithium chloride and hydrochloric acid—sodium
chloride systems up to 6 M (although the acid-lithium chloride
system exhibits the puzzling behaviour that the « coefficient for
hydrochloric acid is negative, which means that the activity
coefficient of the acid is raised by lithium chloride). The rule holds
for the HCl—NaClO,®, HCl—HCIO,' systems and for the HCIl
—Na,S;0,*, HCl—BaCl,1®, HCl—AICl3'"V, and HCl—CeCl,12
systems provided that it is the total ionic strength which is kept
constant. :

Among the few known exceptions?® to this rule are the electro-
lyte pairs NaOH—NaCl and KOH—KC] at high concentrations,
although the greatest error introduced by using equation (15.2) is
only 3-9 per cent in the activity coefficient. HarnED and Coox1¥
were able to measure the activity coefficients of both the hydroxide
and the chloride independently by means of the cells:

H,|MOH(mg), MCl(m¢) |AgCl, Ag
M_Hg|MOH(mz), MCl(m)|AgCl, Ag
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with M =K, (mg + mg) = 1-0

and M = Na, (mg + mg) = 0-5 and 1-0

In these cases it was found necessary to use the equations:
log yp = log ypy — apme — BpmE  ....(15.6)
log y¢ = log ycw — «cmp — Bemp ... (15.7)

Another example of the failure of equation (15.2) is the salt pair
CaCl;—ZnCl,, where extensive complex ion formation occurs®,
Except for the hydroxide-chloride mixtures, the activity of only one
of the electrolytes has been measured; as will be shown later, even
if Harned’s rule holds for one electrolyte it does not necessarily
hold for the other electrolyte in the mixture.

VAPOUR PRESSURE MEASUREMENTS ON ELECTROLYTE
MIXTURES

If B and C are non-volatile solutes, the vapour pressure of a solution
of a particular total molality and particular values of mgp and mg
can be measured by the isopiestic vapour pressure method. Owen
and CookeE'® were the first to make such measurements, on the
potassium chloride-lithium chloride salt pair.

Equations (15.2) and (15.6) are special cases of the general
expansion of log yp in a series in mp. However, no case has yet
been observed where more than a term in the square of mg is
necessary to express the variation of log yp and therefore we can
start with equation (15.6) as giving sufficient generality for practical
purposes. Putting mp = xm and m¢ = (1 — x)m, where m is the
total molality, then if m remains constant, the Gibbs-Duhem
equation gives for an aqueous solution of two 1 : 1 electrolytes:

— 55-51 d log 4,
= 2mp d log mgyg + 2mg d log meye
= 2xmdlog yp + 2(1 — x)mdlog y¢
= 2xmagm + 2B5(1 — x)m?]dx
—2(1 — x)m[apom + 2fcxm?)dx
= m*{4x*m(Bc — Bg) + 2[(ap + ac) — 2m(Be — Bp)1x —2a}dx

Integrating from x = 0 when log a,, = log a4, the value in a
solution containing only electrolyte C at a molality m:

55-51 Qoiz) _ , 4
ot logm = X m(ﬁc - ﬁB)

+ *[(ap + ag) — 2m(Bo — Bp)] — 2t¢ . .(15.8)
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where a,, is the water activily of a solution of molality xm of B
and (1 — x)m of C. The left-hand side of this equation contains only
experimentally ascertainable quantities; it should be a quadratic
function of the composition x. If 85 = o, then:

55-51 Ayix)
xm?® log 8yic)

= x(ag + ag) — 20c = 0-8686 ‘ﬁ%mﬁ'
....(15.9)

¢ being the osmotic coefficient of the mixed solution and ¢, that
of a solution containing only electrolyte C at a concentration m.

55-51 ] Aopiz)
xm? Buic)
of slope (ap + o) and intercept — 2.

A plot of — ( ) against x should be a straight line

If x = 1, log a,(;) = log a,,(p), $ = d5 and:

3531 . 8u) _ ¢ — $¢
o V0B 2 =y — o = 08686 PEEC L (15.10)

a relation between ap and a, which is true if Harned’s rule holds
for both electrolytes.

Before we consider the application of equations (15.8) and (15.9),
it would be well to consider some restrictions on the properties of
these « and B coeflicients.

RELATIONS BETWEEN THE o AND ﬁ COEFFICIENTS

Equation (15.1) is a general result of the property of a chemical
potential of being a partial differential coefficient of the total free
energy with respect to concentration and imposes certain restric-
tions on the coefficients of equations (15.6) and (15.7). For clearly,
in the case of 1 : | electrolytes:

(3 log ‘)’B) = (3 log ‘)’B«») —an —m (?g_g)
amc my amc my B c amc my

(alogyc) ___(aloqug) v —m (23_12)
omg "o ompg mg c B ompg me
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None of the quantities Y50, Yo 8 %os By B being functions
of x:

dlog yp@
e —aB—-(l—x)ma

~2(1 —x)mBp — (1 — x)'m* 7 ’33

__dlog yom dag 2,2 9Pc df¢
=—3n % mH—2xmﬂc-—xm

Since this must be true for all values of x:

— + 2xmBy + x(2 —.1:)mz 'BB
da d
= — ol — 2By — st

In all the cases so far examined, even if S5 and S, terms are
required to represent the experimental results, it is found that they
are extremely small and, moreover, any variation of 5 and f,
with m is beyond experimental detection. For the purpose of
dealing with experimental data of the accuracy now available, it is
therefore justifiable to write;

d
T2+ 2= — 32 — 2

or (g + ac) = constant — 2m(8g + o) ....(15.11)
and in the even simpler case where 8 = o = 0:
{2z + @) = constant independent of m

a result deduced by GLueEckaur, McKay and MaTHiESON?),
If Harned’s rule applies to electrolyte B, g = 0, then:

4 _ d Yc(o) dap
|25 Goms + Bemb]_ = 57106 22 + ap + mo G2
..(15.12)

This can be integrated between the limits m = my and m = m with
respect to m at constant mg to give:

(ag + Bemp)mp = [log Yew " + mg [“B] “Bd”‘
YB(@)Im, me
..(15.13)
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When mg — m, mg — 0, then from (15.13):

Yclo) "
(xg + Bem)m = log ===+ | apdm
VB (i
where yoo) and yg(e) are values at the concentration m. When
mg — m, mg — 0, then from (15.12):

d
= — log —=—— =
% = Tm g‘y(o)+a3+mdm

These last three results are useful in calculating o and f for an
electrolyte C when it is known that Harned’s rule applies to the
other electrolyte. Similar equations have been deduced by
McKay®®, As an illustration we use the data of HARNED and
Gancy'® for mixtures of B = HCI and C = KCl at m = 2. At
mg = 0-5, 1:0 and 1-5, the three terms on the right of equation
(15.13) have the following values:

mg  Istterm 2ndterm 3rdterm og 4+ Bamy  p(1) ¥8(2)

05 0-1788 0-0020 0-0842 —0-0617 0-7098 0-7092
10 01187 00027 00568  —0-0592 06608  0-6569
1’5 00592 00020 00288 00568 06154  0-6132

from which we conclude that ap = — 0-0543 and 8, = — 0-0050.
The last two columns give y, (1) calculated from these a, and g,
values and y (2) calculated on the assumption that Harned’s rule
holds for C with ay = — 0-0619 from equation (15.10). The
difference is small but sufficient to show that a 8, term is necessary.

