
Electrolyte Solutions 
SECOND REVISED EDITION 

R. A. Robinson 
Late Emeritus Professor of Chemistry 

University of Maluya 

R. H. Stokes 
Emeritus Professor of Chemistry 

University of New England 
Armidule, New South Wales, Australia 

DOVER PUBLICATIONS, INC. 
Mineola, New York 



Copyright 
Copyright 0 1959 by Butterworth & Co. (Publishers) Ltd. 
New Preface copyright 0 2002 by R. H. Stokes. 
All rights reserved. 

Bibliographical Note 
This Dover edition, first published in 2002, is an unabridged republication of the 

fifth impression of the Second Revised Edition of the work originally published in 
1970 by Butterworth & Co. (Publishers) Ltd., London. A new Preface has been spe- 
cially prepared by Dr. Stokes for this edition. 

Library of Congress Cataloging-&Publication Data 
Robinson, R. A. (Robert Anthony), 1904- 

Electrolyte solutions I R.A. Robinson, R.H. Stokes. 

“This Dover edition, first published in 2002, is an unabridged republication of 
of the fifth impression of the second revised edition of the work originally pub- 
lished in 1970 by Butterworth & Co. (Publishers) Ltd., London. A new preface 
has been specially prepared by Dr. Stokes for this edition.” 

p. cm. 

ISBN 0-486-42225-9 (pbk.) 
1. Electrolyte solutions. 1. Stokes, R. H. (Robert Harold), 1918- 11. Title. 

QD565 .R63 2002 
541.3’72-dc21 2002023777 

Manufactured in the United States by Courier Corporation 
42225903 

www.doverpublications.com 



PREFACE TO THE DOVER EDITION 
Robert Anthony Robinson (1904-1979) was my physical chemistry 
teacher in Auckland (New Zealand), and supervised my first 
research work for the M.Sc. degree. We collaborated intermittently 
there until 1946, when I left for Australia and he shortly afterwards 
to the (then) University of Malaya in Singapore. The collaboration 
continued by correspondence for many years, and he spent a year in 
the Armidale department shortly after his retirement from 
Singapore in 1959. He later held several research appointments in 
England and the United States. 

The first edition (1955) of Electrolyte Solutions was written while 
I was in Perth (Western Australia), which had an excellent airmail 
service to Singapore. We decided to confine ourselves mainly to top- 
ics on which we had first-hand experience, and to include all the 
numerical data we were continually looking up in the course of our 
research work, as well as tabulations of reliable fundamental data on 
electrolytes. This seems to have met a need, and the book in its sub- 
sequent editions continues to be widely cited. It was the subject of a 
Current Contents Citation Classic in 1988, when long out of print. 

Why not produce a completely new version rather than the pres- 
ent reprint of the 1970 revision? It would require several volumes to 
do justice to the huge expansion of the field in recent decades, par- 
ticularly in the area of solutions in non-aqueous solvents. Aqueous 
solutions at high temperatures and pressures have also received 
much attention, and there have been major theoretical advances. We 
are content to have played a part in laying foundations and drawing 
attention to gaps in knowledge. 

It should be noted that all values quoted are in pre-SI units; see the 
“Preface to Reprinted Edition” (p. v) and the “Table of Important 
Constants” (p. xv) for details. 

I thank Dover Publications for making our work available again 
to students and research workers. There is still no substitute for 
measured fact. 

R. H. Stokes 
Armidale 

January 2002 
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PROPERTIES OF IONIZING SOLVENTS 

CLASSICAL theories of solutions were built upon the analogy between 
the solute particles and the molecules of an imperfect gas, the 
solvent being regarded as a mere provider of the volume in which 
the solute particles moved. The striking progress made by the 
modern theory of liquids is based on a very different model: the 
liquid is seen as a disordered solid in which short-range order 
persists, though the long-range order characteristic of the solid state 
has been lost in thermal agitation. Solute and solvent appear on an 
equal footing and it is only in the limit of extreme dilution, when 
the solvent molecules so outnumber those of the solute that we can 
regard the solvent as virtually unchanged, that the classical view- 
point remains acceptable. The most noteworthy successes of the 
modern theory have, however, been in the theory of non-polar and 
uncharged molecules; in the case of electrolyte solutions, the more 
sensational properties are still too readily attributed only to the 
nature of the solute. One should not forget that it is the solvent 
which enables the electrolyte to display its peculiarities; that it 
plays an active part in producing, from the electrically inert crystal, 
liquid or gas, the mobile charged particles which force themselves 
on our attention. 

Since water is by far the most important of the ionizing solvents, 
and all but a very small part of the immense body of factual know- 
ledge about electrolytes refers to aqueous solutions, we shall begin 
with an account of the structure of water and such of its properties 
as are relevant to the behaviour of electrolyte solutions. 

T H E  WATER MOLECULE 

Spectroscopic studies of the isolated water molecule(1) in the gaseous 
state have established that the H-0-H bond angle is 105", and 
the 0-H internuclear distance 0.97 A (Figure 1.1). The isolated 
molecule has a dipole moment of 1.87 x 10-18 e.s.u., acting along 
the bisector of the H-0-H angle with the negative end towards 
the oxygen nucleus. This dipole moment was treated by BERNAL 
and FOWLER(*), in their pioneer work on the structure of water and 
ice, as due to an effective charge of -e (e = protonic charge) 
situated 0.15 A from the oxygen nucleus, with + 0.5e at each 
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1 PROPERTIES OF IONIZING SOLVENTS 

hydrogen nucleus. A more elaborate model due to VERWEY(~) re- 
places the tripolar charge distribution of Bernal and Fowler 
(Figure 1 . 2 ~ )  by the quadrupole arrangement shown in Figure 1.26; 

- 78" - 33" 
23.2 

Figure 1.1. Intenuulear distances and 
bond angle of the water mokcuk 

0" -84" - 86" 
IOU" 20" - 60" 
26. I 24.9 21.2 

q- MYR - 
this has led to a very satisfactory prediction of the lattice energy of 
the ice crystal. 

In the liquid state water exhibits properties characteristic of an 
associated liquid to an extent more marked than do the hydrides 
of elements closc to oxygen in the Periodic Table. To illustrate this 

LIQUID WATER 

(a) (b) (C) 
Figure 1.2. Models of the charge distribution in tlu waler inolecub. In each model C is 

&ken as the centre of the mole&. The distances OC are not drawn to scale 
(a) Bernal and Fowler OC = 0.15 A 

A 

A 
(b)  VCWCY Model I 
(c) VCWV Model I1 

OC = 0.022 A 
OC = 0.049 A 

HCH = 107" 10' 

HCH = 109" 44' 

we can quote some physical properties of ammonia, water, hydrogen 
fluoride and hydrogen sulphide. 

Melting point 
Boiling @inf 
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LIQUID WATER 

Thus liquid water has a comparatively high boiling point, suggesting 
the presence of strong intermolecular forces in the liquid state, 
which make it difficult for the molecule to escape into the vapour 
phase. The high melting point suggests that there is a kind of 
quasi-crystalline structure in the liquid so that the solid state can be 
formed with ease in spite of the comparatively high thermal energy. 

The densities in the solid and liquid state at 0" are 0-9168 and 
0.99987 g/ml. respectively, so that water contracts by 8.3 per cent 
on fusion. It contracts by a further 0.012 per cent on heating to 4", 
at which temperature the density has a maximum value. The 
specific heat of ice at 0" is 0.5026 cal/g" compared with 1 -008 1 cal/g 
for liquid water at the same temperature; the specific heat has a 
minimum value of 0.9986 cal/g3b at 34.5". 

Its dielectric constant (78.30 at 25") is high compared with most 
liquids; hydrogen cyanide has a dielectric constant of 106.8, forma- 
mide 109.5 and sulphuric acid 101 at 25"; the value for hydrogen 
fluoride is 83.6 at 0". Apart from these four liquids, however, even 
the more polar of the common liquid solvents are characterized by 
much lower dielectric constants; 59 for acetamide at 83", 52 for 
hydrazine at  25" and 22 for ammonia at its boiling point are 
examples. Non-polar liquids have dielectric constants of the order 
of 2. 

Even after the most rigorous purification water has a small 
electrical conductance; so-called 'equilibrium' water has a specific 
conductivity of 0.75 x f2-l cm-1 at 18" due mainly to dissolved 
carbon dioxide in equilibrium with the carbon dioxide of the 
atmosphere. KOHLRAUSCH and HEYDWEILLER(') reported a specific 
conductivity of N 0.04 x Q-1 cm-1 at 18" for highly purified 
water. This conductance is attributable to a slight dissociation of 
the water molecules: H,O 3 H+ + OH- or 2H,O --+ H,O+ 4- OH-, 
and can be explained by assuming that the concentration of 
hydrogen and hydroxyl ions is 0.8 x lo-' equivalents per litre at 
18" and 1 x lo-' equivalents per litre at 25". 

In liquid water, the volume per molecule at room temperature is 
very nearly 30&. If water consisted of close-packed spherical 
molecules, the diameter needed to give thii volume would be 
3.48 A. In fact, however, x-ray analysis of liquid water indicatesc5) 
that the nearest-neighbour distance (expressed as the 0-0 inter- 
nuclear distance) is 2.90 to 3.05 A in the temperature range 0-80" 
(Figure 1.3). I t  follows that the molecules are far fiom close packed, 
or the volume per molecule would be much smaller. Instead of the 
twelve nearest neighbours characteristic of close packing, the x-ray 
data show that the average number of nearest neighboun ranges 
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1 PROPERTIES OF IONIZING SOLVENTS 

from 4.4 to 4-9 over this temperature interval. Morgan and Warren 
have also found x-ray evidence for a set of second nearest neighbaurs 
at the expected distance of about 4.5 A from the central molecule 
considered, but this set becomes less clearly defined as the tempera- 
ture rises, and fades out above 30°, indicating that the range of the 
ordering effects is being reduced by thermal agitation. 

Liquid water retains, in fact, over short ranges and for short 
periois, the tetrahedrally coordinated structure Gf ice. This view, 

~ 

Figure 1.3. Radial distribution fmtions for water at 1.5" and 83" fm the &a of Morgan 
and Warren. 73cfunCrion p(r) gives the probability Ofjinding the centre of a water moL?cule 
in a volumocIrmcnt diskmt r from a chosen central molcc&; its absolu& value u a&&d 
so as to become mi& at large values of r, which is equivalent to taking the volume elnnent 

as th average molecular volume in the liquid 

first put forward by Bernal and Fowler, is the modern and more 
satisfactory alternative to older views in which the associated nature 
of water was explained by assuming the presence of various poly- 
merized forms such as 'dihydrol' (H20)2 and 'trihydrol' (H,O),. 
This ice-like structure is believed to be maintained by 'hydrogen 

bonds', which are essentially electrostatic in nature and result from 
the especially favourable charge distribution and geometry of the 
water molecule. As Figures 1.1 and 1.2 show, the bond angle of 
water is very close to the tetrahedral angle (109" 28') and Verwey's 
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LIQUID WATER 

model I1 in particular is ideally adapted to a 4-coordinated struc- 
ture. The fact that Venvey’s calculations lead to values within 
1 kcal/mole of the experimental one (10-8 kcal/mole) for the energy 
of vaporization of ice is strong evidence for the adequacy of a purely 
electrostatic picture of the intermolecular forces. 

Other evidence in favour of the tetrahedrally coordinated 
structure of water is found in the Raman and infra-red spectra(’). 
The main intermolecular Raman band occurs at a frequency- 
displacement Av = 152-225 cm-’; this has been shown to arise 
from the ‘breathing’ mode of vibration (Le., contraction and expan- 
sion of the tetrahedron). A band in the infra-red at 160-175 cm-I 
which disappears in dilute solutions of water in dioxane(6) also 
appears to be due to intermolecular vibrations. Other Raman bands 
at 60, 500 and 700cm-1 are attributed to rotational oscillations 
(librations) of the molecule which are not vigorous enough to break 
the electrostatic bonds with its neighbours. I t  has been suggested 
that only one mode of free rotation can occur to any substantial 
extent in water at ordinary temperatures; this is about the axis 
which lies in the plane of the three nuclei and bisects the H-0-H 
angle. The variation of the Raman intensities with temperature 
suggests that this free rotation becomes important rather suddenly 
in the vicinity of 40°C. 

Liquid water, then, must be pictured as a rather loosely 4-co- 
ordinated structure, held together by electrostatic forces arising from 
the special charge distribution and shape of the water molecule. 
The association between a molecule and its neighboun can be only 
temporary, as the structure is continually being broken by thermal 
agitation, but it must have sufficient permanence to persist over 
small regions, for times long in comparison with the period of 
x-rays or even of infra-red radiation. Such times, however, need be 
only of the order of 10-12 sec so that we need feel no surprise that 
the viscosity of water, for example, is only moderately higher than 
that of simpler liquids with small molecules. Many of the anomalous 
properties of water find a natural explanation in terms of its 
structure. The maximum density at 4” can be attributed to the 
competition between two opposing effects, the gradual breaking 
down of the rather open ice-like structure to a somewhat closer- 
packed structure (as indicated by the increase of the average number 
of nearest neighboun with temperature) and a simultaneous increase 
with temperature of the average centre-to-centre distance. The 
abnormally high dielectric constant is due to the mutual inter- 
action of the electrostatic fields of the molecules which, because 
of the favourable orientation of the molecular dipoles, leads to a 
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1 PROPERTIES OF IONIZING SOLVENTS 

considerable increase in the effective polarization in the liquid 
state as compared with the vapour. 

T H E  DIELECTRIC CONSTANT A N D  D I P O L E  MOMENT O F  
P O L A R  LIQUIDS 

If two parallel conducting plates have on their surfaces electric 
charges of density + a, - a respectively, the field intensity between 
them has in v m o  the value: 

With an insulating medium between the plates the field strength 
drops to a value: 

E = ha/&, 

where el, a constant for all reasonably low field intensities, is called 
the ‘static dielectric constant’ of the medium, and is always greater 
than unity, The molecular process responsible for th is  reduction 
in the effective field strength is the displacement of electric charges 
within the molecules; a negative charge appears at the surface of 
the dielectric in contact with the positive plate, and a positive charge 
of the same magnitude at the surface in contact with the negative 
plate. These induced charges in the dielectric reduce the effective 
charge-density on the plates from (T to o/E,; they may therefore be 
represented as a polarization, P, of the dielectric, given by: 

E, = h a  

The total field, E, inside the dielectric may be represented as the 
sum of the original field (ho) existing in vacuo and the polarization 
field - QnP. The former is called the electric displacement, D, 
given by : 

so that 
D = h 0  
D = E + QnP = E E ,  . . . .(l.l) 

and 
9nP 

& $ E l + T  

If the plates are separated by a distance d, two opposite elements 
of the surface of the dielectric, of area SA, will carry charges + PSA and - PSA, and will therefore constitute a dipole of 
moment PSA. d and of volume SA . d; P is therefore the dipole 
moment per unit volume of the dielectric. The problem of calcu- 
lating the dielectric constant, E,, from the molecular properties of 
the medium is thus that of calculating the polarization P. 
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THE DIELECTRIC CONSTANT 

This polarization is the sum of two types: (a) that due to the 
distortion of electronic distributions within atoms and of atomic 
configurations within molecules, which is called distortion polariza- 
tion, and (6) that due to the partial lining up, under the field, of 
already existing permanent molecular dipoles, which is called 
orientation-polarization. The distortion-polarization occurs with 
extreme rapidity, even in fields alternating with the frequency of 
light-waves, and is independent of temperature; the orientation- 
polarization, on the other hand, involves the rotation of molecules, 
a slower process and one which is furthermore opposed by the 
thermal agitation and is therefore temperature-dependent. The 
polarization due to orientation of permanent dipoles is relatively 
easily dealt with for the case where the dipoles are so far apart that 
their mutual interaction can be neglected. 

For dealing with the distortion-polarization, it is convenient to 
introduce a quantity, a, the molecular polarizabdity, which is 
defined as the time-average dipole moment induced in the molecule 
by a field of unit intensity. If there are .No molecules/cm*, the con- 
tribution, pd, of the distortion polarization to the total polarization 
P will be: 

where F is the actual field acting on the molecule. This field F, the 
internal field, is unfortunately not easily evaluated for liquids or 
solids except in the case where permanent dipoles are absent 
( P  = pd) and the molecular interactions can be neglected. I t  is not 
identical with either of the fieldquantities E or D. For gases or 
such ideal liquids, however, a simple electrostatic calculation shows 
that it is given by: 

P d  = N o d )  

4-HP F = E + -  3 

whence : . .(1.2) 

But since also D = E + h P  
by definition, P can be eliminated from (1 .l) and (1.2) giving 

D - E  h.N0 
a m E = T  

Now the dielectric constant is defined by D = EJ, so that this 
result becomes : 

E ,  - 1 4%” 
E,+2 3 a -=- 
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1 PROPERTIES OF IONIZING SOLVENTS 

This relation, which it must be emphasized holds only for non-polar 
molecules in the absence of molecular interactions, is known as the 
Clausius-Mosotti formula. In electromagnetic theory the dielectric. 
constant is found to be related to the refractive index by Maxwell's 
relation E, = nZ; this formal identification is legitimate as long as 
it is made clear that E,  must have the value which would be found 
by measuring it in a field of optical frequency; that is, as long as 
only electronic polarization is involved. In general, however, it is 
convenient to define 6, as that part of the static dielectric constant 
which arises from the distortion polarization, and write E, = n* for 
optical frequencies. The polarizability, a, is then given by: 

na - 1 h.No 
n e + 2  3 a -=- 

The first treatment of orientation-polarization, due to Debye, was 
modelled on Langevh's theory of paramagnetism. DEBYE(') 
assumed that the internal field F =  E + h P / 3  (the Clausius- 
Mosotti internal field) would also be adequate for this case, though 
realizing its limitations due to the neglect of molecular interactions. 
His formula is therefore applicable only to the polar gases or to 
dilute solutions of polar substances. The average orientation 
polarization is calculated on the assumption that the energy of the 
oriented dipoles is distributed according to the Boltzmann distribu- 
tion expression, neglecting molecular interactions. The average 
moment per molecule, E, is shown to be related to the actual 
permanent dipole moment p ,  by the Langevin formula: 

which for all ordinary field-strengths approximates closely to: 

The total polarization per unit volume is therefore: 

P = &F(a + 
Hence by an argument closely similar to that given above for the 
case of distortion polarization alone, Debye's equation: 

e, - 1 4nNo &No p i  -=- a + - * -  &,+2 3 3 3 k T  
8 



THE DJF.I.ECTRIC CONSTANT 

is obtained. This equation is experimentally verified for polar gases 
and dilute solutions, and is indeed the basis for the evaluation of 
dipole moments fiom dielectric constant measurements on such 
systems. Its acknowledged failure for polar liquids was shown by 
ONSAGER(*) to be due to the inadequate nature of the Clausius- 
Mosotti expression for the internal field. Onsager proposed that 
only a part of this field should be active in orienting the dipoles; 
this part he called the 'cavity field'. The remaining part, the 
'reaction field', should remain parallel to the dipole moment, and 
thus enhance both the permanent and induced dipole moments. 
OP this basis, he arrived at the equation: 

which, for easier comparison with Debye's equation, may be re- 
written as: 

E' - 1 47rJvo 47%" pf 3e;int + 2) -- a+-.-. 
& , + 2 - 3  3 3kT (2ea + n2)(E, + 2) 

This clearly reduces to Debye's formula if E,  m n2 which is the case 
for dilute solutions or for gases, but gives very different, and better, 
results for polar liquids, where E, differs considerably from nB. It 
is still inadequate, however, for the so-called 'associated liquids' 
such as water and alcohols, and these are precisely the liquids of 
most interest in connection with electrolytes. 