ANOTHER METHOD OF USING VAPOUR PRESSURE
MEASUREMENTS

Starting with equation (15.1) McKay and PErraNG® have obtained
a number of useful transforms, one of which, useful for isopiestic
results, is:

dln yom _ 1 [ om 1
0002WA ( alnaA )m,/mo— —;"—z (alnx)aA—;"

In this equation, applicable to 1 : 1 electrolytes, the left-hand side
gives the change in the activity of electrolyte C as the solvent
activity increases, i.e.,, as the total molality changes subject to
constancy of x. The right-hand side contains a term for the change
in the total molality which it is necessary to make if the solvent
activity is to remain constant while the ratio of the molalities of the
two electrolytes is changed; it is related therefore to the conditions
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15 THE THERMODYNAMICS OF MIXED ELECTROLYTES

which make a series of solutions isopiestic with one another.
This equation can be integrated:

1
0-002W , In yom = J-[mz(alnx) +;]dlnaA ....(15.14)

the integration to be performed at constant x. There will, of course,
be an integration constant which is eliminated by noting the limiting
condition when x = 0, i.e., when the solution contains only one
electrolyte, C. Now let M and I'; be the molality and activity
coefficient of electrolyte C in a solution from which electrolyte B is
absent but at the same a, as the mixed solution of total molality m.
Then by equation (15.14):

1 om 1
0-:002 WA In PCM = —J-[ﬁz zl:.to (m)a‘-l- _A_’i] dln a,

By the Gibbs-Duhem equation:
1
0-002W, InT'o M = —J--Md Ina,
Therefore:
om

: vem _ [ [1(2n 1.1
0-002W , In PcM__J;,-l [mz(alnx),,""m 27| 410 as

..(15.15)

It would be well to reiterate the meaning of the symbols in this
equation. y is the activity coefficient of electrolyte C in a solution
containing both electrolytes at total molality m and having a
particular solvent activity a,; in the absence of electrolyte B, this
particular solvent activity is associated with a solution of electrolyte
C of molality M and activity coefficient I'; the latter is not the
same as y o because y g is the activity coefficient of electrolyte C
at a concentration m, electrolyte B being absent. The integration
is to be performed at a constant value of x, that associated with the
yc and m on the left-hand side which it is desired to evaluate;

thus m, om_ and M are functions of x and a, but they are
dlnx/,

to be assigned their values for a particular x during the integration
from a, = 1 up to the value of a, corresponding to the solution in
question. This equation is cast in a form particularly suitable for
isopiestic vapour pressure measurements, because the quantity

(a?m ) can be evaluated as a function of x and a4 by isopiestic
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measurements using a desiccator with a large number of dishes con-
taining solutions of electrolytes B and C.

An alternative form of equation (15.15):

Mer) ( om R -1
Inye=Inlsg+ R+ J; [nT’(alnx)m,_F i ] d (M)

where R = M|m, will be found useful.

Some isopiestic measurements‘® are available on the system
B = Na(Cl, € = KCl from which we quote the following results
for m = 4, calculated by the McKay-Perring method:

x 0-0 01 03 0-5 0-7 09 10
—logyg | 0:1965 | 0-1882 | 0-1711 | 0-1533 | 0-1349 | 01158 | 0-1061
—~log ¥o | 0-2390 | 02354 | 0-2282 | 0-2210 | 0-2138 | 0-2066 | 0-2030

Equation (15.5) with a¢y = — 0-0090 represents the results within
the limits of experimental error, but the data for sodium chloride
need a small 8 term in equation (15.6); ap = 00246, Sz =
—0-0005. The importance of the method derived by McKay and
Perring lies in the evaluation of « at a series of x values for a parti-
cular value of m without at any time assuming that equation (15.5)
is true. The results of the calculation made by the McKay-Perring
method can therefore be used as a direct test of the validity of
equation (15.5) for any particular salt pair without any prior
assumption of its validity.

DISCUSSION OF THE ACTIVITY COEFFICIENTS OF MIXED
ELECTROLYTES

We have seen that there is reason to believe that equations like
(15.6) and (15.7) are necessary to represent the activity coefficients
of a number of electrolytes in mixed solutions. The simpler equations
(15.2) and (15.5), however, are valid in some cases and are a fair
approximation in others. HARNED(®) has developed the conse-
quences of these equations in considerable detail and his discussion
is of such importance as to warrant some recapitulation.

1. The most general case, subject to the limitation that
Br = Bc = 0, occurs when ap # — agand yqp # Yo The first
inequality necessitates, by equation (15.9), that the osmotic coeffi-
cient is a quadratic function of x. The system B = HCI, C = CsCl,
approximates to this although it is probable that a small 8, term is
neceded. E.m.f. measurements of cells without transport made by
HARNED and Scuupp(?? give ap = 0:098 and 2o = — 0-041 at3 M.
The activity coefficient of hydrochloric acid by itself at 3 M is
¥B(9) = 1:316 that of caesium chloride is yg¢p) = 0-478. Clearly
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they are very different. The a coefficients now lead to y(g)5 = 0-669
for the limiting case of hydrochloric acid in a solution containing
only 3 M caesium chloride and yg)¢ = 0-634 for the corresponding
caesium chloride activity coefficient in 3 M hydrochloric acid. y(g)5
and y(g)¢ therefore do differ considerably although not as much as
do y¥g(e) and y¢(e). The inequality of ap and a leads by equation
(15.9) to a,(,) = 0-8908 at x = 0-5 compared with a,,) = 0-8868 if
log a, were linear in x. This difference may seem small, but the
osmotic coefficient of 3 M hydrochloric acid is 1-348, that of 3 M
caesium chloride is 0-879 and if the osmotic coefficient were linear
in x, it would be 1:114 at x = 0-5, whereas the observed value is
1-070.

To illustrate further that the osmotic coefficient is far from being
a linear function of the composition, a comparison can be made
between the observed osmotic coefficients of the NaCl—CsCl
system® at 3 M and those calculated if the variation were pro-
portional to the composition.

Fraction of CsCl
in mixture 0 0-1335 02698 0-3689 0-4989 0-6354 0-7978 1-0
¢ (obs.) 1.045 1-008 0976 0953 0929 0910 04895 087
¢ (calc.) — 14023 1-000 0984 0963 0940 09I3 —
op = &NaCt = 0-0429, Lo = 0Ce0) == — 0-0048

2. ag # — agbut Y = Yo Again the osmotic coefficient is
not a linear function of x but:

YBto)
Yoo

From (2.28) and (15.10) it follows that:

log = (ap — ac)m

l YB(O) — O 8686 - 2 m VB(o)
og _— = 0:8686(¢p —¢c) = - | mdlog ==
Yo 0 Ycwo

and this can hold only if:
log Yo __ Km
Ycwo
K being a constant independent of m, an equation proposed by
AxerLSF and THoMAs®Y. These conditions are almost true for the
system: B = HCI, C = NaCL?® We have seen at the beginning of

this chapter that gz = 1:063 and yc = 1066 at 3 M but
ag = 0031, ag = — 0-058; to show that the Akerl6f-Thomas rule

446



THE ACTIVITY COEFFICIENTS OF MIXED ELECTROLYTES

is very nearly valid we quote the following figures for the ratio of
the two activity coefficients over a range of concentration:

m 1 -2 3 4
YHCU® 0-809 1009 1-316 1-762
YRacuo 0-657 0-668 0-714 0-783
1 log YHouo 0-0903 00896 0-0885 0-0881

m YNaci(o

3. ag = — ag but yip # Pc- The osmotic coefficient is now
linear in x and from equation (15.9):

$5 — $o = — 2:303 mag = 2-303 mag

so that for any pair of electrolytes for which ag = — «, the values
of ap and ag are very simply related to the osmotic coefficients of
the electrolytes. This condition rarely holds: the system B = KCl,
C = GsCl*® approximates to this behaviour with az = 0-011 and
ooy = — 0-005 at 3 M. That the osmotic coefficient is very nearly
a linear function of the composition is shown by the following
comparison of the observed osmotic coefficients with those calculated
on the assumption of a linear variation:

Fraction of CsCl

in mixture 0 01411 0-3025 04007 06443 07726 10
¢ (obs.) 0937 0927 0916 0910 089% 0890 0879
 (calc.) — 0929 0919 0914 0900 0892 —
The activity coefficient of 3 M KCl is 0-569 and that of 3 M CsCl
is 0-478; with ag = 0011 and ay = — 0-005, we calculate

YoB = 0-527 and Yoo = 0-494 so that Yo B) and Yo(o) arc by no
means the same.

4. ap = — a¢ and yoE = Yore)» These conditions are approxi-
mated by the salt pair B = LiCl and C = NaCL®” At m = 3,
¢p = 1286 and ¢, = 1-045 so that if ag = — ag, it is necessary
that ap = 0-035 and ag = — 0:035. These values have been found

experimentally, although there are small f terms in equations
(15.7) and (15.8) as a result of which this example can be quoted
only as an approximation to the case where ap = — a. That the
osmotic coefficient is a linear function of the molality can be seen
from the following comparison of the observed osmotic coefficients
with those calculated on the assumption of a linear variation:

Fraction of LiCl

in mixture 0 0-3392 0-5167 0-6699 10
¢ (obs.) 1-045 1:125 1-170 1:207 1-286
4 (calc.) — 11127 11170 1-206 -
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Moreover, the activity coefficients of lithium chloride and sodium
chloride, each in the absence of the other electrolyte, are 1:156 and
0-714 respectively and if apg = — anag = 0°035, it follows that
youa = 0908 and ygxact = 0-909. If these conditions hold over
a range of values of m, it follows that the Akerl6f-Thomas rule is
applicable and indeed it is found by experiment to be a good
approximation over a considerable concentration range as the
following figures show:

m 1 2 3 4 5 6
Yucr 0-774 0-921 1-156 1-510 2:02 2-72
Yrac1 0657 0-668 0714 0-783 0-874 0-986

l log Yuer 00711 0-0698 0-0698 0-0713 00728 00734
m YNaC)

We can summarize this as follows: Sz = S, = 0 but:

l. ag # — g, Yo # Yoo the osmotic coefficient is a quadratic
in x. Example: the HCl—CsCl system.

2. ag # — ag, Yiop = Yoo the osmotic coefficient is a quadratic
in x and the Akerl6f-Thomas rule applies. Example: the
HCl—NacCl system.

3. ap = — ag, Yiop ¥ Yo the osmotic coefficient is linear in x
and the ap and «, coefficients are determined in terms of
(g — éc). Example: the system KCl—CsCl.

4. ag = — ag, Yy = Ywrc» the osmotic coefficient is linear in x,
the Akerl6f-Thomas rule holds and ap and «¢ are determined
in terms of (¢ — ). Example: the system LiCl—NaCl.

There are few electrolyte pairs, however, to which Harned’s
rule is strictly applicable; these include the systems: B = HCI,
C = LiCl (up to 3 M#); B = HCI], C = NaClt*®; B = NaCl,
C = KCI'®; B = NaCl, C = CsCl®®; B = KCl, C = KBr®¥;
B = K(l, C = CsClt#,

Several types of system are possible if Harned’s rule does not
hold:

1. Bp =0, B # 0. The system B = HCI, C = KCl has already
been quoted as an example and, from the calculations of ARGER-
SINGER and MOHILNER®® this seems to be true of mixtures of
hydrochloric acid with barium chloride, strontiumn chloride,
aluminium chloride and cerium chloride.
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2. Bp &~ Bo # 0. A system of this type, B = LiCl, C = NaCl‘®",
has been investigated by vapour pressure measurements. For
any one total molality the function on the left of equation (15.8)
gave a good straight line graph when plotted against x, indicating
that 85 &~ B¢, but the slopes of this graph were not the same at
all values of the total molality; indeed, to a first approximation
the slopes were proportional to m:

(anl +4- am;l) = — 0013 +4- 0-004 m
It follows from equation (15.11) that (85 4 f) cannot be neg-
lected but must be of the order of — 0-002 and since fz ~ B,

each must be about — 0-001. Small 85 and §, values are also
found for the KCl—LiCl and LiCl—LiNO, systems.

3. Bg # Bc ¥ 0. An example!®® is the complicated CsCl—LiCl
system, also studied by vapour pressure measurements. At no
value of the total molality between m = 0-5 and m = 6 did the
plot of the left-hand side of equation (15.8) against x give a
straight line, so that B85 3 B, and at least one of them has a
non-zero value. To explore this system thoroughly would need
much tedious and very precise work; a preliminary survey has
been made as follows. At one particular total molality, m = 5,
vapour pressure measurements were made at many values of x
so that the curvature of the graph corresponding to equation
(15.8) could be ascertained with some accuracy and the values
of acecyy opicy and (Becr — Pricy) necessary to represent this graph
were evaluated for m = 5. It was then assumed that Sgq and
Bria were independent of m and equation (15.8) was used with
these § quantites together with the less extensive experimental
data at other total molalities, to evaluate the two a coefficients.
The sum of these coefficients (agsn + apic)), was found to be a
linear function of the total molality. Thus there were obtained
the two equations:

Buicr — Boscr = — 0-0058
valid at m = 5 and assumed valid at other values of m, and:
(ascr + apicr) = constant — 2 m (Bricy + Beecr)
= 0-082 4- 0-009 m,
whcncc ﬁClGl = 0:001 and ﬂmc[ = — 0005
A reinvestigation of these systems by the McKay-Perring method
is needed. For the system, p-toluenesulphonic acid and its

sodium salt®?, even equations (15.6) and (15.7) give only an
approximation to the observed behaviour.
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CALCULATION OF & COEFFICIENTS FROM OTHER DATA

The o coefficients of equations (15.2) to (15.5) determine a number
of important properties of mixed electrolyte solutions and it is
clear that much experimental work could be saved if we had some
sound method of calculating these coefficients from the properties
of single electrolyte solutions. This is possible for dilute solutions if
equations of the type of (9.13) are valid. For example, if the
activity coefficient of one electrolyte can be written:

a1
In YBo) = — —_F‘\'/T/-I + 2buox-m

and a similar equation with by.x- is valid for an electrolyte C with
the same anion X~ then, from Guggenheim’s equation for a mixed
solution:

Inyg = Inygp + (busx- — byex-)xm
and therefore the ag of equation (15.2) is:
apg = 0-4343 (bnox- ot bN‘X')

that is to say, the ap coefficient is predictable from the properties
of single electrolyte solutions. Using the activity coefficients of
hydrochloric acid, sodium, potassium and caesium chloride at 0-1 M
to calculate » and putting B = MX = HCI, C = NX = LiCl,
NaCl, KCIl or CsCl, we can calculate the following az coefficients
for hydrochloric acid in alkali halide solution and compare them
with the values deduced from Guntelberg’s work:

0-4343
Electrolyte —logy bN+X- g (calc.) ag (0bs.)
HCI 0-0991 (0-116) — —
LiCl 0-102¢4 0-100 0-016 0-009
NaCl 0-1090 0-067 0-049 0-043
KCl 0-1135 0-044 0072 0-077
CsCl 0-1215 0-004 0-112 0-143

For this calculation to be exact it is of course necessary that
YB = Yo, SO that there are very few systems at higher concen-
trations to which this method of prediction can be applied. Again,
if ag = — ap we can use the relation ($p — ¢¢o) = 2:303map;
this would lead for the HCl—CsCl system to ag = — agp = 0-068
at 3 M whereas the experimental value is ap = 0-098. Clearly,
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such calculations are not likely to give more than an order of
magnitude. To emphasize this, we give a few comparisons at 1 M:

Electrolyte g = — Oy = )

—9¢
53503 2 Observed
B Cc op
HQCl NaCl 0-045 0-032
HBr NaBr 0-050 0-038
HQCl KCl 0-061 0-056
HBr KBr 0-072 0-080

This important problem of calculating properties of mixtures
from those of the components is still far from solution.

A SIMPLE ADDITIVITY RULE FOR THE VAPOUR PRESSURE
LOWERING OF A MIXED ELECTROLYTE SOLUTION
For some purposes, when the highest accuracy is not required, these
somewhat complicated considerations of mixtures can be overlooked
and a simple additivity rule used. The vapour pressures of solutions
containing electrolytes such as (2KClI 4+ MgCl,) have been
measured®® over a wide range of concentration at 25°. A solution
0-5M with respect to the double salt, K,MgCl,, has a vapour
pressure lowering of Ap/p® = 0-06040: the potassium chloride con-
centration is 1 M at which concentration and in the absence of
other solutes the vapour pressure lowering, Ap/p® is 0-03182.
Similarly for 0-5 M magnesium chloride, Ap/p® = 0-02525. If we add
these two contributions to get a calculated vapour pressure lowering,
we find Ap/p® = 0-05707, a value which differs by 5-5 per cent from
the observed. Better agreement can be obtained by a slight elabor-
ation which is illustrated as follows: this solution of (2KCl + MgCl,)
has a total ionic strength of 2-5 and we use the molal vapour
pressure lowerings of the components at this total ionic strength,
Ap[(mp®) = 0-03195 for potassium chloride and 0-05530 for mag-
nesium chloride; the contribution to Ap/p® of the mixture is 0-03195
for potassium chloride and 0-02765 for magnesium chloride with a
total of 0-05960 which differs by only 1-3 per cent from the observed
value. Agreement of this order is found with a number of these
mixtures up to a total molality of unity and even in the more
searching example of a solution of lithium chloride and calcium
chloride, agreement within 5 per cent can be obtained even with
solutions of 4 M —CaCl; + 8 M —LiCl. Thus at a concentration of
3-833 M —Li,CaCl, the observed relative vapour pressure lowering
is 0-7698 and the calculated 0-7379, a difference of only 4-2 per cent.
To take a third example, good agreement can be obtained by
applying this empirical rule to mixtures of lithium chloride and
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lithium nitrate®, A mixture of 4662 M —LiNO; and 5-338 M
—LiCl is known to have Ap[p® = 0-5141; calculating from the
known data for the component salts we find Ap/p® = 0-5215, a
difference of only 1-4 per cent. This empirical rule is almost
equivalent to assuming that the osmotic coefficient is a linear
function of the fraction of lithium nitrate in the mixture, and hence
to assuming that:

oL = ~— ALNo, = 303 ($rict — drivo,) = 0-036

which is very different to the values found by more detailed study
of the system, oy = 0-050 and agyxo, = — 0-023. The former
value of ayq) gives yyc = 6-39 and the latter gives ypiq = 5-50 for
the activity coefficient of lithium chloride in the mixture. We
emphasize this point because, whilst the empirical rule is a very
useful one for calculating properties of the solvent, it can be a
dangerous rule if applied to properties of the component solutes.

THE SOLVATION OF MIXED ELECTROLYTES

We next inquire whether the ‘hydration’ equation developed in
Chapter 9 assists us in explaining some of the peculiarities of mixed
electrolyte solutions. Suppose we had S moles of water containing
one mole of electrolyte B and { moles of electrolyte C. For simplicity
we consider only 1 : 1 electrolytes. Let kg and kg be the hydration
numbers of the electrolytes. It can be shown that equation (9.16)
becomes:

fB Je _hg+ Lk
f+“fc 32 £ >Clnga,

+ {1+

or, in terms of the molalities, mgz and m:

S+ 200+ ) — kg — The
S+2(1+79

fB Je __hg + the
f + {lnfc g Ina,
. — —h
L a+D lnl + 0-018(2m — hgmg M)

1 4 0-036m

where m = mg + mg. Converting now into molal activity coeffi-
cients:

fB fc _hp+ i Ina,

+§l 5

+ (1 + 2 In[l + 00182m — hymy — home)]
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If we can decompose this into two equations:

Inygp=Infs — % In g, — In [1 + 0-018(2m — hgmy — home)]

Inyo=Infs — ,'2—0 Ina, —In[l 4 0-018(2m — hgmgp — heme)]

and assume that f§ is independent of the composition of the solution
at constant total molality, then:

, h
log @ = log f5 — 2 108 auip) — log [1 + 0018(2m — hym)]
and:

h
log Yo = 10g f ~ 7 10g auicy — log [1 + 0-018(2m — hom))

Therefore, if equation (15.2) is to apply, we have:

1 + 0-018(2 — ke)m
1+ 0018(2 — kg)m

agm = 0-0078kgm(dp — b¢) + log

or, to a close approximation:
ap = 0:0078ky($s — ) + 0-0078(kz — he)
and oo = 0:0078ks(be — ¢p) + 0-0078(ke — hp)

Calculations of some « values have been made using these equations
and Table 15.1 gives the results for a total molality of unity.