KIRK WOOD(^' has extended Onsager's theory to deal with these 
liquids by taking detailed account of the short-range interactions 
which hinder the rotation of the molecular dipoles. His result is: 

(8 ,  - 1)(2Ea + 1) ";".a I h J v o  p2 
9 E, 

- 3 3k'iI-g * * * * ( 1 * 3 )  

In this formula the factor g must be calculated from a suitable 
model for the liquid in question. It is given by: 

g = l + z z q  
where z is the average number of nearest neighbours and is 
the averaged cosine of the angle between adjacent dipoles. (Using 
x-ray data for water, a value of g m 2.5 is obtained at ordinary 
temperatures.) I t  must also be recognized that the value of p in 
Kirkwood's formula is not quite the same as the dipole moment 
pe of the isolated molecule, owing to further polarization by its 
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1 PROPERTIES OF IONIZING SOLVRNTS 

neighbours. One approximation(10) used to allow for this effect 
with spherical molecules is: 

n2 + 2 
p = -  

3 

and with this approximation the only essential difference between 
Kirkwood's formula and Onsager's lies in the factor g. OSTER and 
KIRK WOOD(^^) were able to calculate the dielectric constants of 
water and alcohols within about 10 per cent by using equation (1.3). 

Some of the difficulty of establishing a satisfactory theory of the 
dielectric constant of polar liquids arises from uncertainty about the 
correct value for the distortion-polarizability a, or in other words 
the part 6, of the static dielectric constant. The 'optical' value 
E, = n* is usually taken, but measurements at high radio-frequen- 

suggest a value of about E, = 5 for water as against n* = 1.79. 
HARRIS and  ALDER(^^) explain the high radio-frequency estimate as 
due to the fact that nuclear vibrations are still present at these 
frequencies. They also make some criticisms of the relevance of 
Onsager's cavity field to the calculation of the distortion polariza- 
tion. They use a different field for this purpose and increase the 
rigour of Kirkwood's evaluation of g, obtaining the result: 

-- e, - 1 k N 0 a  en=N, & 9 6, 

s,+2-- 3 -I- 3 * 3 k l '  ( 2 ~ ,  + I ) (  e, + 2) ' * * *('") 

which may also be written as: 

-+-  E ,  - 1 = 4rzJv, [- 38, gPs 
3 + 28, + I 3 k l  

(with E, = ns) 
For water, they calculate g from a model due to PoPLE(~~), in 

which each water molecule is bonded to four others, but bending 
of the 0-H-0 bonds is permitted. The factor g ranges from 
2.60 at 0' to 2-46 at 83'. The agreement with experimental values 
of e, is within about 2 per cent over the temperature range 0'-80", 
which is extremely satisfactory €or such a complicated liquid as 
water. Good results are also obtained with alcohols, for which 
Oster and Kirkwood's model of chain-wise association through 
'hydrogen bonds', giving g = 2.57, is used; the calculated values 
are a few per cent higher than the observed. Harris and Alder have 
also made the reverse calculation by computing g from the observed 

10 



THE DIELECTRIC CONSTANT 

dielectric constants, refractive indices and dipole moments of a 
number of liquids, using both Kirkwood’s formula and their own. 
The two sets of values do not differ greatly, but those derived from 
equation (1.4) are perhaps slightly more.reasonable: acetone and 
chloroform, believed to be unassociated liquids, give g = 1.0; the 
strongly associated liquid hydrogen cyanide gives g = 3.6; nitro- 
benzene and pyridine give g = 0.8 and 0.7 respectively, indicating 
‘contra-association’ of the dipoles as opposed to the head-to-tail or 
‘co-association’ in hydrogen cyanide. 

The static dielectric constant E, includes a large contribution due 
to orientation of the permanent dipoles in the applied field. The 
orientation process requires a finite time, and consequently the 
dielectric constant decreases as the frequency of the applied field 
increases. The orientation of the molecules against the viscous 
forces leads to an energy dissipation in alternating fields, which may 
be formally dealt with by the use of a complex dielectric constant. 
Provided that only one orientable dipolar species is involved, the 
complex dielectric constant, e, for an angular frequency w obeys 
the equation: 

&a - &o 
&=&,+- . . . .(1.5) 1 + t o r  

where T is the relaxation time for the orientation process, i.e., the 
time for the orientation polarization to fall to e-l of its value after 
the removal of the applied field. Measurements of E at various 
frequencies (in the region of substantial change) can therefore 
determine both 8, and T. Such measurements have been made on 
water and heavy water by COLLIE, HASTED and Rrrso~(~~) using 
radar techniques at wavelengths of 1.25, 3, and 1Ocm over a 
temperature range of 0” to 75”. Their work leads to conclusions 
of great value in interpreting the nature of water. 

First, equation (1.5) was found to hold with a single value of the 
relaxation time T for each temperature. This implies that only one 
orientable molecular species is involved ; the presence of polymeric 
forms such as ‘dihydrol’ would necessitate a range of relaxation 
times at each temperature. Secondly, the relaxation times vary 
with temperature very nearly in accordance with a theoretical 

b Y 9  
result due to Debye: 

T=- kT . . . .(1.6) 

where I is the radius of the orientable particle. Tab& 1.1 illustrates 
the striking and, indeed, unexpectedly good agreement of the experi- 
mental results with equation ( 1.6). The ‘molecular radius’ compares 
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Table 1.1 
Diclcclric Relavation Time and Viscosity qf Wok-A Tist of the Debyc Relation 

2.7 I 
2-73 
2.78 
2.81 
2.83 
2-84 
2.85 
2.84 

T x 10" 1 sec 

I 4-4 
1 44 
I -45 
1 *45 
1 .% 
I .% 
1 46 
1 48 

0 I 17.7 

40 
50 
60 
75 

5.9 
4.8 
4.0 
3.2 

'1 x 10' 
Po& -- 

I ~787 
1 *306 
1 *002 
0.798 
0.653 
0.547 
0.467 
0.379 

c x  10' 
'1 by Eq. 1.6 

x c  deg poise-' 

Data from COLUE, C. H., HASTED, J. B. and RITSON, D. M., Prm. phys. Soc., 
60 (1948) 145. 

well with that obtained from x-ray measurements, vie., 1.38A. 
These results too must be interpreted as showing that the only entity 
undergoing dipole orientation in water is the simple H20 molecule. 
If polymeric fonns such as (H,O), or (H,O), were present to any 
significant extent, their proportions would presumably change con- 
siderably with temperature and lead to a marked temperature- 
dependence of the molecular radius as calculated from Debye's 
relation. Further weight is given to this work by the comparison of 
the dielectric relaxation times for water and heavy water: the 
workers already quoted have shown that the ratio rDp/raao is 
equal to the viscosity ratio qDaO/qHaO (within the experimental error 
of 2 per cent) at lo", 20°, 30" and 40'. 

Another type of measurement which gives some insight into the 
nature of the kinetic entities in water is the study of the selfdiffiion 
coefficient (see Chapter 10). We quote in Tub& 1.2 some results 
due to W A N G ( ~ ~ )  from which a 'molecular radius' of the diffusing 
particle can be computed by means of the Einstein-Stokes relation: 

D* = kT/(67rr]r) . . . .(1.7) 

where D* is the (self) diffusion coefficient and the other quantities 
have the same meanings as before. 

It will be seen that the values of D* obtained by using heavy 
water as tracer are appreciably different from those using H,O1* 
tracer; but each series shows the constancy of D*q/T. The question 
of which series best represents the actual self-diffusion coefficient is 
not yet settled; experimental errors in work of this kind are larger 
than in other diffusion measurements. 
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THE DIELECXRIC CONSTANT 

Although the molecular radius so calculated (0.8-1.1 A) is too 
small, its constancy leaves little doubt that we are dealing with the 

D* x 106 q x.10* -7- cml sec-1 Pow 

0 1 .oo 1.787 
5 1 *20 1-516 

15 1.61 1.138 
25 2.13 0-890 
35 2.76 0.719 
45 3.45 0.596 
55 4.16 0.504 

D*' x 10'0 ' (A) 
(Eq. 1.7) T 

dyn deg' 

6.54 1.12 
6-55 1.13 
6.36 1-15 
6.36 1.15 
6-44 1.13 
6.46 1.13 
6.39 1-14 

0 
5 

15 
25 
35 
45 
55 

8.45 
8.45 
8-28 
8.26 
8.3 1 

1 a33 
1 -58 
2-14 
2.83 
3.55 
4.4 I 
5.4 I 

0.87 
0.86 
0.88 
0.88 
0.88 

I 

Data from WANO, H., J .  h e r .  Jum. Soc., 73 (1951) 510; WAND, J. H., 
ROBINSON, C. V. and  ELMA AN, I. S., ibid., 75 (1953) 466. 

motion of the same molecular species at each temperature. The 
low value as compared with the known radius of 1.38 A is probably 
due to the inadequacy of Stokes' law for the motion of particles of 
molecular dimensions. 

We conclude this section by drawing attention to Appendix 1.1 
in which we have tabulated those properties of water which a 
considerable experience of calculations on electrolyte solutions has 
shown us to be most often needed. These are the density, dielectric 
constant, vapour pressure and viscosity, at intervals between 0" 
and 100°C. 

Appendix 1.2 gives the densities, dielectric constants and visco- 
sities of a number of non-aqueous solvents, most of them at 25". 
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1 PROPERTIES OF IONIZING SOLVENTS 

T H E  EFFECT OF IONS O N  THE STRUCTURE A N D  
PROPERTIES OF W A T E R  

It has been shown in the preceding section that the distinctive 
properties of water can be largely explained in terms of electro- 
static forces arising from the charge distribution of the water 
molecule, combined with the fact that its bond angle is close to the 
tetrahedral angle. Since the simple ions have dimensions, and bear 
charges, comparable to those of the water molecule, it is only to be 
expected that the structure of water will be considerably modified 
in ionic solutions. I t  is perhaps less obvious that the presence of 
any solute should alter the character of water, yet there is good 
reason to suppose that this is the case. The most important evidence 
in this direction comes from the study of the solubility and tempera- 
ture coefficient of solubility of simple non-polar gas molecules, and 
has been ably summarized by FRANK and  EVANS('^). Their paper 
should be studied very carefully by those who want a full account 
of the argument; we present here only some of the more important 
features. From the solubility data, it is possible to compute the 
entropy lost in the process of solution of a gas in a liquid. For simple 
non-polar gases in non-polar solvents, this entropy loss is in the 
range 10-15cal degree-' mole-' (adjusted to refer to standard 
states of one atmosphere for the gas and a hypothetical mole fraction 
of unity for the solution). For solutions of such gases in water, 
however, the entropy loss is much larger, being in the range 
25-40 cal degree-' mole-'. Furthermore, while the entropy lost on 
solution of these gases in non-polar solvents varies but little with 
temperature, that for their aqueous solutions decreases rapidly as 
the temperature is raised. Now the entropy of a system may be 
regarded as a measure of the degree of disorder prevailing; the 
extra entropy lost in the formation of aqueous solutions of non-polar 
gases, as compared with simpler solutions, means that the water 
structure becomes more ordered through the influence of the 
dissolved molecules. In the picturesque words of Frank and Evans, 
'the water builds a microscopic iceberg round the non-polar 
molecule'. At the higher temperatures, this effect is naturally less 
marked, for then the forces responsible for the regular structure can 
no longer compete with the thennal agitation. 

I t  must be admitted that ths conclusion is unexpected, but the 
thermodynamic evidence is too strong to dismiss. Comparison with 
the case of an impurity atom introduced into a perfect crystal lattice 
is a reminder that we should beware of interpreting the quasi- 
crystalline picture of water too literally, for in this case the foreign 
atom, by producing lattice dislocations, tends to destroy the existing 
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EFFECT OF IONS ON WATER 

long-range regularity. I n  water, as the x-ray evidence quoted in 
an earlier section shows, regularity extends only over a few molecular 
diameters, and it is at least not difficult to imagine an increase of 
regularity. The effect might indeed be pictured as an increase in 
the average life of the short-range tetrahedral configurations, due 
to the reluctance of the solute particle to get out of the way. This 
speculation (which is the present authors’) is consistent with the 
fact that a t  room temperatures the extra entropy loss is greatest 
for the heaviest and largest solute molecules, such as radon and 
chloroform. 

In  view of the existence of this ‘iceberg effect’ even for non-polar 
solutes in water, it is clear that we must be prepared for considerable 
complications when we turn our attention to aqueous ionic solutions. 
Here an intense electrical field due to the ionic charge is super- 
imposed on the n o d  interaction between solvent and solute. At 
the small distances involved, the field intensity is of the order of 
a million volts per centimetre; Coulomb’s law, even if we insert 
the bulk dielectric constant of water (- 80), gives a field of 0.5 x 
106V/cm at a distance 6 A  from the centre of a univalent ion. 
Furthermore, under the conditions of dielectric saturation obtaining 
among water molecules in contact with the ion, the bulk dielectric 
constant is certainly too large, so the field intensity acting on the 
first layer of water molecules is probably an order of magnitude 
greater than that given by the above expression. 

In very dilute solutions it is permissible to think of the effects 
produced by a single ion on successive layers of water molecules, 
but in more concentrated solutions one meets the difficulty that ‘the 
further off from England the nearer is to France’. It is instructive 
to estimate the average separation of the ions in a solution, assuming 
as a rough guide that the ions are arranged on a cubic lattice, at 
least as a time-average. One finds that for a 1 : 1 electrolyte at a 
concentration t moles per litre, the average interionic distance is 

Tabk 1.3 
Average Separation qf Zons in a soldion of a 1 : 1 Electrolyte 

E (mole/l.) : . 1 0 2 1  I o j  1- ;;- I ;:: 13 Separation ( A )  : 

9.4 c - ‘ I 3  A, giving the results shown in Table 1.3for various concen- 
trations. These figures show that in a one molar solution there can 
be few water molecules distant by more than two or three molecular 
diameters from some ion; it is reasonable to talk of successive layers 
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1 PROPERTIES OF IONIZING SOLVENTS 

of water molecules round one particular ion only below about 
0.1 molar. 

Bearing this in mind, we may examine in more detail the effcct 
of ions on the structure of water, again making reference to the 
admirable analysis given by FRANK and Evms(16). They present 
entropies of solution for a number of ions; part of their data is 
reproduced in Tab& 1.4. 

Table 1.4 
Entropr qfsorurion qf MoMtmniG Ions in Wakr 

(a* FRANK mrd  EVANS^‘) 

F- 
c1- 
Br 
I- 
H+ 
Li+ 
Na+ 
K+ 
Rb+ a+ 
g$++ 
Sr++ 
Ba++ 
M+++ 
Fe+++ 

- 40.9 - 3.5 - 26.6 + 10.2 - 22.7 + 13.9 - 18.5 + 17.9 - 38.6 - 39.6 - 1.1 - 33.9 + 4.0 - 25.3 + 12.0 - 23.1 + 14.1 - 21.3 + 15.7 - 84.2 - 65.5 - 63.7 - 55.6 - 133 - 120 

The significance of these entropy data may be illustrated by 
taking the case of potassium chloride as typical. The standard 
entropy loss per mole is 25.3 + 26.6 = 51.9 cal deg-1, whereas the 
corresponding figure for two gram-atoms of argon (the fairest com- 
parison, since both ions have the argon structure) is 2 x 30.2 = 60.4 
cal deg-1. The net effect of the ionic charges is evidently to reduce 
the entropy loss; that is, to promote increased disorder in the water. 
This effect appears in spite of the fact that in the immediate vicinity 
of the ion there must surely be a layer of rather firmly oriented water 
molecules, probably four in number for most of the monatomic 
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and monovalent ions. This firmly-held layer can be regarded as 
being in a ‘frozen’ condition, and Frank and Evans estimate that 
its formation would result in an entropy loss of about 12 cal deg-l 
mole-’. To this figure must be added two other sources of entropy 
loss: first, an amount due to the reduction of free volume when the 
(gas) ion enters the solution, conservatively estimated at 20 cal 
deg-1 mole-’; and secondly, a contribution due to the partial 
orientation of water molecules in layers beyond the first, which may 
be computed by an equation due to LA TIMER(^'): 

Entropy loss per mole (due to dielectric orientation) 

where ri is the radius of the bare ion, to which 243 A is added to 
allow for the first rigidly-held layer of water molecules. In other 
words, a boundary is drawn round the ion outside the first layer of 
water molecules; within this boundary, the entropy loss is computed 
by assuming that the water molecules are rigidly held as in ice, 
while outside it the medium is treated as a classical dielectric con- 
tinuum with the ordinary dielectric constant. This picture is sub- 
stantially consistent with recent treatments of the dielectric constant 
near an ion (see p. 20). These three approximately calculable en- 
tropy losses can be combined and subtracted from the experimental 
values in the second column of Table 1.4, giving a remainder (column 
3) called by Frank and Evans the ‘structure-breaking entropy’, 
AS*‘. It is seen that for all the alkali and halide ions except the 
smallest (Li+ and F-) this structural entropy term corresponds to 
a considerable increase of disorder, which is greatest for the largest 
ions. It appears therefore that beyond the first layer of water mole- 
cules there is a region where the water structure is broken down; it 
is pointed out that this could arise from the manner in which the 
first layer of water molecules is arranged. Round a positive ion, the 
water molecules would be oriented with all the hydrogens outwards; 
they could not, therefore, all participate in the normal tetrahedral 
water arrangement (even if the dimensions of the central ion were 
close to those of a water molecule) for th is  arrangement would 
require two of the water molecules to be oriented with the hydrogens 
inwards. Frank and Evans support their argument for this struc- 
ture-breaking effect by a number of other considerations, notably 
of viscosity and heat capacity data. For polyvalent monatomic ions 
such as Al+++, the entropy loss is much greater; part of this increase 
is ascribed to an extension of the ‘frozen’ region to layers beyond 
the first. 
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1 PROPERTIES OF IONIZING SOLVENTS 

T H E  EFFECT O F  IONS O N  T H E  D I E L E C T R I C  
CONSTANT O F  W A T E R  

Quantitative knowledge of the effect of ions on the dielectric 
constant of water has for many years been recognized as vitally 
important to the understanding of the forces operating in electrolyte 
solutions. This information was, however, until recently extremely 
difficult to obtain; it was not, in fact, known for certain whether 
the dielectric constant was increased or decreased. This is due to 
the experimental difficulty of measuring the dielectric constant of a 
conducting medium. Fortunately, the development of wave guide 
techniques for measurements at frequencies of the order of 10'0 
c/sec has at last made it possible to determine the dielectric constant 
of men such highly conducting liquids as electrolytes two molar in 
concentration with an accuracy of a few per cent. HASTED, RITSON 
and  COLLIE(^*), whose important work on the dielectric properties 
of water and heavy water has been discussed in a previous section, 
have also made very valuable studies of the dielectric properties of 
aqueous electrolyte solutions. They find that for all the electrolytes 
studied (fourteen in number, and including 1 : I, 2 : 1, 1 : 2 and 
3 : 1 valency types) the dielectric constant falls linearly as the 
electrolyte concentration is increased. This linear drop holds in 
most cases up to about 2 N, after which, in the case of sodium 
chloride (the only case studied above 2 N), the drop is less than that 
demanded by the linear relation. The dielectric relaxation time is 
also decreased in an approximately linear manner with increasing 
concentration. The latter effect appears to be consistent with the 
views of Frank and Evans on the structure-breaking effects of ions, 
which would have the result that re-orientation of the water 
molecules could take place more readily. The dielectric relaxation 
time of water is, however, increased by the addition of polar organic 
molecules(ls). The explanation of this observation may be con- 
nected with the 'iceberg effect' proposed by Frank and Evans to 
account for the entropy of aqueous solutions of non-polar gases; it 
appears to be difficult to measure the change in dielectric relaxation 
time for the latter solutions owing to the low solubility and the 
consequent smallness of the change. Table 2.5 summarizes the 
results of Hasted, Ritson and Collie in the form of a constant 8 for 
each solute at 25": this quantity is half the molar depression of the 
dielectric constant and is defined by: 

where E, is the static dielectric constant of water (78.30 at 2 5 O ) ,  
E is that of the solution and c the concentration in moles per litre. 
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EFFECT OF IONS ON WATER 

Tdk 1.5 
Mdm Depression @Dielectric Gm~lanl of Woln by &Lro&ks at 25' 

6 E, + 2& 

(I/dole) 
HCI -10 
Lia - 7 
NaCl - 5.5 
KCI - 5 
RbC1 - 5 
NaF - 6 
KF - 6.5 

(I/m&) 
NaI - 7.5 
KI - 8  - 15 %: - 1 4  

NaOH - 10.5 
Laa, - 2 2  

NhSO, - 11 

Data from HASTED, J. B., RITSON, D. M. and COLL~E, C. H., 3. k. P@., 
16 (1948) 1. 
The quantity 8 is approximately additive for the separate ions and 
may therefore be represented by : 

28 = a1 + 8 8  for a 1 : 1 electrolyte 
28 = J1 + 26, for a 2 : 1 electrolyte 
28 = J1 + 368 for a 3 : 1 electrolyte 

etc., but any such subdivision of the observed 6 values is of course 
subject to the arbitrary fixing of J1 and 8, for one solute. Hasted, 
Ritson and Collie suggested: 

on the reasonable ground that a positive ion would bind the water 
molecules in such a way as to leave them less fkee to rotate than 
would a negative ion. 