Table 15.1
Comparison of Observed and Calculated o Coefficients at a Total Molality of Unity

Electrolyte oy -y
B C obs. cale. obs. calc.
HCl LiCl 0-005 0-008 0-012 0-008
KCl CsCl 0016 0-015 0-019 0-015
NaCl CsCl 0-021 0-029 0-047 0-027
HCi NaCl 0-032 0-041 0-058 0-038
HCI1 KCl 0-056 0-056 0-072 0-050

Although the agreement with the experimental values is not good,
the crude theory we have developed does at least predict the sign
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and the magnitude of the effect and puts the coefficients in the right
order. The average deviation is only 0-01 in a5 or «,. More can-
not be expected until we have a much clearer picture of the multi-
form complications of these solutions.

We have not considered the possible variation of fp or f with
composition at constant total molality. This alone is a complicated
problem, requiring a survey of the modifications of the Debye-
Hiickel theory for the interaction of ions of different sizes. We know
very nearly nothing at all about the effect of a size-difference
between the jons. Again, as was pointed out in Chapter 9, the
‘hydration’ equation ignores ‘non-electrolyte’ effects so that the
hydration number, %, is made to account not only for the hydration
effect, but also for the effects of the free volume ratio and of the
heat of mixing of the hydrated ions with the solvent. Our picture
of even a single electrolyte in solution is far from complete and we
need not be surprised to find that the delicate interactions between
the electrolytes in a mixture are even less well understood. It is,
indeed, encouraging to find that we can ignore these finer details
of the picture and get even such qualitative agreement as that
shown in Table 15.1. In the above argument the consequences of
the ‘hydration’ equation have been carried to an extreme with the
hope that this crude picture may form at least a basis for improve-
ment and that «p and « o will become calculable. The consequences
of a successful theory would be important. At present the thermo-
dynamic properties of a comparatively simple system like sea-water
are known only as a result of tedious experiments; simple as this
system is, it has many degrees of freedom and questions such as, for
example, the effect of a change in the sodium chloride-magnesium
chloride ratio on the water activity cannot be answered today and
would necessitate considerable experimental work. The properties
of sea-water should be calculable from the properties of a few
solutions each containing a single salt but, with our present theory,
we can make only the most approximate estimate of the interactions
of these salts!3¥, The various physiological fluids can be quoted as
another example where a theory of mixed electrolyte solutions
would lead to progress whilst the problem of the activity coefficient
of a weak acid in the presence of one of its salts, i.c., in a buffer
solution, does not seem to be completely soluble until we know
much more about the interactions of two electrolytes in a solution.
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ADDENDUM

CHAPTER 1

Important developments in the study of electrolytes have come
from the relaxation techniques of Eicen and his collaborators®. In
these methods the solution is subjected to a sudden perturbation
in one of the external parameters affecting a chemical equilibrium
in the solution, and the subsequent return to equilibrium is followed
by suitably rapid means such as spectrophotometry, polarimetry,
or conductivity. The perturbation may be brought about by several
methods: a temperature-jump may be produced by the sudden
discharge of a capacitor through the solution; a pressure-jump by
the sudden rupture of a metal membrane to release a hydrostatic
pressure; or a high-intensity pulse of electric field may be applied.
By the last method, for example, the rates of dissociation and
recombination of the proton and hydroxyl ion in water and ice
have been determined, though the recombination rate in water has
the extremely high value of 1-3 x 101 1 mole! sec-!, For a full
account of these important techniques see reference (1), where the
original papers are cited.

Recent work on the structure of water and aqueous solutions is
fully discussed in a book by Kavanau'®,

CHAPTER 2

The various frames of reference which may be used in describing
diffusion, and the relations between them, are discussed by
KIRKWOOD ¢t al.'?,

CHAPTER 3

Much more comprehensive tables of energies and entropies of
hydration of ions are given by Noves¥. Stokes® considers that
the conventional Pauling crystal radii of ions (Appendix 3.1) are
too small for isolated ions in wvacuo, and proposes larger values
deduced from the Van der Waals radii of the noble-gas atoms.
Using these for the gaseous ions, but the Pauling radii for the
aqueous ions, the free energies of solvation of all the cations of the
noble-gas electronic structure are accounted for satisfactorily.
Gourary and ApriaN'® find Pauling’s radii inconsistent with the
electron-densities in the sodium chloride crystal determined by
Wirte and WOLFEL'™), and propose an alternative division of the
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cation-anion internuclear distance, leading to a different set of
tonic radii.

CHAPTER 4

Distribution functions are considered from a more fundamental
point of view by FRIEDMAN®),

CHAPTER 5

SToKEs!*19 has shown that significant errors may arise from thermal
diffusion when conductance-cells of the design shown in Figures
5.3(a) and (b) are used at temperatures far above or below room
temperature, and advises the provision of an auxiliary mixing-
chamber to overcome this effect. A cell suitable for measurements
on solutions which attack glass significantly during a conductance
measurement is described by MarsH and Stokes®!). PRUE"? has
studied the ‘shaking effect’, which causes differences in conductance
between stagnant and rapidly-stirred or freshly-shaken dilute
solutions, and suggests that it arises from ion-exchange at the glass
surface. It can be minimized by waxing the glass surfaces or by
keeping the electrodes and current-carrying region well away from
the cell walls,

CHAPTER 6
For hydrochloric acid A® = 426-50 cm? Int.Q-! equiv-! (Af.
= 350-15) at 25° and 580-9 at 50°1%.13, Values of 165-93, 199-18,
284-35 and 368-82 cm? Int. Q- equiv—? have been found® for the
hydroxyl ion at 15°, 25°, 50° and 75°, respectively.

The data illustrated in Figure 6.2 can be supplemented byt4
4-&ay = 0-5046 at 0°. The transport number of chloride ions in
0-1 N potassium chloride solution has been found?® to be 0-4834,
0-4818, 0-4808 and 0-4783 at 70°, 86°, 100° and 115°, respectively.

CHAPTER 7

Further elaborations of the theory of conductance in dilute solutions
of symmetrical valence-type electrolytes are being made by Fuoss
and ONsAGERW™,

The compatibility of the Fuoss-Onsager and of Pitts equation
has been considered by FERNANDEzZ-PRINI and Prue®®. For a
1:1 electrolyte, Pitts equation can be converted into the form

A=A"—Sve+ Eclnc+ Jic — Joc&®
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The second term on the right is common to both equations, § being
the (B;A® + B;) term in the nomenclature of Chapter 7. The
third term is also common to both equations and can be writteh

xe? [2ke®A°
lekT{ SR T ‘ﬂ‘/‘, In¢

B being the B, coefficient of Chapter 7. For an aqueous solution at
25° (¢ = 78-30),

Eclnc = (05326 A® — 20-55) clog ¢

The last two terms appear in each equation insofar as there is
agreement that there are terms in ¢ and ¢*2 and that J, and J, are
functions of A?and g, but J, and J; are defined somewhat differently.
The term in %2 is sometimes omitted from the Fuoss~Onsager
treatment.

The contributions of these four terms can be seen by considering a
1:1 electrolyte in aqueous solution at 25° with ¢ = 4 A, A® = 150
cm? Int. Q-1 equiv.~? and ¢ = 0-01 mole litre-1.

Sve Eclne Jye N A
Fuoss—Onsager 9-52 —=1-19 2-55 013 141-71
Pitts 9-52 —1-19 2:94 0-54 141-69

In other instances the predictions of the two equations differ
somewhat; for example, hydrochloric acid in aqueous solution and
potassium iodide in dimethylformamide. It is clear that results of
very high accuracy are needed. The present position seems to
favour Pitts equation for aqueous and dimethylformamide solutions,
whereas the Fuoss—Onsager treatment leads to more realistic values
of the a parameter when methanol is the solvent.

CHAPTER 8

Several determinations of standard cell potentials have been made
covering a range of about 50°. The following values of E? refer to
25°:

H,|HBr in water|AgBr, Ag 0:07106 Va8
H,|HBr in water|Hg,Br,, Hg 0-13923 van
H,|HI in water|Agl, Ag —0-15244 Va8
H,|HCl in 50 per cent methanol|AgCl, Ag 0-19058 Va9
D,|DCI in deuterium oxide|AgCl, Ag 0-21266 Vzo

555



ADDENDUM

The standard potentials of the cells:
H,|HCI in water|AgCl, Ag
Dy|DCl in deuterium oxide|AgCl, Ag
Hy|HBr in water|AgBr, Ag
have been measured up to 275°, 225° and 200°, respectively(!),

HARNED®® has suggested a method of calculating the activity
coefficients of salts in water-methanol solvents. It seems that the
ratio yga/Ysai In water and in water-methanol, all activity
coefficients being taken at the same concentration, depends only on
the nature of the salt and not on the solvent composition. Thus if
the activity coefficient of hydrochloric acid is known in a number of
water-methanol mixtures, then the activity coefficient of a saltin
these mixtures can be calculated from its activity coefficient in
water.

The activity coeﬂ"ments of a number of compounds in aqueous
solution have been measured: ammonium perchlorate®®; indium
chloride and sulphate®®; methanesulphonic acid and ethane-
sulphonic acid and their lithium, sodium, potassium, ammonium,
tetramethylammonium, tetracthylammonium and tetrabutyl-
ammonium salts®; rubidium and caesium fluoride®®; tetra-
alkylammonium salts‘®%); thallous sulphate(®®). Isopiestic vapour
pressure measurements have been made on a number of salts at
140:3°@9, Direct vapour pressure measurements have been made
of sodium chloride solutions at high temperatures which give the
following osmotic coefficients39:

°C m= 05 m=1 m=2 m=3

60 0-921 0943 0999 1.057

80 0-920 0-942 0-996 1:053
100 0-917 0-938 0-989 1.042
125 0-912 0-929 0-972 1-016
150 0-904 0917 0-953 0-989
175 0-893 0-902 0-929 0-957
200 0-877 0-882 0-901 0-920
225 0-854 0-854 0-865 0-877
250 0-824 0-818 0-823 0-831

CHAPTER 12
The Born equation for the change in free energy when an ion is
transferred from one solvent to another has been modifiedV.
Dielectric saturation is assumed around the ion (up to 1-5 A for
water as solvent), the macroscopic dielectric constant is used at
distances greater than 4 A from the centre of the ion and, in the
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intermediate region, the dielectric constant is assumed to vary
linearly with the distance.

The ionization constants of a number of acids, many of them of
considerable biological interest, have been measured. Some of
these are recorded here, the figures in parentheses being the value
of pK, at 25°: ascorbic acid (4-25)%32 isocitric acid (3-287, 4-714,
6-396)(33), methionine (2:125, 9-28)%#, Values for some other acids
are given at the end of this section {p. 561].

The heat of ionization of the reaction:

H,0 — H* + OH-

is given (p. 363) as 13-52 kcal mole-! from e.m.f. measurements.
Recent direct calorimetric determinations®® give 13:-34 kcal
mole-1; the difference is worthy of further study.

Direct calorimetric measurements are being made!3637,38) of
enthalpy changes on the dissociation of weak acids; until recently,
most of our information about such enthalpy changes has come
from the temperature coefficient of the dissociation constant
(p. 357) and calorimetry provides a welcome alternative method.
For example, calorimetry gives 5-65 kcal mole~! for the enthalpy
change on the dissociation of phenol®®, whereas 5-62 kcal mole—?
has been found” from the temperature dependence of the dissocia-
tion constant.

CHAPTER 14

The relation between the ion-pair concept and solutions of the non-
linear form of the Poisson-Boltzmann equation is discussed by
GUGGENHEM'® and by SKINNER and Fuoss®3?),

CHAPTER 15

In addition to studies of the excess free energy of mixing of elec-
trolyte solutions, considerable interest is to be found in the enthalpy
change on mixing! and also in the corresponding volume
changes“®, The method of obtaining activity coefficients by
ultracentrifugation (p. 211) has been applied to aqueous mixtures
of hydrochloric acid and barium chloride!4®,

There is another method of evaluating the activity coefficients
of both solutes in a mixed solution which is analogous to the
McKay-Perring method (p. 443) but is particularly useful if at
least one of the solutes is a non-electrolyte. Starting with the
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cross-differentiation relation, equation (15.1), let us suppose that
for two non-electrolytes:

0 ln yB _ o ln Yc _
( omg ),,,, - ( omg [ m, = Ampmt
Then

Inyg=Iny§ + mY mg+t

4
g+1
Here mp and m, are the molalities of B and C in the mixture and
¥% is the activity coefficient of B in its own solution at molality
mg(mo = 0).