Dielectric saturation 
In the derivation of Debye's relation between the dipole moment 

and the dielectric constant of polar liquids, the Langevin formula: 

= - 8 I/mole, gel- = - 3 l/mole 

is involved. At ordinary field strengths p,,F < kT and the approxi- 

mate expansion of this function to the first power of - is adequate, 
giving : 

luoF 
kT 

- m=- 
3kT 

At very high field strengths, however, the Langevin function ap- 
proaches unity asymptotically, giving ultimately Tii = po when all the 
dipoles are completely oriented by the field. The Langevin function 
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also enters into the more elaborate calculations by Onsager and 
others discussed on pp. 9-1 1 ; in all models, therefore, this dielectric 
saturation effect is to be expected. Now the electrical field near an 
ion is quite intense enough to cause a marked dielectric saturation 
in surrounding water molecules, with a consequent reduction in the 
dielectric constant as measured by an external applied field. As a 
result, the dielectric constant of an electrolyte solution falls as the 
concentration is increased. 

The theoretical importance of a knowledge of the variation of 
dielectric constant with electrolyte concentration lies in its relevance 
to the calculation of interionic forces which are discussed in detail 
in Chapter 9. We shall, however, deal here with the question of 
how the microscopic dielectric constant varies with the distance 
from an ion. This question was discussed by  SACK(^) and by 
DEBYE(’), but as they employed the Clausius-Mosotti expression for 
the ‘cavity field’, which is now discredited for polar liquids, it is 
better to consider only a more modem treatment due to Rrrso~ 
and HASTED(~~). They have calculated the dielectric constant of 
water as a function of distance from a point electronic charge, using 
two different models, one based on Onsager’s expression for the 
dielectric constant, and the other on an empirical modification of 
Kirkwood’s expression. Both models lead to very similar values for 
the local dielectric constant. There is a region of complete dielectric 
saturation up to about 2 A from the point charge, where the 
dielectric constant has the value of four or five arising from electron 
and atom polarization only. This is followed by a region of rapid 
rise ending at about 4 A from the point charge, and thereafter the 
dielectric constant is practically stationary at its ordinary bulk value. 
Since most simple ions have radii in the range 0.5-2A, and the 
water molecule has a diameter of 2.8 A, it is clear that for mono- 
valent ions the region of appreciable dielectric saturation is confined 
to the first layer of water molecules round the ion. Ritson and 
Hasted, however, treat this first-layer saturation as complete only 
round positive ions; the first shell round negative ions is given the 
bulk dielectric constant. This admittedly somewhat exaggerated 
distinction is based on their contention that the molecules in the 
first layer round a negative ion have greater freedom of rotation 
than those round a positive ion. It seems equally likely that the 
difference in dielectric saturation round positive and negative ions 
is merely a matter of ionic size, for the monovalent negative ions 
they consider are in fact the halide ions which have radii 1.3-2.2 A, 
whereas the positive ions are those of the alkali-metals of radii 0.6- 
1.6 A. The important conclusion to which they come is, however, 
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that for monovalent ions the observed lowering of the bulk dielectric 
constant arises almost entirely in the first layer of water molecules. 
Polyvalent cations are frequently small and monatomic, and for 
these this saturation effect certainly extends beyond the first layer 
of water molecules; but polyvalent anions of any stability are poly- 
atomic and hence large, and for these the position is far from clear. 

Schellman22 has calculated the dielectric saturation effect near an 
ion in water, using a detailed molecular model of the region near the 
ion combined with a classical dielectric model at greater distances. 
He finds that the dielectric saturation effect should be very much 
smaller than the classical model alone would give, e.g., at 5 A from 
a monovalent ion the dielectric constant is only 0.4 per cent less 
than its ordinary value, and even at 2 A it is only reduced by about 
17 per cent. These conclusions give strong support to the practice 
of using the ordinary dielectric constant of water in calculating 
ionic interactions, even in comparatively concentrated soh tions. 

When considering the significance of the values of the dielectric 
constant depression given in Tub& 1.5, it should be noted that in 
most cases the concentration range studied was 0.5-2N; a few 
solutions (hydrochloric acid, sodium hydroxide, potassium iodide, 
potassium fluoride) were examined at 0.2 or 0*25N. At these 
concentrations most of the water molecules would be no more than 
three molecular diameters away from an ion. One need therefore 
feel no surprise that the linear relation begins to fail about 2 N. 
HAGGIS, HASTF,D and BIJCHANAN(~@) consider that the dielectric 

decrement owes its origin primarily to the prevention of the rotation 
of water molecules. From a more detailed theoretical consideration 
they estimate the average number (%.) of water molecules thus 
‘irrotationally bound’ by the solute particles; this number is close 
to zero for uncharged solute molecules, and ranges fiom four to six 
for the alkali-metal halides, e.g., t~,,. S+J four for rubidium chloride 
and ammonium chloride, five for potassium chloride and six for 
sodium chloride and lithium chloride. These numbm need not 
necessarily be the same as the number of molecules moving with the 
ions as a single kinetic entity, which we regard as ‘true’ hydration 
numbers. 

Further information about the effect of ions on the solvent has 
resulted from measurements of nuclear magnetic resonance in elec- 
trolyte solutions. The protons of the water molecule are shielded 
magnetically by the electron cloud and any influence that displaces 
this electron cloud will change the nuclear magnetic resonance. 
Shoolery and Alderm express this shift as: 

8 = lo’ (HH,O - %mpIe)/HH,O 
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where H is the applied magnetic field necessary to produce resonance 
in a constant radio-frequency field. These shifts are proportional 
to the concentration (except at high concentrations) and 6 can be 
expressed as the sum of cationic and anionic effects in the form: 

6 = (11181 + 4 , ) m  

Some of these shifts, based on 6,(CIO;) = - 0.85 kg/mole and 
expressed as S1/lzll or S41.r21, are shown in Figwe 1.4. 

An ion may affect the electron density in a water molecule in 

I I I 
0 1 2 

r (8) 
Figure 1.4. Nuclear magnetic resonance shiJl due to cations and anions versus 

ionic radius 

two ways. A water molecule solvated to a positive ion should on 
the average be oriented with the oxygen atom towards the ion 
because the water dipole acts towards the oxygen atom. The posi- 
tive ion increases the electron drift towards the oxygen atom leaving 
the protons less shielded. A water molecule solvated to a negative 
ion should be oriented in the opposite direction with the oxygen 
away from the ion; the charge on the ion will however increase the 
electron density in the vicinity of the oxygen atom, again leaving 
the protons less shielded. In both cases, therefore, the polarization 
due to solvation should result in a positive shift of the nuclear 
magnetic resonance. The other effect enters because on solvation 
a water molecule must break at  least one hydrogen bond to another 
water molecule; in this process the mutually induced dipoles dis- 
appear and the electron density around the protons increases. 
Structure breaking of the solvent therefore results in a negative 
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shift. These ideas are in accord with the experimental findings. 
Positive shifts are found with the smaller ions which can approach 
the solvating molecule sufficiently close for the polarization effect 
to be marked; as would be expected, the positive shii is emphasized 
for divalent ions and even more so for trivalent ions whether they 
be positively or negatively charged. A negative shift occurs when 
the structure breaking effect takes charge; this is found with the 
larger ions. The silver ion, however, has a higher value than might 
be expected and the halide ions are in marked contrast to the alkali 
metals; thus K+ shows a shift of - 0.71 kg/mole whilst F-, with 
almost the same radius, gives 1.20 kg/mole. These experiments 
bring to light a remarkable power of halide ions in modifying the 
structure of water. 
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2 

BASIC CONCEPTS AND DEFINITIONS 

ACTIVITY COEFFICIENTS, S T A N D A R D  STATES A N D  
CONCENTRATION SCALES FOR E L E C T R O L Y T E  SOLUTIONS 

THE total Gibbs free energy, G, of a tixed quantity of electrolyte 
solution of given composition is dependent only on the temperature 
and pressure no matter what conventions we adopt for expressing 
partial molal quantities such as the activities of the components. 
If this fact is kept in mind, much of the confusion which frequently 
besets the worker in this field with regard to the various types of 
activity coefficient can be avoided. 

We shall denote the solvent and solute by subscripts A and B 
respectively. The ‘solute’ will be taken to mean the anhydrous 
solute, following the usual convention. The partial molal Gibbs free 
energies, or chemical potentials, of the solvent and solute are then: 

. . . (2.1) 

where nA, nB denote the number of moles of solvent and solute in 
the system. It will sometimes be convenient to use the subscript w 
to refer to the solvent if we are dealing with an aqueous solution. 
Since we are more interested in the variation of chemical potential 
with composition than in its absolute value, it is usual to express 
these quantities as a difference between the absolute value and that 
which holds in some specified standard state. The standard state 
is indicated by a superscript zero, PA, a. The choice of standard 
state is entirely at our discretion: it may be a pure component, a 
saturated solution or some entirely hypothetical solution. In the 
case of mixed liquids which are non-electrolytes, for example, the 
standard state for each component is usually taken to be that 
component in the pure state; this choice preserves symmetry 
between the two components, which is useful in the study of these 
systems. 
For electrolyte solutions, the standard state to which the free 

energy of the solvent is referred is invariably the pure solvent at the 
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same temperature and pressure. The activity of the solvent, an, is 
then defined by: 

Since the pure solvent can exist in equilibrium with its vapour at 
pressure pz, and the solution with the solvent vapour at partial 
pressure PA, we have also, assuming the vapour to be ideal: 

@ = @(u)  + R'Tlnpi 

GA - @A = RTlnaA . . . . (2.2) 

. . . . (2.3) 
(u) is the molal free energy of the vapour in the standard 

I and 

where 
state of one atmosphere pressure at the temperature T. 

G A  = a(.) + R'TlnpA 

It follows from (2.2) and (2.3) that: 

= PA/@% 

Strictly, the ratio pAlp$ should be replaced by the ratio of fugauties, 
pjIp to .  However, the vapour pressures of most commonly used 
electrolyte solutions are small enough for this to make a negligible 
difference. (The position is not that the vapour is so ideal that 
p = p* but rather that the vapour pressures of solution and solvent 
are always of similar magnitude so that the correction factor is 
pracucally the same for the solution and the pure solvent.) 

For electrolytes, however, the pure solute is not a very practical 
choice as a standard state, since it is frequently a solid or liquid 
with properties very different from those of solutions. Instead, it is 
the practice to use as standard states certain hypothetical solutions. 
The position resembles that which we adopt in discussing the free 
energy of gases, where the standard state is taken as that of an 
'ideal' gas (which is of course a hypothetical concept) at one 
atmosphere pressure or other unit pressure. For electrolytes, the 
standard state is, in much the same way, a hypothetical solution 
(having certain properties which we shall state later) at unit con- 
centration on some chosen scale and at the temperature and pressure 
of the solution. The chemical potential ascribed to this standard 
state naturally depends on which concentration-scale we adopt. 
The scales in common use are: 
(a) The molal scale (m = moles of solute per kilogram of solvent). 
(b) The molar scale (c = moles of solute per litre of solution). 
(c) The mole fraction scale (N, = moles of solute divided by the 

On each of these scales we can define an activity for the solute, 
using parenthesized letters to emphasize that the activity of the 
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solute, and the free energy in the standard state, depend on the 
scale chosen : 

. . . . (2.4) 

OB = @(m) + R T  In a ~ ( m )  

= @(c) + RTln a ~ ( c )  

It should be noted that (provided we always calculate the number 
of moles of solute on the basis of the anhydrous substance) the 
quantity oB is unique for a given solution, pressure and temperature. 
Equations (2.4) are so far no more than definitions; we have not 
yet stated the properties by which the various standard states are 
characterized. Before doing this it is convenient to separate the 
activities into factors referring to the separate ions and the 
concentrations on the appropriate scales. I t  is clearly desirable that 
the chemical potential of the solute treated as a whole should be 
equal to the sum of the values for the separate ionic constituents. 
It should be remembered, however, that the concept of the chemical 
potential of one species of ion is something of a mathematical 
fiction. This quantity can be defined by the equation: 

. . (2.5) 

where i refers to one kind of ion, and A and j to the solvent and the 
other ions respectively. Physically, however, the operation implied 
by equation (2.5) cannot be performed, for it means adding to the 
solution a quantity of one kind of ion only. Even if this could be 
done, it would result in an enormous increase in energy of the 
solution due to the self-energy of the electric charge involved(l’, an 
effect which we do not wish to be concerned with, since it depends 
on the shape of the portion of solution considered. This self-energy 
change could of course be exactly cancelled by the subsequent 
addition of the equivalent amount of the oppositely charged ion, 
when the resultant total free energy change would be that due to 
the addition of a quantity of the electrically neutral electrolyte as 
implied by equation (2.1). We may thus agree to discuss the free 
energy change due to the addition of one species of ion only, 
neglecting the self-energy effect, provided that we end with formulae 
involving only electrically equivalent amounts of cations and anions. 
We can then write for each ionic species i, 

os = @ + RTln  q . . . . (2.6) 
Let one mole of electrolyte give in the ionized state v1 moles of 
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cations of valency z1 and v2 moles of anions of valency + From 
the condition of electrical neutrality: 

also . . . (2.7) 

. . . . (2.8) 
so that by using (2.4), (2.6) and (2.7) we obtain: 

Formulae of the type of (2.8) will hold, with different values of the 
activities, for each different concentration scale. 

Now for each ionic species we define an ‘activity coefficient’ 
obtained by dividing the ionic activity u1 or a8 by the concentration 
of the ion on the appropriate scale, c.g., 

1 V11Zll = v2l.Zzl = - v2z2 

GB = v,C, + v20, 
0% = v 1 q  + v& 

OB = qq 

. . . . (2.9) 1 molal scale: 4 4  = Ylml 

molar scale: a&) =Ylcl 
mole fiaction scale: a,(N) =fl.Nl 

where y,y and f are called respectively the molal, molar and rational 
activity coefficients. The activity on the mole fraction scale, and 
consequentlyf, are dimensionless quantities. I t  is usual to regard y 
andy also as dimensionless quantities which implies that a(m) and 
a(c) have the dimensions of molality and molarity respectively. It 
follows that the arbitrary constants @(m) and @(c) contain con- 
cealed terms in RTln (mole kg-1) and R l l n  (mole litre-1); these 
do not in practice cause any difficulty. The ionic concentrations 
are simply related to those of the electrolyte as a whole by the 
equations : 

. . . . (2.10) 

. . . . (2.1 1) 

1 m, = vlm 
c, = Y,C 

with similar relations for the anion. 
N, = v p ” *  

Equation (2.8) therefore gives, using (2.9) and (2.10): 
aB(m) = (v?y;t)m’y?@ 

with exactly similar results for other concentration scales. The 
symbol v(= vl + v,) denotes the total number of moles of ions 
given by one mole of electrolyte. 

The individual ionic activity coefficients in (2.11) occur as a 
product, each raised to powers which satisfir the condition of 

* But seep. 31. 
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electrical equivalence. In order to simplify the appearance of (2.1 1) 
we now introduce a ‘mean ionic activity coefficient’ defined by: 

f* = . . . .(2.12) 
so that (2.1 1) becomes: 

where Q is a convenient abbreviation for (@@)lIv. A mean 
activity at can also be defined by a*, = aB and a mean ionic 
molality mi by: 

m$ = (v;l$)m’ . . . . (2.14) 

These formulae look rather clumsy, but take quite simple forms 
when the numerical values corresponding to various valency types 
are substituted as shown in Appendix 2.1. Though the molality 
scale is chosen here, similar formulae with the same numerical 
quantities apply to the other scales. 

The various mean ionic activity coefficients y*, y* and f*, are 
of great use in the study of solutions, and occur so often that they 
are frequently abbreviated to y, y and f without subscripts when 
there is no danger of confusion. 

We are now ready to assign to the hypothetical standard states 
for electrolyte solutions the properties which will make them most 
useful. 

The standard state fw each concentration scale is so chosen that the man 
ionic actizity coe@cient on that scale approaches unity when the concentration 
is reaiued to zero. l3is applies to every ternberatwe and pressure. 
In the standard state, aB = by definition; hence from 

equation (2.4), aB = 1, i.e., the standard state is a state in which 
the solute is at unit activity. However, it is not the state in which, in 
the actual solution, the solute has unit activity. For example, at 25” a 
1.734 M solution of potassium chloride has a mean molal activity 
coefficient of 0.577 so that its activity is: 

= (1.734 x 0.577)t = 1.000 

This is not the standard state for potassium chloride on the molality 
scale, but is merely a numerical accident. At another temperature, 
a solution of this composition would have an activity different from 
unity. We m a y  compare with the case of a gas which at some 
temperature and pressure happens to conform exactly with the 
equation PV = Rn this does not make it an ideal gas. The state 
used as the standard state for gases is that of a hypothetical (ideal) 
gas at a pressure of one atmosphere. Similarly the standard state 
for electrolyte solutions ir that of a hypothetical solution at a ‘mean 
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molality’ (or molarity or mole fraction if these scales are used) of 
unity. This hypothetical solution also has the ‘ideal’ quality that 
the mean activity coefficient of the ions is unity at all temperatures 
and pressures. It is often referred to as the ‘hypothetical mold 
solution’, though as just indicated, a more correct term would be 
‘hypothetical meun molal solution’. The expressions ‘hypothetical 
mean molar solution’ and ‘solution with hypothetical mean mole 
fraction of unity’ are likewise applicable to the standard states for 
the molar and mole fraction scales respectively. 