Similarly,

1
mat

Inyo = In ml,

A
e
We now use the Gibbs—-Duhem relation:

—55-51dIna, = mgdInmgyg + mgdInmgye

= mpdinmgy} + medin mc)’g'
Amg
q+1 ? + p+1

The first two terms are equal to d(mgd}) + d(medd) where ¢%
and ¢ are the osmotic coefficients of solutions of B only and of C
only, respectively. Let a new function be defined:

A = — 5551 In a,, — mgd% — mPd

+ d (mh m§™) + ~—— d (m"'mg)

Then,
pA P +1 p+1
A “"'—+—i mgmg. dmg + 4 mg. dmc
+1 g4 p+1
+ A mkm de+p+l myg " m§ dmg

a = ptatl mgmy,
mpme G+ @+ "
A can be determined by isopiestic measurements. If it can be

expressed as a function of mg, my with no cross-products (p = 0 or
g = 0), then:

A _(3lny3) _(3lnyc)
mgmo omg [ m, omg /m,
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For examiple, if:

Al(mgmp) = A + Bmp + Cmg + Dm%
then In yp = In % + my(4 + Bmg + $Cmg + Dm})
and In yo = In 9 + mp(4 + $Bmg + Cmg + }Dm%)

If there are cross-products the situation can still be handled. For
example, if: .

then,

2lnyp _ 3lnyc) _ .

(W)m, - (G o= A+ B+ mgmc
In yp = In 9} + mc(4 + Bmg + § Cmgmg)
Inyg = In y¢ + mp(4 + {Bmp + §Cmpmc)

The following aqueous mixtures have been studied by this method:
sucrose-mannitol®®, mannitol-sodium chloride"$’, mannitol-
potassium chloride®, urea—sodium chloride'”, glycine-potassium
chloride‘®,

The trace-activity coefficient of one electrolyte in the presence
of another, i.e., the activity coefficient yy¢ of C when present in
vanishing concentration in a solution of B, can be determined by the
following method, which has been used for the hydrochloric acid-
calcium perchlorate system®, The e.m.f. of the cell:

HCl (mp)
Ca(ClIO,); (mc)

is measured at constant mgp and increasing my; for example,
mpg = 0-7702, mg = 0-0216, 0-0763, 0-1948. This is accomplished
by adding a solution of calcium perchlorate containing hydro-
chloric acid at molality my to the solution in the cell which initially
contained only hydrochloric acid at molality mg. Since

H,

AgCl, Ag

E = E° — 2klog ygmy

oE 2 ¢ )
- (___) — % (M) - 3% (‘_’_“&&:)
amc mg amc mp amB mg

then in the limit when mg — 0,

3kdl.Ly‘°’C= —lim (6_E) =Y
de me—0 6mc

mg
Y can be evaluated graphically from a few e.m.f. measurements.
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The experiment is repeated at different values of mg. Then

B
Sklog yo = —2 [ ¥v/mp . dymg

this integrand being convenient because it remains finite as

02

//

N

0 — 2
V] —
Figure A.1. Activity coefficients of hydrochloric acid (B) and calcium perchlorate (C) in
their own solulions, and trace-activity coefficients in the presence of one another.

mg — 0. This limiting value follows from the Debye-Hiickel
equation:

log yo = — 24(mg + 3mg)'?
dlog y¢

lim (Y+/mg) = 3k4
mp—0

With this limiting value, log y)¢ can be calculated by tabular
integration to finite values of mp.

Figure A.1 compares these trace-activity coefficients of calcium
perchlorate with those of the salt in its own solution and similar
values for hydrochloric acid obtained in an analogous way. This
can be compared with Figure 15.1 although the situation is now more
complicated because the (limiting) Debye-Hiickel contribution is
twice as great for calcium perchlorate as it is for hydrochloric acid.
Nevertheless, the same general pattern can be seen; the high
activity coefficient of hydrochloric acid is lowered on addition of
calcium perchlorate and the comparatively low activity coefficient
of this salt is increased on addition of hydrochloric acid.
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Measurements of pK, over a Temperature Range

f’Ka = A:/T -4, + AaT

pK, at Refer-
Agqueous Solution 25° 4, Ay Ay ence

Acetic acid (CD,COOH in

H,0) 4-772 | 107937 | 2-5200| 0-012313| 50
Acetic acid (CH,COOD in

D,0) 5-313 | 131656 | 3-3181 0-014135| 51
Acetic acid (CD,COOD in

D,O 53251127892 3-0490% 0-013702 50
2-Aminoethyl phosphate 10-638 | 2998-17 1-3841 0-006596 | 52
2-Aminoethyl sulphate 9-182 | 2530-12 | —0-2782 | —0-001402 | 52
2-Amino-2-methyl-1,3-pro-

panediol 8-801 } 2952-00 | 2-2652 | 0-003909 | 53
4-Ammopyndme 9-114 | 25758 | —0-0828 | 0-001309| 54
Arginine K 1-822 | 1087-6 4-7526 | 0-009819| 55
Arginine K 8-994 | 26436 0-8783 | 0-003363 | 55
t-Butylammomum ion 10-685 | 3021-63 | —0-9376 | —0-001303 | 56
o-Chlorophenol 8-527 | 2443-32 |  4-800 00171991 57
Creatine 2:6308| 1175-02 | 4-9883 | 0012334 | 58
Creatinine 4829 | 198231 —7-0705 | —0-009753 | 59
0-Cresol 10-330 | 2180-87 | 0-0933| 0010449 | 57
m-Cresol 10-098 | 2127-24| 0-1280| 0-010367 | 57
$-Cresol 10-276 | 2127-40 | —0-0404 | 0-010409 | 57
Diethanolammonium ion 8-883 | 1830-15 | —4-0302 | —0-004326 | 60
N,N-Di(2-hydroxyethyl)-

glycine 8-333 | 1329-60 | —4-0159 | —0-000476 | 61
2,4-Dinitrophenol 4084 | 9829 0-8585| 0-005528 | 62
2,5-Dinitrophenol 5231 | 12716 1-1061 0006937 | 62
2,6-Dinitrophenol 3-725 | 1031-4 229331 0-008582 | 62
Disisopropylcyanoacetic acid 2-5557] 222-64 1-4224 | 0010839 | 63
Hydrocyanic acid 921 | 3807-5 8-889 001792 64
Imidazole 6-994 | 1906-88 § —0-6225 | —0-000085 | 65
Malic acid K, 3-459 | 1358-85| 5-1382| 0-013550| 66
Malic acid K, 5097 | 1658-53 | 6-2364| 0019353 66
Morpholinium ion 8-492 | 1663-29 | —4-1724 | —0-004224 | 67
4-Nitro-3-methylphenol 7-409 | 2075-02 3-1531 0-012082 | 68
o-Nitrophenol 7-230 | 2223-12| 4-3092| 0-013709| 68
m-Nitrophenol 8-355 | 1723-10 | —0-5593 0-006741 | 68
p-Nitrophenol 7-156 [ 2150-69{ 3-8133| 0-01260 69
Phenol 10020 2119-82 | 0-0468 | 0-009918 | 57
Phenylacetic acid 4-305| 628-08| 0-547 0-009208 | 70
Phosphoric acid K; (in D,O) | 7-780 | 2202-11 5-9823 0021388 ( 71
Phosphoric acid K, 12:375 — —_ 72
Piperazinium ion K, 5833 | 952-11 { —4-3919 —0-007555 73
Piperazinium ion K, 9-731 | 1656-59 | —6-1316 | —0-006556 | 73
Pyrrolidinium ion 11-305 | 2318-85 | —5-2942 | —0-005923 | 74
Quinolinium jon 4-882 { 3038-4 11-:2126 | 0-019798 | 75
Tris(hydroxymethyl)amino-

methane 8:069 | 3037-61 3-9321 0-006085 | 76
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TABLE OF IMPORTANT CONSTANTS