Another misconception which must be avoided is that of regarding 
the standard state as one of infinite dilution. Certainly, at infinite 
dilution the activity coefficient is unity, as it is in the standard state; 
but the partial molal free energy, which involves a term in the 
logarithm of the concentration, is negatively infinite at infinite 
dilution. It will be shown later that the partial molal heat content, 
heat capacity and volume of the solute are the same in the hypo- 
thetical standard state as they are at infinite dilution of the actual 
solution. 

At 25” a 2 M solution of potassium chloride has a water activity of 
0.9364; since the mole fraction of water is 0.9328, the rational 
activity coefficient of the water is f A  = 1.004, a figure which fails 
to emphasize the departure from ideality indicated by the activity 
coefficient of the solute,f’ = 0.614. Splitting the activity of the 
solvent into concentration and activity coefficient factors seldom 
proves informative. Instead we define the osmotic coefficient which 
may be: 

OSMOTIC COEFFICIENTS 

(a) the ‘rational’ coefficient, g, defined by: 

lnuA = g I n N A  = -g ln  . . . . (2.15) 

where W, is the molecular weight of the solvent. Expanding in a 
series, we get: 

1 n u A = - 8 [ E - H ( m ) 2 + *  mwA 1 VmWA -3 
(b) the molal osmotic coefficient, 4, defined by: 

m WA 4 In a, = - - 1000 . . . . (2.16) 
Thus, for 2 M  potassium chloride g = 0.944 and 4 = 0.912. 
Should the solution contain more than one solute species, equation 
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(2.16) is still valid provided the term vm in this definition of 4 is 
replaced by a summation over all the solutes present. 

The osmotic pressure, n, of a solution can be expressed to a good 
approximation by the formula : 

n V A  vm WA 
= - t j  lo00 - In UA = = - g In . . . . (2.17) 

where PA is the partial molal volume of the solvent. For a dilute 
solution (2.17) approximates to : 

The osmotic coefficient is, therefore, related to the Van't HoK 
factor, i, of classical solution theory, by vg m i. The molal osmotic 
coefficient is more exactly related to the osmotic pressure, by 

RELATION B E T W E E N  ACTIVITY COEFFICIENTS ON 
D I F F E R E N T  SCALES 

It is often necessary to convert activity coefficients from one scale 
to another. The required relations are readily established from the 
various definitions, remembering that the quantity aB is the same 
whatever scale is used. As an example, the relation between activity 
coefficients on the molal and molar scales is derived below. The 
other relations, which may be obtained in a similar way, are then 
given without proof. We have: 

- 
. . . . (2.4) I GB = &m) + R T  In uB(m) 

= a(c) + R T  In uB(c) 
Also : 

uB(m) = Q(mv*)' 
= Q(Gy*)' . . . .(2.13) 

where Q is the numerical factor given for the various valency types 
in Appendix 2.1. Hence: 

a ( m )  + vRT1n m + vRTln y* 

= a$+) + vRTInc + vRTlny, 

and 

30 



RELATION BETWEEN ACTIVITY COEFFICIENTS 

The last term on the right is a constant for a given temperature 
and pressure and may be evaluated by making use of the property 
defining the standard states, viz., c + 0, m + 0, ’y-+ --+ 1, y* + 1. 
In addition it follows from the definitions of molality and molarity 

that as c --f 0, - + do, d, being the density of the pure solvent. 
C 

m 
Hence as c --f 0, equation (2.18) gives: 

so that (2.18) may be written: 

or 
(2.19) 

which is the required relation. In case the quantity - is not 

directly available, it may be computed from the density, d, of the 
solution by either of the relations: 

C 

m 

C 
or m = -  . . . . (2.20) 

md 
1 + 0.001 mWB d -0401 cWB C =  

where W, is the molecular weight of the solute. 
When we are considering the electrolyte solute as a whole, though 

the concepts of molality and molarity are quite unambiguous, there 
is a logical difficulty in defining the idea of the mole fraction of the 
solute as a whole. Either we take it as the ratio of the total number 
of solute particles (ions) to the total number of ions plus molecules 
of solvent, or else we take it as the ratio of formula weights of solute 
to the total number of formula weights of solute ions plus solvent, 
i.c., if m is the molality of the solute, and W, the molecular weight 
of solvent, are we to say that the ‘mole fraction of solute’ is: 

vm .N - . - vm + 1 0 o O / ~ i ,  
or 

. . . (2.21) 

Fortunately, it does not matter much, as the relation between the 
rational activity coefficient and the others is unaffected by the 
choice. Here we shall choose the definition (2.21), which has the 
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advantage of preserving the close similarity of form of equations 
(2.10) to (2.14) for the different scales, and ensures that the 
numerical factors of Appendix 2.1 will apply to the mole fraction 
scale as well as to the molar and molal scales. However, it is 
(NA + vNB) and not (NA + N,) which equals unity if equation 
(2.21) is chosen. The concept of the mole fraction of each ionic 
species, and hence of the ionic mean mole fraction, is unambiguous 
and consistent with this choice. 

The relations between the three kinds of activity coefficients are 
summarized below : 

d + 0.001 C(Y WA - WB) 
d0 

f* =Y* 

d - 0.001 c WB 
d0 

C - 
Y i  = Z0Y'  Y* - 

' . . . . (2.22) 

d0 mdo J y* = (1 + 0.001 rnWB) ;i y* = - c y* 

f = y  d + 0*001( WACYC - ZCWB) 

d - 0.00 1 ZC W, 
)P* = ----- y* = 

d0 

d0 i f  

c 
-yi 

(v = number of moles of ions formed by the ionization of one 
mole of solute; 

WA = molecular weight of solvent; WB that of solute; 
d = density of solution; do that of pure solvent; 

m = moles of solute per kilogram of solvent; t = moles of solute 

f,, y*,y* = mean rational, molal and molar activity coefficients 

For a solution containing more than one electrolyte (or other 
solute), it can be shown that for each solute: 

per litre of solution; 

respectively.) 

. . . . (2.23) 

J y, = (1  + 0.001zmwB) ;T d0 y, = c y* 

The summations are to be made over all the solute species. For a 
mixed solvent containing weight fractions, x and (1 - x) ,  of 
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solvents of molecular weight, WX and WAS respectively, the 
quantity WA in these equations must be replaced by 

-1 

The relation between the two osmotic coefficients is: 

vm WA 
1000 glnJV,= --+ 

which for most purposes can be written as the approximation: 

At 2 M potassium chloride (4 = 0.912 at  25") this approximation 
gives g = 0.946, instead of the correct value of 0.944, and 1.081 
instead of 1.071 at 4.8 M(+ = 0.988). 

T H E  GIBBS-DUHEM EQUATION 

Since the chemical potential is the partial molal derivative of the 
Gibbs free energy, the Gibbs-Duhem equation applies: 

SdT - VdP + %,doi = 0 

where ni indicates the number of moles of the ith species, the 
summation covering both solvent and solute species. For the 
restricted case of a system maintained at constant temperature and 
pressure: 

and for a solution containing only one solute, 
nAdoA nBdoB + ncdOc + . . . = 0 

- 
= - ?lBd@n . . . . (2.24) 

Multiplying each side of equation (2.24) by (1000/ kVAn,) we get: 

(lo@)/WA)doA = - mdGB . . . . (2.25) 
In addition, 

JVAdoA = - NBdoB 

These very important results are true not only for the chemical 
potential but for all partial molal quantities like partial molal 
volumes, entropies, heat contents, etc. 

If the partial molal free energy of the solvent has been measured 
over a concentration range (and we shall demonstrate later that 
many methods are available). equation (2.25) enables us to obtain 
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information about the free energy of the solute, although there may 
be difficulties of computation in the integration of the equation, to 
which we shall refer in subsequent chapters. The converse operation 
is also possible. For an aqueous electrolyte solution equations (2.2), 
(2.4), (2.13) and (2.25) give: 

- 55.51d In uw = mdGB/(RT) 
. . . . (2.26) 

a form of the Gibbs-Duhem equation of which much use will be 
made in later chapters. As, by definition, 

v 4  = - 55-51 In uW, . . . . (2.16) 
equation (2.26) inay easily be transformed into: 

= vmd In ( y p )  

dm 
m ( 4 -  l ) - + + t $ = d I n y  

which on integration gives: 

In y = (4 - 1) .I- . . . . (2.27) 

if it is remembered that the limiting value of I$ at infinite dilution 
is unity. Alternatively, 

v 4  = - 55.51 In uw = 

whence . . . . (2.28) 

If the activity coefficient can be expressed in the form (see 
Chapter 9) : 

ad; 
1 + I 9 6  

- In y = 

,- 

then 

3 
where a(.) = 2 [(l + x )  - 2 In (1 + x )  - 1/(1 + x ) ]  

The function u(x) is tabulated in Appendix 2.2. 

T H E  RELATION O F  T H E  P A R T I A L  MOLAL H E A T  CONTENT,  
H E A T  C A P A C I T Y  A N D  VOLUME TO T H E  ACTIVITY 

COEFFICIENT 

The partial molal heat content of a solute in solution is given by 
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the differentiation being carried out at constant pressure and 
composition. From the definition of the activity coefficient of an 
electrolyte on the molality scale: 

GB = @ + RTlnUB 
= @ + vRTln Q + vRTlnm + vRTln yi 

where Q is the numerical coefficient of Appendix 2.1. 
a a  Hence aT (‘B) 7 m,p = s(7)p+~R (”p) m, P 

so that RB = R t  - vRT’ . . . . (2.30) 

where 27% is the partial molal heat content in the standard state. 
Now at infinite dilution, yi = 1 at all temperatures, so that 

that is to say, the partial molal heat contents have the same value 
in the standard state and at infinite dilution. Partial molal heat 
contents are usually expressed relative to infinite dilution, when 
they are called relative partial molal heat contents and are denoted 
by the symbol, LB: 

= R$l 

or : 

The mole fraction scale may also be used to express the activity 
coefficient in this formula; but the molar scale is unsuitable since 
the composition of a solution of fixed molarity varies with the 
temperature. 

It will be noted that if we were to use, as the standard state, an 
‘actual’ state of unit activity having a mean molality mi and mean 
activity coefficient yi, such that miyi = 1, the differentiation with 
respect to a temperature at constant composition could not be 
carried out in a meaningful way, as the composition of this actual 
standard solution would have to change with temperature, inversely 
to the change in yi. 

The partial molal heat capacity, C(p,, is naturally defined by: 
C(p), = (3) = C&)B - vR ( T’ ” - In Y a  + 2Ta In Y*) 

m, P a T’ aT m,P 

Again 
. . . . (2.31) 

. .  . .  
and a relative partial molal heat capacity, j B ,  can be used in a 
similar way to iB: 

j B  = c P ( B )  - @(B) . . .(2.32) 
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The relation between the partial molal volume of the solute and 
the activity coefficient is of minor importance, since pressures are 
seldom different from atmospheric. It is: 

. . . (2.33) 

where l'g is the partial molal volume in the standard state, which 
once more can be shown to equal that at infinite dilution rg, 
because we have imposed on the standard state the requirement 
that it results in y* --+ 1 as m + 0 for all pressures as well as all 
temperatures. 

The result (2.33) is not used for the determination of rB, which 
can be much more simply obtained from density measurements, but 
(2.30) and (2.31) are often used in the estimation of heat contents 
and heat capacities from electromotive force measurements, or 
conversely, in converting activity coefficients from one temperature 
to another. 

The corresponding relations for the solvent are usually expressed 
in terms of its activity aA: 

. . . . (2.34) H A  = Hi - RTZ 

a In aA rA = + RT (7) . . . . (2.36*) 
m, T 

and here, in virtue of the choice of the pure solvent as the standard 
state, the meanings of Hi,  ctp, and v2 are obvious. 

Since oB = @ + RTln (&my + vRTln y*, 

(3) = (T) aa + VR In (Qiny,) + v R T  
aT m,P P 

the.partial mold entropy is given by: 

SB = Sg - vR In (&my,) - v R T  . . . . (2.37) 

* The formula: = W, is useful for calculating the partial 
molal volume of the solvent from density data. 
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This is important in showing that the partial molal entropy of the 
solute approaches infinity as the concentration decreases, so that 
Sg is not equal to 27%. Thus neither the chemical potential nor the 
partial molal entropy at infinite dilution is equal to that in the 
standard state; the former becomes negatively infinite like the 
chemical potential of a perfect gas, (a = b + R T l n  P) whilst the 
entropy becomes positively infinite. But from each can be split a 
term which has equal values at infinite dilution and in the standard 
state: thus the term RTln y* is in a way the non-ideal contribution 
to the chemical potential and is zero both at infinite dilution and 
in the hypothetical standard state of unit molality. 

A question that may raise some difficulty concerns the activity 
coefficient of an electrolyte which can be treated as completely 
dissociated by one school of thought and as only partially dissociated 
from another point of view. How are the activity coefficients 
calculated on these different assumptions related to one another? 
Consider a system consisting of a kilogram of solvent and m moles 
of solute completely dissociated into m, = vlm cations and m, = v2m 
anions. The total free energy of the system is: 

1 000 c = - rS, + v,mB, + vzmZ4, 
W A  

We might, however, regard the solute as forming an 'aggregate', 
(intermediate ion, neutral molecule or complex ion) from its simple 
ions. If the solute has the formula, Mv,Xv*, let the formula of the 
aggregate be M,,X,,; furthermore, let a fraction (1 - a) of the 
cations form the aggregate. Then we have the following concen- 
trations: 

cations : mi = avlm 

anions: & =  [ v 2 - ( i  -a)x ""I m 

aggregate: mi, = (1 - a ) ; m  V l  

the primes drawing attention to the fact that some quantities have 
different meanings according as we adopt the idea of complete as 
against partial dissociation. 

Then : 
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The total free energy is independent of any views of the nature of the 
dissociation and so is the chemical potential of the solvent, so that: 

. . . . (2.38) 
But since the ions are in equilibrium with the aggregate: 

and it follows that: 

Now expressing the chemical potentials in terms of the molal 
activity coefficients: 

- 
G;, = n18; + n20; . . . . (2.39) 

V I O l  + vzae = v l q  + v2O; 

+ VaQ + ~ I ( v 1  In y l n +  v2 In ~ t m A  
= vlOiO + v&’ + RT(v,  In + ~9 in yim;) 

But 0; and OiO are identical since both refer to the same hypo- 
thetical molal solution of the ions, so that: 

~Ylm1)’“tme)’’ = (Y i4 )” f i (YWV’  

In th is  general case the problem would require very careful hand- 
ling, but it becomes simpler if the aggregate is electrically neutral, 
i.e., if n2v1 = n1vp (An even simpler case occurs when n1 = vl, 
n2 = vg, i.e., the aggregate M,,,X,,, is identical with the molecule 
M,lXv,.) Under these conditions: 

Y* = ar; . . . . (2.40) 
This relation will find considerable use in later sections; we may 
have measured the stoichiometric activity coefficient yi of a binary 
electrolyte, the calculation from the experimental data having been 
made on the assumption that the electrolyte is f d y  dissociated. If 
we have reason to believe that the electrolyte is actually dissociated 
only’to the extent a, then the mean ionic activity coefficient, y;, is 
a better measure and it is related to the determined quantity, yi, 
by the simple relation (2.40). Furthermore, i f n ,  = v1 and n, = v,, 
equations (2.38) and (2.39) give: 

+ v@, = v ~ B ;  + v*B~ = 8;s 
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Introducing the molal activity coefficients and the definition of 
K,, the dissociation constant on the molal scale: - - 

0;: - n,OiQ - n,OiQ = R T  In K, 
we can derive the equation: 

( ~ * m * ) ’  = (~im;)’ = KrnyhL 

Similar relations are valid for other concentration scales: 

(f*N&>’ = (fifl;)” KNf;4J(T’ 

(Y*C*Y = (Y;c;)’ = KCY;$;* 
but it should be noted that the three dissociation constants are not 
identical; instead, we have: 

KN = K,(O.OOl WA)’-’ . . . . (2.41) 

and Kc = K,,,d;-’ . . . . (2.42) 

The distinction is important when discussing the dissociation 
constant of a weak acid: for example, the dissociation constant of 
acetic acid at 25” is 1.749 x on the molarity scale, but 
1.754 x on the molality scale. In solvents other than water, 
Kc may differ substantially from K,. 

T H E  RELATION BETWEEN T H E  FREE ENERGY CHANGE A N D  
THE P O T E N T I A L  O F  A GALVANIC CELL 

Consider a galvanic cell operating under reversible conditions at 
constant temperature and pressure. An example is the cell: 

H, (1 atm.) I HCl I AgCl, Ag, 

by which we mean a cell with hydrochloric acid at a given concen- 
tration as electrolyte and two electrodes, one of which is a hydrogen 
electrode (Le., hydrogen bubbling round platinized platinum) and 
the other is a layer of silver chloride deposited on silver (an effective 
substitute for the less manageable chlorine electrode). The natural 
or spontaneous cell reaction is: 

aH, + AgCl + Ag + HCI 

and if this cell is used as a battery to generate current, hydrogen 
gas dissolves as hydrogen ions at the left-hand electrode and silver 
chloride decomposes to give chloride ions at the right-hand elec- 
trode. Hydrogen ions travel from left to right through the cell and 
chloride ions in the opposite direction, ‘positive current’ passes 
through the external circuit from the right-hand to the left-hand 
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electrode and the right-hand electrode has a higher potential than 
the left-hand electrode. With aqueous 0.1 M hydrochloric acid as 
electrolyte, the potential of this cell at 25" is 0-3524 V. 

For the reversible operation of such a cell, the electromotive force 
of the cell must be balanced by an opposing electromotive force 
from an external source such as a potentiometer; now consider an 
infinitesimal departure from balance, such that the spontaneous cell 
reaction proceeds to an infinitesimal extent and an infinitesimal 
quantity, 6q, of electricity (measured in coulombs) passes. Let AG 
be the increase in free energy of the cell constituents on the passage 
of n faradays of electricity. In the example cited above, 

if n = 1. The reaction being a spontaneous one, AG must be 
numerically negative, i.e., there must be a decrease in free energy. 

It is the quantity (- AC) nF which appears as electrical work, Edq, 
when an infinitesimal quantity of electricity passes through the 
circuit under reversible conditions. Hence: 

- AC = nEF, 

which is the fundamental equation for the potential of a reversible 
cell. 

It is desirable, whenever possible, to write the cell in such a way 
that, when the spontaneous cell reaction proceeds, positive current 
goes from left to right through the cell and in the opposite direction 
in the external circuit. The numerical value of the potential will 
then be positive. In some cases it may not be known in which 
direction the spontaneous cell reaction does go: we can write the 
cell in either one of two ways and there may be little to decide in 
favour of either, but whichever way the cell i s  writkn, E, the potential ofthe 
cell, must be used to mean the excess potential of the right-hand electrode over 
that of the lejt-hand electrode. If experiment reveals that the right-hand 
electrode is at a lower potential than the left-hand one, then we 
assign a numerically negative value to E. For example, we would 
say E = - 0.3524 V for the cell: 

Ag, AgCl I 0.1 M HCl I H, (at 25"). 

But a great deal of trouble can be avoided if E is always taken as 
the excess potential of the right-hand with respect to the left-hand 
electrode, recognizing that an excess potential may be numerically 
a negative quantity 
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UNITS AND DIMENSIONS FOR CONDUCTANCE 

Standard Cell Pohtials 
The standard cell potential is the potential of a cell in which all 

substances involved in the cell reaction are in the standard states. 
The standard cell potential is a function of the temperature and 
pressure, and it depends on the nature of the solvent and on 
the scale we use to define the standard state, i.e., the molal, 
molar or mole fraction scale. The standard potential of the 
H, I HCI I AgCI, Ag cell on the molal scale is 0.2224 V at 25" and 
one atmosphere pressure with water as the solvent. 

I t  is conventional to regard the standard potential of the hydrogen 
electrode as zero. The standard potential of the silver-silver chloride 
electrode is then 0.2224 V. It should be written C1- I AgCI, Ag, 
E" = 0.2224 V. 

UNITS AND DIMENSIONS FOR CONDUCTANCE 

The accepted unit of electrical resistance is the absolute ohm, which 
is los electromagnetic units of resistance. (The volt is lo8 e.m.u. 
of potential and the ampere lo-' e.m.u. of current.) In the electro- 
magnetic system the dimensions of resistance are [LI-'1. The 
resistance R of a uniform conductor is directly proportional to its 
length, 1, and inversely to its cross-sectional area A. This may be 
expressed by : 

R = pl/A 
where the constant of proportionality p is called the specific resist- 
ance of the material for the temperature in question. Clearly p has 
the dimensions of resistance multiplied by length, i.e., its units are 
ohm-centimetres. Its basic dimensions in the electromagnetic 
system are [LaI-']. The reciprocal of the specific resistance is the 
specific conductance, denoted by KSp: 

1 I  K,, = - = - 
P AR 

and has dimensions [ L - T J  in the electromagnetic system. 
In electrolyte solutions, another variable, the concentration, has 

a dominating effect on the conductivity. It is convenient therefore 
to divide the specific conductivity by the concentration thus arriving 
at a quantity: 

A = K,/c 
If c is a concentration in moles per unit volume (usually per c.c.) 
A is a molar conductivity but if G is expressed in equivalents per 
unit volume (and again the C.C. is usually adopted as the unit of 
volume) a more usefid quantity, the equivalent conductivity, ensues. 
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A will be taken to mean equivalent conductivity unless it is stated 
be a molar conductivity. The resulting dimensions for A in the 

electromagnetic system are [equiv.-' LT], the conventional units 
being cma C2-l equiv.-'. 

Since the current results from the motion in opposite directions 
of oppositely charged ions, the equivalent conductivity can be 
considered as the sum of two ionic conductivities: 

A = A1 4- A, . . . . (2.43) 
At infinite dilution: 

Ao = A(: 4- 4 . . . . (2.44) 
and Kohlrausch's law of the Independent Migration of Ions states 
that when each ion is moving in a medium where the ions are so 
far apart that they are without inhence on one another, then A: 
depends only on the nature of the cation and properties of the 
medium such as temperature and viscosity. I t  does not depend on 
the value of A$. Similarly A! does not depend on the nature of the 
cation. 

T H E  RELATION BETWEEN T H E  EQUIVALENT CONDUCTIVITY 
A N D  T H E  ABSOLUTE MOBILITY O F  AN ION 

The motion of an isolated body is governed by Newton's law that 
force = mass x acceleration, but in dealing with the motion of 
ions it is not usually necessary to consider the acceleration unless 
electrical fields of very high intensity or frequency are involved. 
Under normal conditions, the ions are almost instantaneously 
accelerated to the point where their motion is limited by the viscous 
drag of the solvent, and all the energy supplied by the electric field 
is dissipated by the viscous forces. The ions thus move with a 
constant limiting or terminal velocity, which for all reasonably 
small fields is directly proportional to the applied field. This is of 
course the reason for the validity of Ohm's law for electrolytes 
subjected to ordinary fields, and for the fact that the conductivities 
of ions have no simple relation to their masses. There is, for example, 
little difference between the ionic conductivities of chloride and 
iodide ions, though the latter has nearly four times the mas of the 
former. 

.In discussing motion against viscous forces it is convenient to 
define the mobility, u, of a body as the limiting velocity attained 
under unit force, i.c., 

u = vIF 
The absolute mobility in the c.g.s. system is thus the velocity in 
cm per sec attained under a force of 1 dyn. It is, however, a 

42 



CONDUCTIVITY AND IONIC MOBILITY 

common practice when dealing with ions to take as the unit of force 
a unit potential gradient acting on the ionic charge. Here we shall 
use u for the absolute mobility and u' for 'electrical mobility' defined 
as the velocity attained by the ion under unit potential gradient. 
Since 1 V (abs.) = 1/299*8 e.s.u. of potential and the protonic 
charge c = 4.802 x 10-10 e.s.u. of charge, a field of 1 V/cm exerts 
on an ion of valency Izl a force of 1.602 x 10-l8 1 . ~ 1  dyn. 

The equivalent ionic conductivity, A, is simply related to the 
mobility. From the definition of specific conductivity, it follows 
that K,, is the current flowing in a conductor of unit cross-section 
under unit potential gradient. The total ionic charge in unit 
volume is Fc if c is measured in equivalents per unit volume, and 
this charge moving with velocity u' constitutes the current Ks9: 

K,, = FCU' 

or A = KJc = Fu' . . . . (2.45) 

The absolute mobility is therefore: 

&cause of these relations, one frequently finds the ionic equivalent 
conductivity A referred to as the ionic mobility. In applying equa- 
tion (2.46) some care is needed with the units; the usual ones give: 

u/(cm sec-1 dyn-1) = 6.469 x 106 A/(lzl cm8 Q-l equiv.-') 
= 6.466 x lo6 A / ( l . ~ l  cm* int. 0-l equiv.-') 

T H E  R E L A T I O N  B E T W E E N  T H E  SIZE A N D  MOBILITY O F  IONS 

For a particle of macroscopic dimensions moving in an ideal 
hydrodynamic continuum, it is possible to calculate the frictional 
resistance in tenns of the dimensions of the particle and the viscosity 
(q)  of the medium. For a spherical particle, the result was obtained 
by G. G. STOKES(~) as: 

u = W G n r p )  . . . . (2.47) 

where r is the radius of the sphere. If an ion can be considered to 
satisfy the conditions for Stokes' law motion, its radius is given by: 

. . . (2.48) 

and since u is given in terms of the limiting equivalent conductivity 
by equation (2.46), we have: 

r = Izl FB/(GnNqOP) . . . . (2.49) 
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If for convenience we express Y in A and 3 and 1 in their usual units, 
this becomes : 

.- - A/(cm2 a-1 equiv.-I) . q/(poise> . . . . (2.49a) 
0.820 lzl - -__ 

For small ions the conditions for the validity of Stokes’ law are not 
Milled; nevertheless equation (2.49) provides a useful starting 
point for discussing the dimensions of ions, and we shall refer to 
radii so calculated as ‘Stokes’ law radii’. For uncharged particles, 
the mobility can be calculated from the diffusion coefficient, D 
(see p. 46) as: 

u = D/(kT)  . . . . (2.50) 
where k is Boltzmann’s constant; this leads to the result: 

r = k T / ( 6 q D )  . . . . (2.51) 
which is known as the Einstein-Stokes formula. Its validity is 
subject to the same kind of restrictions as equation (2.49). 

TRANSPORT NUMBERS 

The passage of electric current through an electrolyte solution is 
effected by the motion of ions of opposite charge moving in opposite 
directions under the applied potential. 

Consider a tube of electrolyte solution 1 cmL in cross-section 
along which a potential gradient of 1 V/cm is set up, c being the 
concentration in equiv./l. All the positive ions at a distance u; on 
one side of an imaginary plane perpendicular to the gradient will 
cross that plane in one second. This number will be Ncu;/(lOOOzl) 
and the current will be Necu;/lOOO. The current set up by the 
motion of negative ions in the opposite direction will be N( - e)nc;/ 
lo00 and the total current Nec(u; + u;)/lOOO. The fraction of 
the current carried by the positive ions is called the transport (or 
transference) number of the positive ion : 

Similarly 

and 
. We do not defme the transport number in terms of absolute 

mobilities, ill and up, because in practice the oppositely charged ions 
are subjected not to the same force of one dyne but to the same 
potential gradient in terms of volts per centimeme, a gradient 
exerting on the ions a force which depends on their valency. 

Considerable care has to be exercised in dealing with transport 

. . . . (2.52) 1 t, = u;/(u; + 4) = A1/(A1 + 4) 

4 = u m  + 4) = A2/(A, + A21 

tl + ta = 1 
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DIFFUSION IN ELECTROLYTE SOLUTIONS 

numbers of solutions of weak electrolytes or of electrolytes which 
form autocomplexes. These cases have been discussed by Spiro3 
and further reference will be made to them in Chapter 7. 

One of the most fundamental of irreversible processes is that of 
diffusion, by which a difference of concentration is reduced by the 
spontaneous flow of matter. In a solution containing a single solute, 
the solute moves from the region of higher to that of lower concen- 
tration, while the solvent moves in the opposite sense. From the 
point of view of molecular kinetics, no individual solute particle 
shows a preference for motion in any particular direction, but a 
definite fraction of the particles in an elementary unit volume may 
be considered to be moving in, say, the positive x-direction. In an 
adjacent volume-element, the same fraction may be considered as 
moving in the negative x-direction; now if the concentration in the 
first volume-element is greater than that in the second, this means 
that more particles will be leaving the first element for the second 
than will be re-entering from the second to the first, so there will 
be a resultant flow of solute in the direction of lower concentration. 
Further, one would naturally expect on the basis of this picture that 
the rate of flow would be at least approximately proportional to 
the concentration-difference existing between the two volume- 
elements. 

While diffusion in everyday practical applications is often a two- 
or three-dimensional process, nothing essential to its understand- 
ing is lost by confining attention to the one-dimensional case, 
especially since most of the methods by which it is studied and 
measured involve a deliberate restriction to one-dimensional 
flow. In this case the following concepts and definitions are 
applicable : 

The flux of matter, denoted by J, is defined as the amount (in 
moles, grams, ctc.) of material crossing unit area of a plane perpen- 
dicular to the direction of flow in unit time. 

DIFFUSION IN ELECTROLYTE SOLUTIONS 

ac 
ax The concentration gradient - is the rate of increase of concen- 

tration with distance measured in the direction of the flow. It is 
usual to take the direction of flow as the positive direction of the 
distance i, to express the concentration 6 in the same units of moles, 
grams, etc., as are used in defining the flux, and to take as the 
volume unit for the concentration c the cube of the unit of distance x. 
Thus if J is expressed in moles cm-z sec-l, and x in cm, c will be 
expressed in moles ~ m - ~ .  
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The diffusion coefficient D is now defined by the equation: 

. . . (2.53) 

the partial differential being necessary because c is, in general, 
dependent on time as well as on distance. The negative sign in 
equation (2.53) is introduced in order to make D a positive quantity, 

since - is negative in virtue of our choice of sign for x, which 

increases as the concentration decreases. It will be seen that the 
diffusion coefficient D has dimensions [L*T-*] and is independent 

ac 
ax 

Figure 2.1 

of the mass-units used provided that the same units are used in 
defining both J and G. With the c.g.s. units mentioned above, D 
will be in units of cm3sec-1. Although in practice experimental 
conditions are often chosen so that D is nearly constant, it is not 
defined as a constant, and the common practice of calling D 
the ‘diffusion constant’ is to be deplored, especially as it is fre- 
quently the variation of D with concentration in which we are 
interested. 

Equation (2.53) is of importance in the study of diffusion by 

steady-state methods in which the concentration-gradient - does 

not change with time. In many of the methods currently in use, 
however, the variation of c with both time and distance is of 
interest; for these cases (2.53) can be converted into a second-order 
partial differential equation connecting c, x and the time, t, as 
follows: consider (Figure 2.1) a tube of uniform unit cross-section 
intersected by two planes of unit area, normal to the x-axis, situated 
at x and x + 6x respectively. The amount of matter entering the 
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DIFFUSION IN ELECTROLYTE SOLUTIONS 

volume-element between these planes through the plane at  x in a 
time-interval dt is: 

while the amount leaving through the plane at  ( x  + 6x)  is: 

The difference between (D 2)' at the plane at  ( x  + 8x)  and 

( D  I) at the plane x may be expressed as: 

6 ( D -  E) =$(+ 
Hence tlie net amount of material accumulating in the volume- 
element considered in time 6t is: 

a 
(J  -J') 6t = - ( D g )  6x61 ax 

This accumulation, since it occurs in an element of volume 6x, 
gives rise to a concentration increase & given by: 

a 
dG = - ax ( D $ )  6t 

On proceeding to the limit, one obtains: 

.... ac a 
at=ax(D$)  (2.54) 

which can be regarded as an alternative definition of the diffusion 
coefficient D. For diffusion in three dimensions, equations (2.53) 
and (2.54) take the forms: 

J = - I) grad G 

and 
ac - = div ( I )  grad G )  3t 

These two equations (2.53) and (2.54) are often loosely referrea 
to as Fick's first and second laws of diffu~ion'~). We have preferred 
here to develop them purely as equations defining the diffusion 
coefficient D ;  Fick's laws of diffusion may then be summed up by 
the statement that D, as defined by these equations, is a constant 
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for a given system and temperature. This constancy is, however, 
only approximate, and the main importance of diffusion studies for 
electrolyte theory lies in the variation of the quantity D with 
concentration. 

We have not yet stated how the distance x is to be determined. 
The obvious way is to measure from some arbitrary plane fixed 
with respect to the apparatus containing the diffusing system, and, 
indeed, when one is dealing with liquids it is difficult to see how 
any other experimental means of fixing the reference-plane could 
be found. In some cases, however, as when a liquid diffuses into a 
solid which swells as a result of the diffusion, it may be convenient 
to measure from the moving surface of the solid. Likewise, in 
discussing the theoretical aspects of liquid diffusion, it may be 
desirable to refer the measurement of distance to a plane so chosen 
that the amount of one component on one side of it remains 
constant; such a plane will, in general, move with respect to the 
apparatus. As long as equations (2.53) and (2.54) are regarded 
only as definitions of D, such procedures are quite legitimate; it 
must, however, be remembered that the value of D for a given 
system will depend on the method used to fix the reference-plane. 
HARTLEY and  CRANK'^) have given a detailed account of the rela- 
tions between diffusion coefficients defined with respect to various 
reference-planes. 
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3 

THE STATE OF THE SOLUTE I N  
ELECTROLYTE SOLUTIONS 

CLASSIFICATION OF ELECTROLYTES 

IN OUR attempts to understand the complicated problems set by the 
study of electrolyte solutions, there is a key question which we must 
try to answer before embarking on detailed mathematical treat- 
ments: what are the actual kinetic entities in the solution? We 
have seen in the first chapter that in pure water, in spite of the 
existence of some considerable degree of short-range order, the only 
kinetically identifiable form of solvent particle is the single water 
molecule in equilibrium with minute amounts of hydrogen and 
hydroxyl ions. The introduction of a dissolved electrolyte compli- 
cates the position considerably. We may now have to cope with 
many kinds of solute entities: ions-solvated or unsolvated, electro- 
statically associated groups of ions, covalently bound molecules and 
complex ions. 

In the face of this complexity, we are obliged to classXy electrolyte 
solutions into several groups. The familiar division into ‘strong’ and 
‘weak’ electrolytes, though convenient for elementary purposes, is 
not an entirely suitable basis for theoretical discussion. Instead we 
shall recognize two main classes, ‘associated’ and ‘non-associated’ 
electrolytes, which we shall define as follows. 

Non-associated Electrolytes 
A solute of this kind is believed to exist only in the form of the 

simple cation and anion, possibly solvated; there is no evidence for 
the presence of covalent molecules of the solute, or of any lasting 
association between oppositely charged ions. This class, although 
small in number, is of great importance in providing information 
with which we can make straightforward tests of the theory of 
electrolyte solutions. The archetype of this group is aqueous 
sodium chloride: with water as solvent the class comprises the alkali 
halides, the alkalinoearth halides and perchlorates, and some 
transi tion-metal halides and perchlorates. The chief criterion for 
placing an electrolyte in this class is the absence of valid evidence 
for any form of association. Since the validity of such evidence can 
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be a matter of personal opinion (and this is particularly true of the 
evidence for ion association) there can be no general agreement; 
but our own indination is to include also lithium nitrate, magnesium 
nitrate and possibly the rare-earth-metal halides. It is convenient 
to add to this class some electrolytes which show association only at 
extreme concentrations, in particular the halogen acids and 
perchloric acid. There is no well authenticated evidence that any 
electrolyte of this class can exist in non-aqueous solvents, with the 
possible exceptions of liquid hydrogen cyanide and some amides. 

I t  may be convenient sometimes to refer to these electrolytes by 
the briefer title of ‘strong electrolytes’ but their essential character- 
istic is the absence of evidence of any lasting union between the ions. 

Associated Ehctrolytu 
The much more numerous associated electrolytes can conveni- 

ently be subdivided as follows: 
1. We shall use the term ‘weak electrolytes’ to describe cases in 

which the solute can exist as undissociated (covalent) molecules as 
well as ions. All acids belong to this class; even the ‘strong’ halogen 
acids and perchloric acid are, strictly speaking, weak in terms of 
this definition, since there is no doubt that at high enough concen- 
trations the molecular form does exist. In other solvents ‘strong’ 
acids are incompletely dissociated even at moderate concentrations : 
thus values of pK, = 1.229 have been found for hydrochloric acid 
in methanol‘ and 2.085 in ethanol* at 25”. 

Bases are usually weak electrolytes, except for the alkali metal 
and the quaternary ammonium hydroxides. The class, however, 
contains very few aqueous salts, mercuric chloride being the chief 
example. 

2. We shall use the term ‘ion-pairing’ in discussing a class of 
electrolytes in which association occurs as a result of purely electro- 
static attraction between oppositely charged ions: this concept was 
introduced by Bjerrum shortly after the appearance of the Debye- 
Huckel theory, and has proved extremely useful in interpreting the 
behaviour of a large class of electrolyte solutions of which the 
bivalent metal sulphates in aqueous solution form an outstanding 
example. Almost all salts in non-aqueous solvents show evidence of 
this effect. 

I t  must be emphasized that we adopt this classification of electro- 
lytes on grounds of convenience rather than of logical rigour; there 
will be cases where a particular electrolyte cannot be clearly 
assigned to one of the above classes. Zinc iodide, for example, 
would be treated as a non-associated electrolyte only if the 
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experiments were confined to a range of concentration below about 
0.3 M. In more concentrated solution, however, there is good 
reason to believe that it forms ZnI,-- ions, which may well be 
subject to ion-pair formation with Zn++ ions. 