F  Faraday 96486-8 coulomb (g. equivalent) —*
N Avogadro number 6-02252 x 1023 mol -1

¢ Velocity of light 2997925 x 10'° cm sec?

e Protonic charge 1:60210 x 10-1? coulomb = 4-80298

X 10-1%¢.g.s. e.s.u. of charge
k  Boltzmann’s constant 1:38054 x 10-1% erg degree~! mole-

cule?
R Gas constant 8:3143 absolute joule degree —! mol -!
1-98717 calorie degree ! mol -*
V, Ideal gas molar 22413-6 cm?® mol -1 (0°C and 1 standard
volume atmosphere)

Ref. ConEen, E. R. and DuMonp, J. W. M., Rev. mod. Phys. 37 (1965)
538.

1 absolute ohm
1 absolute volt

Il

0-999505 international ohm
0-999670 international volt
1:000165 international ampere

Il

1 absolute ampere

1 calorie = 4-1840 absolute joule
Ice-point = 273150 K
1 standard atmosphere= 760 Torr = 1-01325 bar

= 101325 Nm-2

The values quoted above differ slightly from those given in our
1965 reprinting, but the changes are not great enough to justify
recalculation of quantities appearing in the text and equations.
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APPENDIX 1.1

Physical Properties of Water

. Specific Vapour . , .
Temp. Density Dielectric Viscosity
°C g/ml u:tl:l‘["; :::’g’g constant centipoise
0 0-99987 1-00013 4-580 87-740 1.787
5 0-99999 1-00001 6-538 85-763 1-516
10 099973 1-00027 9-203 83-832 1-306
15 0-99913 1-00087 12-782 81-945 1-138
18 0-99862 1-00138 15-471 80-835 1-053
20 0-99823 1-00177 17-529 80-103 1-002
25 0-99707 100293 23-753 78-303 0-8903
30 0-99568 1-00434 31-824 76-546 0-7975
35 0-99406 1-00598 42-180 74-823 0-7194
38 0-99299 1-00706 49-702 73-817 06783
40 099224 1-00782 55-338 73-151 06531 «
45 0-99024 1-00985 71-90 71-511 0-5963
50 0-98807 1-01207 92-56 69910 0-5467
55 0-98573 1-01448 118-11 68-344 0-5044
60 0-98324 1-01705 149-47 66-813 0-4666
65 0-98059 1-01979 187-65 65-319 0-4342
70 0-97781 1-02270 233-81 63-855 0-4049
75 0-97489 1-02576 289-22 62-425 0-3788
80 097183 1-02899 355-31 61-027 0-3554
85 0-96865 1-03237 433-64 59-657 0-3345
90 0-96534 1-03590 525-92 58-317 0-3156
95 096192 1-03959 634-04 57-005 0-2985
100 0-95838 1-04343 760-00 55-720 0-2829
REFERENCES

! Density and Specific Volume: Int. crit. Tab., Vol. 111, pp. 25-26; see also
Owen, B. B., WHite, J. R. and Swmith, J. S., 7. Amer. chem. Sec., 78
(1956) 3561

® Vapour Pressure: Keves, F. G., 7 chem Phys., 15 (1947) 602

3 Dielectric constant: MALusznc, dy MARYOTT, A. A., 7. Res. nat. Bur,
Stand., 56 (1956) 1.

¢ Viscosity: SwinbpeLLs, J. F., Cog, J. R. and Goprrey, T. B., ibid., 48 (1952) 1;
Coe, J. R. and Gonmv,T B., J. appl. Phys., 15 (1944) 625 WBBER,
W., Z. angew. Phys., 7 (1955) 9.
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Densrries, dielectric constant and viscosities of some electrolytic

solvents. (Temperature 25°C unless otherwise noted.)

Density Dielectric Viscosity

Soluent (g/ml) Constant (centipoise)
Water 099707 78-30 0-8903
Acetone 0-7850 20-70 0-3040
Acetonitrile 0-7768 36-7 0-344
Ammonia ( —34°) 0-6826 22 0-2558
Benzene 087368 2273 0-6028
o-Dichlorobenzene 1-:3003 993 196
1 : 1 Dichloroethane 1-1667 10-00 0-466
1 : 2 Dichloroethane 1-2453 10-36 0-787
Dimethylacetamide 09366 37-78 0919
Dimethylformamide 09443 36-71 0-796
Dimethylpropionamide 0-9205 329 0-935
Dimethylsulphoxide 1-0958 46-7 1-96
Dioxan 1:0269 2-209 1-196
Ethanol 0-7851 24-30 1-078
Ethylenediamine 0-8922 12:9 1-54
Formamide 1-1292 109-5 3-302
Glycerol 1-2583 42-5 945
Hydrogen cyanide (18°) 0-6900 118-3 0-206
Hydrogen peroxide (20°) 1-4489 74 1-24
Methanol 0-7868 32-63 0-5445
N-Methylacetamide (40°) 0-9420 165-5 3-020
N-Methylbutyramide (30°) 0-9068 124-7 7-472
N-Methylformamide 09976 182-4 1-65
N-Methylpropionamide (30°) 0-9269- 164-3 4-568
Nitrobenzene 1-1986 34-82 1811
n-Propanol 0-7995 20-1 2-004
Pyridine 09779 12-0 0-8824
Sulphuric acid 1-8255 101 24-54
Sulpholane (30°) 1-2623 433, 10-29

The above values are selected from a wide variety of sources. Extensive refer-
ences may be found in TiMMERMANS, ., ‘Physiochemical Constants of Pure Organic
Compounds,’ Elsevier (1950), in WEISSBERGER, A., and PROSKAUER, E., ‘Organic
Solvents,’ Interscience Publishers Inc., New York (1955) and in numerous papers
by Kraus, C. A., and collaborators (see refs. to Appendix 14.2) and WaLDEn, P,

and collaborators.

In most cases the viscosities quoted have been obtained by viscometers cali-
brated using the older value of the viscosity of water; on the new basis, the values

would be 0.39, lower.

The density of ethylenediamine was determined for us by Dr. P. W. Brewster in

the laboratories of Prof. F. C. Schmidt, University of Indiana.
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INDEX

Note : Since references to authors quoted are given in full at the end of each
chapter, authors’ names are indexed only when regularly associated with
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