CHARACTERISTICS OF W E A K  ELECTROLYTES 

Since nearly all weak electrolytes are acids or bases, it is generally 
possible to recognize their weakness by conductivity or pH measure- 
ments or by potentiometric or conductimctric titration. Only in 
cases where the dissociation constant is of the order of 0.1 or greater 
is there any difficulty about determining whether the observed 
behaviour is due to the substance being a weak electrolyte or to 
interionic attraction effects. In these cases it may be necessary to 
use other methods for the detection of covalent molecules. If the 
solute exerts a detectable vapour pressure above the solution, we 
have strong reason to believe that covalent molecules of solute are 
present in the solution. The vapour form of the solute is certainly 
a true molecule and, however non-ideal the solution, at least some 
of the solute must also exist as molecules; ammonia solutions 
provide an obvious example. This criterion will, in some cases, 
force us to classify an electrolyte as strong in dilute solutions, but 
weak in concentrated solutions: such restrictions on the concentra- 
tion-range are essential, for example, in discussing the cases of 
hydrochloric and sulphuric acids. The fact that hydrochloric acid 
solutions exert indetectable partial pressures of hydrogen chloride 
below about 3 N was indeed one of the classical anomalies that led 
to the development of the modern concept of strong electrolytes. 
At 10 N, however, the partial pressure of hydrogen chloride is of 
the order of 20 mm, in contrast with a value of about 7.6 atm. 
which would be estimated from the vapour pressure of pure liquid 
hydrogen chloride at 20” (41 atm.) on the basis of Raoult’s law if 
the hydrochloric acid were completely undissociated and an ideal 
solute. While this figure is very rough, it indicates that an appreci- 
able amount (of the order of 0.3 per cent) of the hydrochloric 
acid in a 10 N solution (the ordinary ‘concentrated’ acid) is in the 
form of covalent molecules; the acid at this concentration must 
therefore be regarded as a weak electrolyte, and an approximate 
value of its ionization constant can be calculated@), of the order 
of 10’. ’ 

In using such terms as ‘indetectable vapour pressure’ we are, in 
effect, admitting that no sharp boundary can be drawn between a 
strong and a weak electrolyte in these cases, since improvement in 
technique may result in the indetectable quantity of today becoming 
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measurable within 0.1 per cent tomorrow. Certainly for solutes 
such as the halide acids, which can exist as liquids in their own right, 
it is only on grounds of experimental convenience that we can claim 
that they are in any circumstances true strong electrolytes. In 
practice we regard them as fully ionized when we believe that less 
than about 0.1 per cent of the solute is in molecular form. Had we 
any method of detecting covalent molecules in the presence of 
a large excess of ions as readily as we detect a few ions among a 
large excess of molecules (by the electrical conductance) we should 
no doubt hold different views on where the line should be drawn. 

The vapour pressure criterion for the presence of undissociated 
solute molecules, valuable though it is, is applicable only where the 
solute is appreciably volatile in the pure state at the temperature of 
interest-generally room temperature; it can thus tell us nothing, 
for example, about sulphuric acid solutions. A criterion of much 
wider usefulness is the Raman spectrum. REDLICH(~) has empha- 
sized the importance of this method, and remarks that ‘there can 
be no doubt that the question of dissociation can be solved in any 
case in which complete knowledge of the vibration spectrum is 
available’. This method is based on the fact that the undissociated 
molecule necessarily has different symmetry properties from its ions. 
For simple molecules the general pattern, and in particular the 
number of lines, is predictable, though the frequencies and band 
widths may be modified by environmental factors such as concen- 
tration. Whenever the Raman spectrum of the molecule is detect- 
able, we have clear evidence that the substance is not a strong 
electrolyte, but as Redlich points out, the absence of Raman lines 
cannot always be taken as final evidence that the substance is a 
strong electrolyte. 

The scheme of classification proposed above will permit us to 
develop the fundamental theory and to test it for non-associated 
electrolytes; we then proceed to the discussion of weak electrolytes 
and ion-pair electrolytes, using the theoretical formulae for dealing 
with the free ions in these cases, and handling the associated part 
of the solute by suitable specific devices such as the introduction of 
finite dissociation constants. Some special cases such as the ‘strong’ 
acids and the transition metal halides will be discussed separately. 

ION-SOLVENT INTERACTIONS 

The reason for the ready solubility of so many electrolytes in water 
is the high dielectric constant of this solvent, which in turn is due 
to the polar nature of the water molecule and to the fact that its 
dimensions favour a tetrahedrally coordinated structure. 
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In a 'uniform' field a dipole experiences only a turning moment, 
but the field near an ion is highly divergent and therefore non- 
uniform, and a dipole near an ion is subject, in general, to both 
orienting and attractive forces. The mutual potential energy of a 
point charge e and a dipole of moment p, in v m o  is: 

ue cos 8 
r* 

where 8 is the angle between the axis of the dipole and the radius 
vector passing through the ion (Figure 3.1). For an ion and a water 
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Figure 3. I 

molecule, isolated in u m o ,  the interaction energy could be calcu- 
lated from this formula with confidence: putting p = 1.8 x lO-l* 
e.s.u. and e = 443 x 10-'0e.s.u. and with r in Angstroms, we 
obtain 124 cos 8/r" kcal/mole. In the completely oriented position, 

would be greater than R T  (- 0.6 kcal/mole) up to 

calculation is possible. For water molecules remote from the ion, a 
fair approximation could no doubt be made by inserting the 
dielectric constant ( E  sv 80) for the intervening water in the 
denominator of the energy expression: this immediately reduces the 
energy to the order of 1.5 cos 8/re kcal/mole, a value which is much 
smaller than RT (even for favourably oriented molecules) for all r 
which could conceivably be regarded as 'remote'. For the first layer 
of molecules round an ion, however, the bulk dielectric constant of 
the medium is simply not relevant. I t  is not clear whether we 
should calculate the energy in this region with E = 1, as for the 
charges in v m o ,  or with E = 4 or 5, the value estimated (see p. 20) 
from the atom and electron polarization of water; nor is it possible 
to calculate with any certainty the effect of other molecules in the 
first layer, unless simplifying assumptions are made about their 

about this enerT 14 . For an ion in liquid water, however, no such simple 
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number and orientation. However, it seems likely that all the water 
molecules in the first layer round all monatomic ions should have 
energies of interaction with it which are large compared with the 
thermal energy. Few ions, according to crystallographic measure- 
ments, are smaller than 0.8 A in radius; and the radius of a water 
molecule may be taken as 1-4 A, so that the least possible value of 
r2 is about 5 A%. Water molecules in the second layer must be at 
least 2.8 A further out, giving a minimum value of rz = 25 A*. 
Since they will also be less strongly oriented, the average value of 
cos 8 will be smaller also, and the effective dielectric constant must 
rise as we go out from the ion. For all these reasons it is clear that 
the second layer of water molecules will be much less strongly 
bound to the ion than the first. Indeed, it is probably only with 
polyvalent monatomic ions of small size that water molecules in the 
second layer have energies of interaction with the ion comparable 
to their thermal energy. 

It is obviously of the utmost importance to our understanding 
of electrolyte solutions that we should know what the kinetic entity 
which we call an ion is, whether it is the bare ion, or whether it 
carries with it water molecules sufficiently firmly bound to be 
regarded as part of the ion, and if so, how many such molecules. It 
must be admitted that we do not know with any great certainty, 
though the importance of the problem has been realized for 50 years 
or more. One difficulty is that it is not possible to state quite 
unambiguously what we mean by a water molecule being 'bound 
to the ion'. 

There are a few cases where the inner sheath of water molecules 
is permanent in a long-term sense and the water molecules are 
firmly attached, possibly by coordinate links. HUNT and TAUBE(&) 
have shown in a series of ingenious experiments using 0" as tracer 
that the ion [Cr(H,O),]+++ exchanges its water with the solvent 
quite slowly, the half-life being about 40 h, whilst the single water 
molecule of the [Co(NH,),H,O]+++ ion has a half-life of 24.5 h(O). 
For other trivalent ions, however, the exchange is too rapid to 
detect, indicating a half-life of less than 3 min. The fact that the 
innermost layer of water molecules of the hydrated chromium ion 
is exceptionally firmly bound does not appear to have any particular 
effect on the electrolytic behaviour of the ion, which is quite similar 
in regard to both conductance and thermodynamic properties to 
other trivalent ions, probably because for all such ions there is a 
substantial second layer of water molecules which are also firmly 
enough held to form a part of the kinetic unit. 

Chromium and cobalt are transition elements with a marked 
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tendency to form coordinate links. In the case of noble-gas type 
ions, and for any water molecules not in immediate contact with the 
ion, the forces involved are entirely electrostatic and no specific 
formula can be assigned to the aqueous ion. One may nevertheless 
hope to obtain an average value for the number of water molecules 
moving with the ion; such a value need not, of course, be integral, 
since the actual number per ion may vary from one ion to another 
and for the same ion from time to time. The hydration may be far 
from permanent in the everyday sense of the word; the permanence 
implied is, rather, relative to the time-scale of the Brownian motion. 

We have already seen that the data for the entropy of solution of 
ions in water can be explained by assuming a layer of firmly bound 
water molecules around an ion, outside this layer the ion-solvent 
interaction being much weaker. The behaviour of the dielectric 
constant in the neighbourhood of an ion also fits into this picture. 
A somewhat similar conclusion was reached from some experiments 
on the vapour pressure of concentrated calcium nitrate solutions(7'. 
Although the solution of this electrolyte is saturated at 8.4 M at 25") 
it readily supersaturates and on isothermal evaporation it passes 
into a transparent semi-solid gel without any discontinuity in the 
concentration-vapour pressure curve. It is only at about 21 M that 
the clear homogeneous gel breaks down into a striated form. 
Between about 9 M and 21 M it was found that the system could 
be treated as an adsorbent (calcium nitrate) and an adsorbate 
(water) and the BRUNAUER, EMMETT and TELLER adsorption 
isotherm(*) was applicable. This is a curious and perhaps unjustifi- 
able extension of the original theory which was devised for gas 
adsorption on soIid surfaces, but it has been used by PAULING(~) to 
explain the adsorption of water vapour, not only on fibrous proteins, 
but also on globular proteins. To carry it a stage further and apply 
it to the adsorption of water molecules from the liquid (or gel) phase 
on to single ions may be open to criticism, but it does lead to some 
interesting results. Calcium nitrate (probably, the CaNOf ion) is 
found to have 3.86 sites available for occupation by water molecules 
in the inner layer, each being held with an energy some 1300 cal/ 
mole greater than the latent heat of evaporation of water, which is 
10,480 cal/mole at 25". Further adsorption can occur by building 
up outer layers, although the probability of such adsorption is less 
and also the energy of binding is less. Similar results are obtained 
for concentrated electrolyte solutions where no gel formation can be 
observed; the vapour pressures of very concentrated solutions of 
lithium chloride and bromide, hydrochloric and perchloric acid, 
zinc chloride and bromide and calcium chloride and bromide, can 
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all be interpreted by assunling a reasonable value, between 3.5 and 
7.1, for the number of water molecules which can be accommodated 
in the inner shell and a reasonable value, between 1000 and 3000 
cal/mole over and above the latent heat of vaporization, for the 
energy of attachment in the’ solvation shell. In the theory of 
Brunauer, Emmett and Teller, it is assumed that any molecule in 
a layer other than the first is held with an energy equal to the heat 
of vaporization; if this assumption is made, a straighdbrward 
deduction of a comparatively simple isotherm ensues. A N D E R S O N ( ~ O J  
has produced a modification of this isotherm which permits layers 
beyond the first to have an energy not quite the same as the energy 
of vaporization of the adsorbate in bulk. This isotherm was devel- 
oped for quite different purposes but it gives very plausible results 
with concentrated electrolyte solutions. The simpler Brunauer- 
Emmett-Teller isotherm gave the number of sites available for first 
layer adsorption round an ion: the number was close to either four 
or eight, depending on the valency of the cation. The number of 
sites should be integral, and assuming that this number is either 
four or eight, Anderson’s theory enables us to calculate the energy 
of adsorption in the first layer and the somewhat smaller energy in 
subsequent layers. Table 3.1 contains the results ofsome calculations 
made on this basis. 

Table 3.1 
Ewgy  of ‘Adsorpfwn’ of Water MolrnJrs on Ions 

Electrolyte 

Lithium clrloridc 
Lithium bromide 
Hydrochloric acid 
Perchloric acid 
C a k k n  nitrate 

<inc bromide 
Calcium chloride 
Calcium bromide 

.tint C M d e  

No. of sites 
Energy of adsorpfwn 

in f i s t  layer 
kcal/mole 

12.1 
12-7 
12.1 
12.9 
11.8 _. - 
1‘2.3 
12-3 
11.8 
12.6 

Calculations made from Anderson’s equation: 
-I# - exp(d/RT) + C L  

55.51[1 - a,exp( - d/RT)] - Cr cr 
where r = number of sites available for occupation and C w exp ( E  - EJ/R7; 
where ( E  - EL) = excou of energy of adsorption in the first layer over the latent 

and 
heat of vaporization of water; 

(EL - d )  = energy of adsorption in outer layers. 

56 



ION-SOLVENT INTERACTIONS 

The energy of adsorption in layers beyond the first is not listed 
in this table: calculation shows that it is about 100cal/mole less 
than the latent heat of vaporization, whereas in the first layer the 
energy is between 1300 and 2400 cal higher. Evidently the attach- 
ment is much firmer in the first layer. The first four electrolytes 
with univalent cations require four molecules of water to complete 
the first layer; the last two electrolytes with bivalent cations require 
eight water molecules. Calcium nitrate, zinc chloride and zinc 
bromide m a y  seem anomalous but there is evidence that the zinc 
salts in concentrated solution are more correctly represented by the 
formula Zn++ [ZnX J-- and only half the zinc ions are available 
for hydration; calcium nitrate is subject to ion-pair formation and 
it is Likely that in concentrated solution the predominant ion is the 
univalent [CaNOJ+. It is therefore reasonable to find that these 
three electrolytes require only four molecules of water in the inner 
shell. Hydrochloric acid solutions have also proved(11) amenable to 
this treatment over the temperature range 0" to 120". 

Until recently the principal way of estimating ionic hydration 
was Washburn's modification of the Hittorf method for measuring 
transport numbers. A supposedly inert non-electrolyte such as a 
carbohydrate is added to the electrolyte solution, and the concen- 
tration changes in the anode and cathode compartments are 
computed, (a) relative to the amount of water present and (b) 
relative to the concentration of non-electrolyte, which is assumed 
not to move in the electric field. From the difference between the 
transport numbers calculated on these two bases, it is possible to 
compute the difference between the numbers of molecules of water 
moving with the cation and with the anion. Hence, from a series 
of measurements with various electrolytes, hydration numbers can 
be allotted to each ion provided that that of one ion, say the 
chloride ion, is assumed. A great deal of work was done on this 
principle; a detailed account is given in a review by BOCKRIS~~*). 
The method always leads to an unequivocal order of hydration 
values for the monovalent cations: Li+ > Na+ > K+ > Cs+ > H+ 
but there is considerable disagreement over the actual values, which 
is due in part to different assumptions about the hydration of the 
chloride ion. 

The basic assumption of this method is that the added non-electro- 
lyte is inert. That it does not migrate in the electric field in the 
absence of the electrolyte can be demonstrated by measurements of 
the conductance. Recent very careful measurements by LONGS- 
 WORTH(^^), using a modification of the Tiselius electrophoresis 
apparatus, have, however, shown that when an electrolyte is present 
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the non-electrolyte does migrate; as a result the calculated water 
transport per faraday of electricity passed depends on the particular 
non-electrolyte used. HALE and DE VRIES(~*) have reached the 
same conclusion from a study of the transport numbers of tetra- 
alkylammonium iodides in the presence of various added non- 
electrolytes. The fact would seem to be that any non-electrolyte 
which is soluble enough in water to be useful in this method owes 
its solubility to the presence of polar groups, which are also respon- 
sible for interactions between the ions and the non-electrolyte 
molecules, so that in Gordon’s words‘15) ‘added non-electrolytes are 
no more inert than the water molecules themselves’. 

Another method is based on the principle that if the size of the 
solvated ion could be determined, it should be possible to calculate 
the number of water molecules involved in it. The most direct 
method available for determining the size of the kinetic unit would 
appear to be the measurement of its rate of motion under a known 
force, against the viscous drag of the solvent. Unfortunately for 
this method, we do not know with any great certainty the laws 
governing the motion of small molecules through a viscous 
medium. For large spherical molecules, the expression (2.47) derived 
by G. G. Stokes from classical hydrodynamics is known to be 
adequate. 
This expression is used with success in the interpretation of diffu- 

sion and ultracentrifuge data for colloid molecules of approximately 
spherical shape, being used to derive the well-known Einstein- 
Stokes formula for the diffusion coefficient, D = &T,,(*). Clearly, 
if Stokes’ law were valid for the motion of smaller molecules and 
ions, we should have a direct method for determining the sizes of 
ions. Unfortunately it is not valid, but a method of estimating the 
appropriate corrections to Stokes’ law for small ions in water is pro- 
posed in Chapter 6. 

There are many other methods by which the hydration of ions 
can be estimated; an account of these has been given by BOCKRIS(~~). 
He suggests that the term ‘primary solvation’ should refer to the 
comparatively firm attachment of solvent molecules to ions in such 
a way that an ion and its solvent molecules move as an entity in an 
electrolytic transport process, the solvent molecules having lost their 
own separate translational degrees of freedom. ‘Secondary solva- 
tion’ would designate all other ion-solvent interactions. It is, 
however, doubtful if any method has yet been devised to measure 
the primary solvation unequivocally. For example, even if the 
hydrodynamical theory of the flow of particles through a liquid 
medium could be developed so as to extend Stokes’ law to particles 
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of atomic dimensions, only a part of the difficulties would have been 
resolved. We could apply such a theory to the hypothetical case of 
an ion rigidly bound to a finite number of water molecules moving 
through a medium consisting of another set of water molecules 
whose only function would be to provide a medium through which 
the hydrated ion moved. This would not be the problem we are 
trying to solve; our problem is to set up and solve the equations of 
motion of an ion firmly bound to one set of water molecules, 
moving through a medium consisting of another set of water 
molecules, from which it is separated by a third set of water mole- 
cules which have neither the property of the first set of being 
‘permanently’ (on the Brownian motion time-scale) bound to the 
ion nor the property of the far distant solvent molecules of being 
practically out of range of the ionic forces: instead they are sub- 
jected to a comparatively mild ion-solvent interaction. It is not 
surprising, therefore, that there is little concordance between the 
results of the many ingenious experimental methods which have 
been devised to measure the ‘hydration number’ of an ion; each 
method measures an average of the primary and secondary hydra- 
tion but there are many ways of weighting an average. Some 
methods will tend to emphasize the secondary hydration and will 
therefore be more likely to give the upper limit to the hydration 
number. One such method consists in the distribution of a ‘refer- 
ence’ substance between, first water and another immiscible solvent, 
and secondly an electrolyte solution and the other solvent. In 
general it is found that the addition of electrolyte to the aqueous 
layer drives the reference substance into the other layer and this is 
taken to mean that, by hydration, the electrolyte has withdrawn a 
certain amount of water from the state in which it can exert its 
solvent properties for the reference substance. 

An extensive set of measurements was made by SUGDEN(~~) who 
distributed acetic acid between aqueous salt solutions and amyl 
alcohol. He derived the following set of hydration numbers: 

LiCl 10.5 NaCl 7-9 KCl 3.4 

LiBr 9.0 NaBr 6.4 KBr 1.9 

LiNO, 4.4 NaNO, 1-8 KNO, - 2.7 

LBrO, 9.2 NaBrO, 6.6 D r O ,  2.1 
LiIO, 7.7 NaIO, 5.1 KIO, 0.6 

These figures are of reasonable magnitude except for the negative 
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hydration numbers of potassium nitrate and potassium chloratoa 
strange result which Sugden explained by postulating a depolymer- 
king effect of these anions on the water structure. Otherwise, the 
results suggest that the method is giving hydration numbers of the 
right order. 

Another method which probably also gives an estimate of the 
upper limit of the hydration number is described in Chapter 9. We 
are not now concerned with the details of the theory, but it is 
worthwhile anticipating some of the more important conclusions. 
In brief, the Debye-Huckel equation for the activity coefficient of 
an electrolyte, whose ions have finite size, is taken to apply to the 
solvated ions, since the ion sizes required by the theory are larger 
than those of the bare ions obtained from crystallographic data. It 
is found that these calculated activity coefficients do not agree with 
the experimentally determined coefficients which refer to the 
unhydrated solute, and the difference is ascribed to the formal 
thermodynamic effects of hydration. It is demonstrable that any 
allowance for hydration must result in a discrepancy between 
experiment and theory, but it is also known that there are a number 
of other effects operating, which should be included in the calcula- 
tion of the activity coefficient. Unfortunately, whilst we know that 
these effects are important, theory has not advanced to the stage 
where we can calculate them; for want of a complete theory, all 
the difference between the experimental and the calculated activity 
coefficients is ascribed to hydration. It is true that the resulting 
equation is remarkably useful in describing observed results, but 
this should not obscure the fact that, whilst hydration is a very 
important factor, it is not the only one which determines the com- 
plicated equilibria in an electrolyte solution. To put it briefly, the 
secondaiy hydration has been stretched to cover a number of effects 
the quantitative nature of which requires a great deal of in- 
ves tigation. 

In another part of this book (Chapter 11)  there will be described 
a method of deriving hydration numbers, which depends on 
diffusion coefficient measurements. We think this method is 
weighted in favour of the firmly bound water molecules, i.c., it 
should give a good approximation to the lower limit of the hydration 
number and measure the primary hydration. Unfortunately it 
requires diffusion measurements in a concentration range where 
theory cannot fully predict the influence of the viscosity factor. 
Again, there is a promising method which makes use of the com- 
pressibility of an electrolyte solution: it is assumed that the mole- 
cules of the solvent which are hydration molecules are compressed 
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to their maximum extent by the intense electrical forces round the 
ion and that, on increasing the pressure, it is the remainder of the 
solvent which is compressed. This method(1') has been stimulated 
by improvements in technique for measuring the velocity of ultra- 
sonic waves. A solution of volume V, containing a total number, 
#A moles of water, of which tlh are attached to ions as hydrate 
molecules and do not contribute to the compressibility, would have 
a volume-pressure differential, 

where Vt is the mold volume of pure water, and the measured 
compressibility can be equated to: 

where f i  is the compressibility of pure water. Thus if#, is the num- 
ber of moles of electrolyte in the solution, the hydration number is: 

which can be simplified to: 

for dilute solutions. Hydration numbers of several salts have been 
measured in this way, and they can be compared with the numbers 
obtained from activity coefficient data and also with those calculated 
from diffusion data given in Table 3.2. 

The compressibility method gives some unexpected results; those 
for the lithium salts are in good agreement with figures obtained 
by other methods, but the sodium salts give higher hydration 
numbers, whilst the potassium salts are shown as hydrated to a 
surprisingly high extent. The 2 : 1 salts have hydration numbers of 
the expected magnitude, except for barium chloride, whilst the 3 : 1 
salts can be comparedwith lanthanum chloride forwhich a hydration 
number of 18.2 has been calculated from activity coefficient data. 

The entropy change corresponding to the transfer of an ion from 
the gaseous state into solution has been attributed('*) to the entropy 
change of water molecules entering the hydration shell, a change 
which is assumed equal to that occurring when water molecules 
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enter the solid state on freezing. All these methods determine an 
average-a weighted average for the strongly bound ionic hydration 
shell and those solvent molecules more distant but still under the 
attractive influence of the ion. 

DEB YE''^) has proposed a theory which requires that an alternat- 
ing potential, of the order of V, should be set up between two 
electrodes in an electrolyte solution subjected to ultrasonic waves. 

Salt 

LiBr 
LiCl 
KI 
NaI 
NaBr 
KBr 
KCI 
NaCl 
KF, NaF, BeCI, 

Sr(C1032 
Pb NOdr 
Ba b I, 
MSQ 
PrcI, 
LaCI, 
AlCI, 

Ca(CIob)2 

Table 3.2 

- ~ _ - -  Hydration numbers -. 

From 
compressibili& 

5-6 
6 
6-7 
6-7 
6-7 
6-7 
7 
7 
8-9 

1 1  
12 
13 
13 
16-17 
16-17 
24 - 
31-32 

From 
acfivity 

7.6 
7- 1 
2-5 
5.5 
4-2 
2. I 
1 *9 
3.5 

17 

15 

7.7 
13.7 

18.2 

- 
- 
- 

- 
- 

From 
d&rion 

5.6 
6-3 
0.3 
3-0 
2.8 
0.3 
0.6 
3.5 - 
- 
- 

Data from BARNARTT, S., Quart. Rev., 7 (1953) 81; PASSYNSKI, A., Aclaphys.-chim., 
U.S.S.R., 8 (1938) 385; GIACOMINI, A. and PESCE, B., RU. Sci., I 1  (1940) 605; 
Chon. Abstr., 33 (1939) 4494; ibid., 35 (1941) 1232. 

The potential should depend on the relative masses of the cations 
and the anions and should, therefore, measure the ionic hydration. 
Whilst the Debye effect has been detected(*O), it is clear that there 
are many experimental difficulties to be overcome before quantita- 
tive results will emerge. 

When we turn to other solvents than water, the problem of 
solvation becomes even more difficult to investigate. The hydro- 
dynamic approach is frustrated at the outset by an almost total 
absence of measured transport numbers: ionic mobilities in most 
such solvents are at present known only in the form of sums for 
pairs of oppositely charged ions. Thermodynamic methods are 
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complicated by the effects of the (usually) lower dielectric constants 
as compared with water, and by the relatively low accuracy of the 
experimental data. In the case of acids, it is reasonable to suppose 
that the proton is never a free entity, but is associated with at least 
one solvent molecule; the ‘acid’ ion NHt in liquid ammonia 
solutions is a familiar example. The striking fact that silver per- 
chlorate forms an electrolytic solution in benzene is, similarly, 
attributable to the existence of a silver ion-benzene complex of an 
acid-base nature, which can be considered a form of solvated ion. 

I t  is regrettable that while electrolyte solutions owe their very 
existence to ion-solvent interactions, we have so far been able to find 
out little of a quantitative nature about these interactions; the 
problem of ion-ion interactions has proved much more tractable. 

THE F R E E  ENERGY AND E N T R O P Y  O F  IONS IN SOLUTION 

Measurements of the vapour pressure, freezing and boiling points 
and osmotic pressure of solutions, which are essentially determina- 
tions of the chemical potential of the solvent, can be used to 
determine via the Gibbs-Duhem equation the change in chemical 
potential of the solute with concentration (see Chapter 8). These 
methods, alone, yield no information on the energy relations 
between the pure solute and the solution. The same is true of 
electromotive force measurements on concentration cells with 
transport. Electromotive force measurements on cells without 
transport, however, can be made to yield a little more: besides the 
change in chemical potential with concentration, they give the 
standard potential of the cell reaction. The details of the experi- 
mental methods and their numerical handling need not concern us 
here; they are discussed in Chapter 8. The point of interest here 
is the relation of the standard potential to the free energy change in 
the cell reaction. Consider the cell: 

ZnlZnCl,(m) IAgCl, Ag 
containing as electrolyte a zinc chloride solution of molality m, in 
which the solute has the activity uzncI,. The cell reaction is: 
Zn (s) + 2 AgCl (s) + 2 Ag (s) + ZnCl, (solution of activity uznc1,) 
and the free energy change per two faradays is: 

where enat is the chemical potential of zinc chloride in the 
hypothetical mean molal solution which is the appropriate standard 

and can be split up into two 
AG 

state. The potential is E = - --- 2F 
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parts, a standard potential Eo independent of the composition of 
the solution, and a composition-dependent term: 

Thus the standard potential Eo is given by: 

so that in determining it we are finding a free energy difference 
between the ions in a standard state in solution, and certain related 
pure substances (here, the solids: silver chloride, zinc and silver). 
By differentiation of standard potentials with respect to tempera- 
ture, it is likewise possible to obtain the partial molal entropy of an 
electrolyte in the standard state in solution, relative to those of the 
pure substances forming the electrodes; again the values obtained 
refer to the electrolyte as a whole, and are the sums of those for the 
constituent ions. 

An alternative method of determining the same quantities in- 
volves the use of solubility data. Consider the process: 

KC1 (s) --f K+ + CI- (in saturated solution) 
The free energy change of potassium chloride is zero, since the solid 
and saturated solution are in equilibrium; hence 

&) = &a + RTln UKCI (sat.) 

where agc1 (sat.) is the activity of potassium chloride in the saturated 
solution (a quantity which can be determined by measurements of 
vapour pressure, etc., extending up to the concentration of saturation) 
and refers to the standard state on the appropriate scale. 
This constitutes a relation between the free energy of the solute as 
a solid and in its standard state in solution. The corresponding 
entropy change can be obtained by measurements of the heat of 
solution of the solid and employment of the relation G = H - TS. 
The heat content change of the solute for the process: solid + 
solution in the standard state, is the same as that for the process: 
solid + infinitely dilute solution, since the standard state is so 
defined that it has the same partial molal heat content as the 
infinitely dilute solution (see p. 35). 

The third law of thermodynamics provides a basis for the calcu- 
lation of absolute entropies of pure substances from heat capacity 
data extending down to low temperatures: 
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Allowance can also be made for any phase transitions occurring 
below the temperature of interest, so that the absolute entropies of 
the pure substances composing the electrodes of the cell discussed 
above, or of the solid potassium chloride are determinable. Their 
free energies are likewise obtainable, subject to the fixing of an 
energy zero for the pure substances. Entropy and free energy sums 
for anions and cations in solution in the standard state are therefore 
essentially determinable quantities. Considerable theoretical interest 
attaches to the question of how these sums should be divided between 
anions and cations, but before considering this a digression on the 
standard states is necessary. 

We have considered above two specific solutes, potassium 
chloride and zinc chloride. For potassium chloride, we may choose 
the standard state of a hypothetical solution of unit mean molality 
and unit activity coefficient. This has the required property 
U K C ~  = m*y% = 1. The molality of each ionic species, K+ and C1-, 
is also unity, so that we need the additional assumption that not 
merely the mean activity coefficient, but that of each separate ion, 
is also unity, before we can write: 

In the case of zinc chloride, the relation 

requires that in the standard state 

The standard state is therefore again one of mean molality unity, 
and unit mean activity coefficient. The molality of zinc chloride in 
the standard state is, however, 4-118, that of the zinc ion is 4-lJ8, 
and that of the chloride ion 2 x 4-1". It  thus appears that the 
molality of the chloride ion is different for the standard states of 
potassium chloride and of zinc chloride; this is undesirable as we 
obviously need a unique standard state for each ion (on a given 
concentration scale). This difficulty can be overcome as follows. 

Imagine one mole of zinc ion to be concentrated from the hypo- 
thetical solution of molality 4418 to a new one of molality 1, while 
two moles of chloride ion are diluted from a hypothetical molality 
2 x 4-113 to one of molality 1, the new solutions retaining the 'ideal' 
quality that yzo++ = 701- = 1. The free energy gained by the zinc 
ion will be: 

RTln  41Ja = 1/3RTln 4 
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while that gained by the chloride ion will be: 

- 2RTln (2 x 4-19 = - RTln  4 + 3RTln 4 

The net free energy change for the whole process is therefore zero, 
and we can write: 

where an++ and @I- refer to standard states for the separate ions, 
which are hypothetical states of unit molality and unit activity 
coefficient. This logical difficulty which arises with salts of un- 
symmetrical valence type serves to emphasize the importance of 
choosing a hypothetical standard state; the corresponding steps 
could not be taken were we using an actual state of the solution as 
standard state. 

Exactly similar considerations apply to the entropy in the 
standard state. For any electrolyte, therefore, we can write the free 
energy, entropy, e k ,  in the standard state as the sum of values for 
the separate ions in their standard states, with the appropriate 
numerical weightings as indicated by the chemical formula of the 
electrolyte; and there is no inconsistency in defining the standard 
states as being hypothetical ones of mean molality unity for the 
electrolyte, and of molality unity for the separate ions. (This point 
is also of importance in defining the standard electrode potential 
for a half-reaction.) 

If we arbitrarily assign to some particular ion in its standard state 
in solution a given partial molal entropy, the partial molal entropies 
of all other ions in the standard state can be calculated from the 
measurable entropy sums for anions and cations. The usual con- 
vention is to write s$+ = 0, which has the advantage of consistency 
with the usual definition of standard potentials relative to that of 
hydrogen; so that, to take a familiar example, the conventional 
ionic entropy of zinc ion may be readily computed from the tem- 
perature coefficient of the standard potential of zinc and the known 
entropies of zinc and hydrogen by considering the reaction : 

Zn + 2H+ --t Zn++ + H, 

A recent summary by POWELL and LA TIMER^^^) (Tuble 3.3) gives 
values of the ionic entropies of a number of simple ions computed 
fiom the best available data; a more extensive list is given by 
LATIMER, PITZER and SIUITH(~). Some obvious generalizations can 
be made about the ionic entropies in Tuble 3.3. First, for a given 
charge, the entropy increases with atomic weight; secondly, for 
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approximately constant atomic weight, as in the ions Na+, Mg++ 
Al+++, the entropy decreases rapidly as the charge increases. Powell 
and Latimer point out that the values can be represented with very 
fair accuracy by the equation: 

9 = 2 R In W + 37 - 270 Izl/r: 
T a b k  3.3 

Conventional Ionic Entropiac ad 25°C (298*16'K), computed r&twe to q, = 0 in &he 
lypothcrical slandord skrtc of one gram-ion per kg of M&. 

F- 
CI- 
Br- 
I- 
OH- 
SH- 

so 
Ion 1 cal dcg-1 

mole-' 

- 2.3 
13-17 
19.25 
26.14 - 2.5 
14.9 

I 
H+ 1 (0.00) 
Li+ 3.4 . .  

14.4 
K+ 
Rb+ 

Ion 

Mg++ 
ca++ 
Sr++ 
Ba++ 
Mn++ 
Fc++ 
cu++ 
Zn++ a++ 
Sn++ 

S-- 
:g: 

s o  
cal deg-* 
mole-' 

- 28.2 
- 13.2 - 9.4 

3.0 
- 20 
- 27.1 - 23.6 - 25.45 - 14.6 - 5.9 - 5.4 

5.1 
- 6.4 

Ion 

A+++ 
w++ 
Fe+++ 
Ga+++ 
In+++ 
Gd+++ U+++ 
pu+++ 
U++++ 
pu++++ 

SI 
cal deg-' 
mole-' 

- 74.9 - 73.5 - 70.1 - 83 - 62 - 43 
-36 
- 39 - 78 - 87 

Data from POWELL, R. E. and LATIMER, W. M.,J. c h n .  Phys., 19 (1951) 1139. 

where W is the atomic weight, 121 the valency treated as positive 
regardless of sign, and r, an effective radius of the ion in solution, 
which is taken as 1.0 A more than the crystal radius for anions and 
2-0 A more for cations. 

In discussing the entropy and energy changes involved in the 
process of solution of ions it is desirable to eliminate any contribu- 
tions due to the physical state of the pure solute. Thus, a com- 
parison of the free energy changes when various substances dissolve 
from the solid state into the standard state in solution would involve 
the varying stability of the various crystals considered: to avoid 
this difficulty it is useful to compute the energies and entropies of 
hydration of ions, not from the solid state, but from a hypothetical 
gaseous state having the properties of an ideal gas. 

The entropy of such an ideal gas can be computed by the methods 
of statistical mechanics. For monoatomic gases, the Sackur- 
Tetrode equation may be written'u' : 
S,,, = 2.303 R( $ log W + + log T - log P + log Q, - 0.5055) 
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(W = atomic weight, P = pressure in atm., Q, = the multiplicity 
of the ground state.) For atoms or ions of the inert-gas structure, 
Q, = 1 , and this expression reduces at 25°C and for one atmosphere 
pressure to : 

27,:) = (6.864 log W + 26.00) cal deg-l mole-' 

The standard entropy of hydration of a given electrolyte, Q, 
may thus be computed as the sum of its standard ionic entropies in 
solution, less the corresponding s u m  calculated for the ideal gas at 
some specified pressure : 

271 = S&h. - S; 
The gas pressure may be taken as one atmosphere, though a 

pressure corresponding to a concentration of one mole per litre has 
something to recommend it since in this state the actual concentra- 
tion of ions in the gas is close to that in the standard state in solution. 
Inter-conversion between these different standard states is a trivial 
matter, the entropy term being R In - 

The heat content change in passing from the hypothetical gas 
state to the standard state in solution can be obtained as follows: 

The crystal lattice energy L\Rcryst. is defined as the energy 
required to separate the ions of the crystal to infinite distance. 
Methods for its computation from thermal data are given by 
PAULING(~). The heat of solution of the crystal to infinite dilution 
AHmh. is obtainable by calorimetric measurements; since the heat 
content of the solute in the standard state is the same as at infinite 
dilution, A&h. also represents the heat ofsolution into the standard 
state. For a crystal MX we therefore have: 
MX(s) + M+ + X- (in solution of infinite dilution) AH = 

MX(s) --t M+(g) + X-(g) (infinite separation) 

Hence for the process: 

(2:F)* 

AH = ARcryst. 

M+(g) + X-(g) + M+ + X- (solution, standard state) 

we have the heat of hydration 

hR,*, = m o l n .  - ARCrySt. 

Since we are assuming the gaseous ions to have ideal properties, 
which include the heat contents being independent of pressure, the 
quantity A& so calculated is equal to the heat of hydration 
An$, between the chosen standard states. From the heat and 
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entropy of hydration, we can then obtain the standard free energy 
of hydration Aq,) by the relation AO&) = Al?($) - TAS&. Free 
energies and entropies of hydration so calculated refer to sums for 
anions and cations. It is of great interest to attempt their separation 
into contributions for the separate ions. This involves, in the case 
of the entropy, the fixing of the absolute entropy of some one 
aqueous ion; the absolute entropies of other ions can then be 
obtained from their standard entropies (usually based on Sjk. = 0) 
and those of the gaseous ions can be obtained from the Sackur- 
Tetrode equation, giving the required individual Al?& as a differ- 
ence. In the case ofthe free energy, @!!) for one ion must be fixed. 
LATIMER, PITZER and SLANSKY(~) and independently VERWEY(*~), 
have considered this problem, and arrived at nearly identical con- 
clusions. Both use effectively the same standard states (the former 
one mole per litre in the gas state, and the hypothetical molal 
solution; the latter equal low concentrations in the gas and the 
liquid) and both make use of Born's equation: 

for the energy of a sphere of charge e and radius r immersed in a 
medium of dielectric constant E ;  Latimer et al. conclude that 
A q h )  for the chloride ion is - 84.2 kcal/mole and Verwey that it 
is - 86; for the other alkali and halide ions the agreement is 
similarly good. Latimer et al. have also made calculations of the 
absolute entropies of separate ions, again making use of the Born 
expression; they conclude that the absolute entropy of the chloride 
ion in the hypothetical molal standard state is about 15 cal deg-1 
mole-'. Its standard entropy relative to hydrogen ion (Tuble 3.3) 
being 13 cal deg '  mole-', it follows that the absolute entropy of 
the aqueous hydrogen ion is about 2 cal deg-1 mole-'. Earlier, 
EASTMAN and  YOUNG(^') estimated 18.1 cal deg-1 mole-' for the 
absolute entropy of the chloride ion; thus it seems probable at 
least, that the absolute entropy of the aqueous hydrogen ion in the 
hypothetical molal solution is not far from zero and that, since most 
ionic entropies are in the range 10-100 cal deg '  mole-', there will 
be only a small error involved in treating the standard entropies of 
Table 3.3 as absolute entropies for the separate ions. The free 
energies and entropies of hydration computed by Latimer and his 
co-workers for the separate ions are given in Table 3.4. 

VERWEY(*@) emphasizes the fact that the hydration energies of 
the halide ions are substantially larger than those of cations of the 
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same size. Fluoride ion, for example, has nearly the same crystal 
radius as potassium ion, yet the free energies of hydration are 
- 114 and - 73 kcal/mole respectively (see Table 3.4). This is 
consistent with the observed limiting mobilities A$- = 55.4 and 
Ak+ = 73.5 at 25O, which suggest a much stronger interaction 
between the fluoride ion and water molecules than between the 
potassium ion and water molecules; that, in fact, the fluoride ion 
is more 'hydrated' than the potassium ion. No other pair of ions 
in Table 3.4 has such nearly equal radii as K+ and F-; the nearest 
approach to equality among the others being with CS+(Y, = 1.69 A) 
and Cl-(rg = 1.81 A). In spite of its larger size and therefore 
weaker surface field, chloride ion has a substantially higher hydra- 
tion energy than caesium ion. In this case, however, the ionic 
mobilities are practically equal (A&- = 76*35,Ao+ = 77.26 at 25'). 
It seems likely that these ions are too large to be 'hydrated' in the 
sense of having a permanent hydration sheath, since they all 

Tdk 3.4 
Frtc Energies and Entropirs of Hydration of Monovalent Ions at 25%. Standard states of 

one mole per litre for gaseous ions and hypothetical molal solution fw aqueous ions. 

121.2 
94.6 
75-8 
69.2 
62.0 

122-6 
88.7 
81.4 
72.1 

Li+ 
Na+ 
K+ 
Rb+ cs+ 
F- 
c1- 
Br- 
I- 

22 0.60 
17 0.95 
8 1 -33 
6 I -48 
4 1 -69 

29 I *36 
15 1.81 
12 1 -95 
7 2.16 

I I 114.6 
89.7 

Data from LATIMER, W. M., PITZER, K. S. and SLANSKY, C.  M., J .  c h .  Phys., 
7 (1939) 108. 

Note: The entropies of hydration given here differ from those in Table 1.4 
because of the adoption of different standard states and a different value of the 
absolute entropy of chloride ion. Frank and Evans used a standard state of one 
atmasphere for the gascow ions, NB = 1 for the solution, and 18.1 cal deg '  mole-' 
for the absolute entropy of chloride ion where Latimer ct al. take 15. 

These differences lead to Frank and Evans' values for the entropy of hydration 
of monovalent cations being lesn than Latimer's by R In 22.4 x - x 55-51 

+ 3-1 = 17.4 cal dcg-1 mole-', and for monovalent anions by 
( :: ) 

298 R In 22.4 x 23 x 55-51) - 3.1 = 11.2 cal deg-1 mole-' 

The values of rclyl;. are taken from PAULING, L., 'The Nature of the Chemical 
Bond', Cornell University Press (1940) ; see Appendix 3.1. 
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exhibit much the same rather high mobility (10 N 77 at 25"). If 
negative ions comparable in size with lithium (r = 0.6 A) or 
sodium (Y = 0.95 A) existed, it seems highly probable that they 
would be more strongly hydrated and possess lower mobilities than 
these cations. 

Venvey has considered in detail the interaction of both positive 
and negative ions with water molecules and has succeeded in 
accounting rather well for the dependence of the hydration energy 
on the sign of the ionic charge. Thus for an ion of 1.36 A radius he 
calculates 75-79 kcal/mole for a cation and 102-122 kcal/mole for 
an anion, which is clearly consistent with Table 3.4. The lower and 
upper limits quoted were obtained by the use of Verwey's models 
I and I1 for the charge distribution in the water molecule (see 
Chapter 1). 
POWELL and LA TIMER(^^) have recently pointed out the curious fact 

that the electrostatic contribution to the entropy of aqueous ions is 
apparently proportional to the first power of the valency of the ion, 
rather than to its square as would be expected from Born's equation, 
and have suggested that such a result could arise from the inability 
of the water dipoles in the region close to the ion to rotate freely. 

One must at present conclude that although the study of the 
energy and entropy of ions in solution gives some useful insight into 
the nature of ion-solvent interactions, it does not provide anything 
approaching a definite answer to the problem of identifying the 
kinetic entities in the solution. A good deal of the difficulty lies in 
the arbitrary nature of the division of free energy and entropy 
changes, measurable only for the electrolyte as a whole, into 
separate ionic values. This arises from the nature of thermo- 
dynamic arguments, which are essentially independent of the detailed 
molecular picture of the system. In electrical conductance, on the 
other hand, we encounter properties which are in principle and in 
practice determinable for the separate ions, viz., the limiting ionic 
mobilities; and it is by the fuller understanding of the hydro- 
dynamics of small particles that progress towards a better picture 
of ionic solutions is likely to be made. 
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4 

IONIC DISTRIBUTION FUNCTIONS 
AND THE POTENTIAL 

THE modern quantitative theory of electrolyte solutions is based on 
the concept of the interaction between the thermal motions of the 
ions and their electrical attractions and repulsions, and also involves 
in its higher refinements considerations of the physical dimensions 
of the ions and of their interactions with solvent molecules. 

A fundamental idea in the theory of liquids in general is that of 
the ‘distribution function’ which gives the probability of finding a 
particle (molecule or ion) in a given position relative to another 
particle. In simple pure liquids the distribution-function has radial 
symmetry, i.e., it depends only on the distance between the particles, 
and not on their mutual orientation. It shows a marked peak at 
the distance corresponding to the nearest neighbours, i.e., to the 
first layer of molecules surrounding the central molecule; this is 
followed by one or two subsidiary peaks, and thereafter the distri- 
bution function flattens out to an effectively constant value, meaning 
that there are no preferred positions for molecules more than a few 
diameters distant from the central molecule considered. Such a 
radial distribution function is illustrated for the case of pure water 
in Figure 1.3. This situation is described as showing ‘short-range 
order’ and results from the fact that the intermolecular forces 
involved are of short range, e.g., ‘van der Waals’ forces, dipole- 
dipole interactions, etc., so that only at very small distances can they 
overcome the tendency of thermal motions to produce a purely 
random distribution. 

The opposite extreme is found in the case of ionic crystals, where 
(except for minor lattice defects) the distribution function is charac- 
terized by a series of equal peaks at equal intervals of distance, and 
is, furthermore, strongly dependent on the direction chosen. In 
passing, it is interesting to note that very concentrated electrolyte 
solutions show definite traces of ‘crystalline’ structure, so that the 
long-range order characteristic of crystals can persist to some extent 
in such solutions(l). 

In dilute non-electrolyte solutions, the distribution of solute is 
entirely random, subject only to the restriction that two particles 
cannot approach within a certain distance given by mutual contact. 
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Beyond this distance the distribution function is independent of 
both distance and direction. In an electrolyte solution, the distribu- 
tion of ions results from competition between coulomb electrical 
forces, which are long-range forces in the statistical sense, and the 
thermal motions; this distribution is not random even at consider- 
able distances. 

If the distribution of ions is known, it is possible to calculate the 
electrical potential arising from this distribution; but the calcula- 
tion of the distribution requires the use of the electrical potential. 
The first attempt to solve this problem was made by MILNER(~) in 
1912 by a laborious method of numerical summation of interaction 
energies for all configurations of the system; this treatment is 
historically interesting, but has been superseded. The modern 
theory was founded by DEBYE and HUCKEL'~) in 1923; refinements 
of their treatment of both equilibrium and transport properties have 
been made by numerous workers, chief among whom have been 
BJERRUM(4) (1926), ONSAGER(&) (1929) and FALKENHAGEN(~) (1952). 
Here we shall make no attempt to follow the historical development 
of the theory, but shall aim throughout at obtaining the modified 
forms which have proved most useful in treating the properties of 
electrolyte solutions at reasonable concentrations. 

THE FUNDAMENTAL EQUATION FOR THE POTENTIAL 

The essential feature of the Debye-Huckel theory is the calculation 
of the electrical potential y at a point in the solution in terms of the 
concentrations and charges of the ions and the properties of the 
solvent. This is achieved by the device of combining the Poisson 
equation of electrostatic theory with a statistical-mechanical 
distribution formula. 

Poisson's equation is the most general expression of Coulomb's 
law of force between charged bodies and is written: 

4-R v2p = - - p  & . . . (4.1) 

where y~ is the potential at a point where the charge density is p, 
E being the dielectric constant of the medium in which the charges 
are immersed. The differential operator V2, which may also be 
written (div grad), is given in Cartesian coordinates by 

2 2  '8 22 

In the special case of a distribution of charges possessing spherical 
symmetry about the origin, y depends only on the distance r of the 
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point considered from the origin, and in this case the partial 
differential operator V2 reduces to a total differential operator: 

1 d  Va = 2 ( r2 $) (for spherical symmetry) 

so that equation (4.1) becomes: 

. (4.2) 

If a particular ion is chosen as the origin of coordinates and no 
external forces are acting on the ions, the time-average distribution 
of charge about that ion will obviously have spherical symmetry. 
Equation (4.2) is therefore taken to apply to the time-average values 
of the potential and the charge density p at distance r from the ion. 
Strictly speaking, Poisson% equation is valid for a system of charges 
at rest, but it is assumed that the time-averaging process will take 
care of any difficulties in this respect. 

The average chargedensity p at a point depends on the prob- 
abilities of an element of volume at that point being occupied by 
various kinds of ions. We denote the various ionic species by sub- 
scripts 1, 2 . . . s and their algebraic valencies by ti, so that the 
ionic charge z,e is positive for a cation and negative for an anion. 
Since the solution as a whole is electrically neutral, 

i n i t i  = o . . . . (4.3) 
i-1 

where n, denotes the average number of i-ions per unit volume, i.c., 
the bulk concentration. Now we select one particular ion, say a 
j-ion, as the centre of the coordinate system. The condition of elec- 
trical neutrality tells us that the net charge in the whole solution 
outside this ion is - z,e. Furthermore, the average charge density 
a t  any point outside the central ion must be of opposite sign to the 
charge on the central ion. For example, if a cation is chosen as the 
centre of coordinates, in any spherical shell at distance r from it 
there will, on an average, be more anions than cations; the shell 
will therefore carry a net negative charge, and the totality of such 
shells, forming the whole solution outside the central ion, will carry 
a total negative charge equal to the positive charge of the cation. 
This may be expressed by the equation: 

L w h 2 p ,  dr = - zje . . . . (4.4) 
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The distance u represents the limit within which no other ion can 
approach the central ion. Here the subscript j has been attached 
top as a reminder that p is a quantity defined only in the coordinate 
system based on thej-ion as centre. It would be useless to talk 
about the time-average charge density at a fixed point in space 
(fixed, say, relative to the containing vessel), for such an average 
would obviously be zero everywhere. 

The probability of an ion of species i being found in a volume- 
element dV at distance r will clearly be greatest when its electrical 
potential energy at that distance is lowest; it must also be propor- 
tional to the bulk concentration nt of the i-ions, and to the volume 
dY of the element considered. At great distances from the central 
ion the electrical forces due to the central ion must be negligible, 
and the probability must approach nidV simply. Beyond these 
restrictions there is no absolute means of knowing what the distribu- 
tion-function is. Debye and Huckel assumed the Boltzmann 
distribution law, according to which, since the electrical potential 
energy of an i-ion is .ttey,, the average local concentration n: of 
i-ions at the point in question is: 

. . . (4.5) 

Once more the subscript j attached to y reminds us that, like p, y is 
only meaningful in the (moving) coordinate system based on the 
j-ion as centre. Before discussing alternative distribution laws we 
shall proceed to evaluate pj from (4.5), the better to see what effect 
the alternatives may have. Since each i-ion carries a charge tie, 
the net charge density at the point considered is, summing for all 
ionic species, 

. . . . (4.6) 

According to equation (4.6), the Boltzmann distribution thus leads 
to an exponential relation between the charge density p and the 
potential y. However, a theorem of electrostatics, known as the 
principle of the linear superposition of fields, states that the potential 
due to two systems of charges in specified positions is the sum of the 
potentials due to each system separately. Thus, if all the ionic 
charges and therefore the charge density were doubled, the potential 
at any chosen point would according to this principle be doubled 
also. Yet according to equation (4.6) the potential would not be 
doubled, since (4.6) is an exponential and not a linear relation. 
This dilemma is of fundamental importance in electrolyte theory. 
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Its significance becomes clearer if the exponentials in (4.6) are 
expanded in the form: 

when we obtain: 

p. = Cnizie - Cnjzie 
. . . . (4.7) 

The first term on the right of (4.7) vanishes by the condition of 
electrical neutrality (4.3), and if zaepf < &T, only the term linear 
in p is appreciable, giving the result: 

. . . . (4.8) 

The result in this approximate form is consistent with the super- 
position principle, since it states that p is directly proportional top. 
The approximation is, however, valid only when the potential 
energy z,erp, of the i-ion is small compared to its thermal energy 
&T, and though this may well be true for the majority of the i-ions 
in a dilute solution, which are at relatively great distances from the 
central j-ion, it is not true for those which are close to the j-ion. 
Furthermore, it is well known that even fairly dilute solutions of 
electrolytes show large deviations from ideal behaviour, and the 
reason for this is that the energy of the electrical interactions 
between ions is, in fact, not small compared to their thermal energy. 
Nevertheless, we shall use the Debye-Huckel expression (4.8) for the 
charge density, but must recognize that in so doing we are in fact 
rejecting the Boltzmann distribution (4.5) and replacing it by the 
linear relation : 

1 . 1 .  

n : = n i ( l  -=) ZteWr 
(4.9) 

There is one special case where this approximation is less drastic: 
when we are dealing with a solution of a single electrolyte of sym- 
metrical valency type. Putting z1 = - 2% and n1 = n, equation 
(4.7) for the charge density becomes: 

ZleV, pI = 0 - 2n,ele ( - kT ) + o - Qn,e,e ('3)'+ 0 - . . . 
. . . . (4.10) 

all the terms in even powers of y vanishing. In this special case, 
therefore, the approximation (4.8) involves no error of order 
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(p)2 as it does in the general case. This approximation is 

forced 'upon us by the nature of the coulomb forces, although it 
means abandoning the Boltzmann distribution, a well-established 
principle of statistical mechanics; therefore the resulting theory 
should work best in cases where the formula (4.8) for p, involves the 
least departure from the Boltzmann distribution. Equation (4.10) 
shows that this applies for solutions of uni-univalent electrolytes, 
and we shall find in practice that the theory has its most pronounced 
quantitative success for these. 

We therefore proceed with the derivation of the theory, using 
expression (4.8) corresponding to the distribution law (4.9), for the 
charge density p+ Substituting this in the Poisson equation (4.2) 
for the case of radial symmetry, we have: 

where K is defined by: 

. . .(4,12) 

and is a function of concentration, ionic charge, temperature and 
the dielectric constant of the solvent, having the dimensions of a 
reciprocal length. Equation (4.11) is a linear secondsrder differ- 
ential equation between y and Y. It will be noted that had we 
retained the exact Boltzmann distribution in calculatingp, (equation 
4.5), we should have obtained a much more difficult non - 1' incur 
differential equation for v ;  this difficulty applies equally to the 
Eigen-Wicke distribution function discussed below. 

The substitution u = yry reduces equation (4.1 1) to the standard 
form : 

d2u p = K2U, 

which has the general solution: 

u = Ae-" + Be"' 

or 
e-rr e"' 

y ,=  A -  + B -  
Y Y 

where A and B are constants of integration to be determined from 
the physical conditions of the problem. Since the potential must 
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remain finite at great values of r it is necessary that B = 0. The 

evaluation of -4 may be made by putting 'pj = A-  into the 

expression (4.8) for the charge density obtaining: 

e-* 
r 

Using this value for p, in equation (4.4), which equation is in effect 
a statement that the solution as a whole is electrically neutral, we 
have : 

A K 2 & r r e - K r  dr = zje, 

from which on integrating by parts we obtain: 
A = Y . - ,  e"a 

& 1 + K U  

so that the potential 'p is given by: 

.- 
I + K U  r . . . . (4.13) 

Equation (4.13) is Debye and Huckel's fundamental expression for 
the time-average potential at a point at distance r from an ion of 
valency cj in the absence of external forces; from it all the various 
manifestations of the interionic forces may be calculated. The 
quantity a has been introduced as the 'distance of closest approach' 
of the ions, i.c., the sum of their effective radii in solution. However, 
it is implicitly assumed that a is the same for all pairs of ions, which 
means that they are all taken as spheres of diameter a. This is a 
rather drastic approximation in the case of electrolytes such as 
lanthanum chloride where there is strong reason to believe (e.g., 
from a consideration of the ionic mobilities) that the sizes of the ions 
actually differ considerably. I t  must also be remembered that 
equation (4.13) has been derived on the basis of the linear distribu- 
tion function (4.9), except in the case of symmetrical valency-types 
where it is consistent with a closer approximation to the Boltzmann 
distribution, viz., 

A L T E R N A T I V E  D I S T R I B U T I O N  F U N C T I O N S  

The first essential modification to theDebye-Huckel evaluation of the 
potential given above was made by MULLER? and by GWONWALL, 
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LAMER and SANDVED(*). This consisted of accepting higher terms 
in the expansion of the exponential Boltzmann distribution func- 
tion, resulting in a series expansion for the potential, the leading 
term of which was identical with that of Debye and Huckel. We 
shall not deal further with this approach, details of which may be 
found in the original papers. 

EIGEN and WICKE($) have attacked the problem of the distri- 
bution hnction for ions, on a somewhat different basis. If one 
considers the Boltzmann distribution used by Debye and Huckel, 

one sees that for the case where the i-ion is of opposite sign to the 
centralj-ion, the argument of the exponential is positive, so that n: 
is greater than ni; i.e., the concentration of anions around a given 
cation is greater than the average concentration of anions in the 
bulk. There is, however, a physical upper limit to the concentration 
of anions; this is reached when, because of the size of the anions, 
no more can be packed into a given volume-element. Eigen and 
Wicke therefore introduce a quantity, N,, the ‘besetzungszahl’ or 
number of sites available to i-ions in unit volume; this is the 
reciprocal of the effective volume uf occupied by a single (hydrated) 
i-ion. They then modify the distribution function in such a way 
that it is impossible for n; to exceed Ni. This is done by writing: 

. . . . (4.15) n;/(.Ni - n:) 
ni/(JVi - nil 

i.e., by replacing the actual concentrations n: and ni in equation 
(4.5) by the ratios of these to the numbers of empty sites available 
per cubic centimetre for ions of the kind i. However, just as in the 
Debye-Huckel treatment the exponential Boltzmann function has 
to be approximated to a linear expression, so with this equation the 
approximation : 

. . .(4.16) 

is ultimately necessary, and it is on this distribution function that 
the theory of Eigen and Wicke is actually based. This should be 
compared with equation (4.9). The approximation by which 
equation (4.16) is obtained from equation (4.15) is, however, not 
altogether convincing. 
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From this distribution function there 
density the result: 

FUNCTIONS 

follows for the charge- 

- 3)  
Jvi 

The calculation of the potential y j  then follows the same lines as 
those given on pp. 78-79 and leads to the result: 

Zje &a 6-u.T 
y , = -  - - 

E ' 1  + K ' U '  f 

where K' = 

-a 4, 
Figure 4.1 

Defining an averagenumberflof sites per'molecule' ofelectrolyte by: 

and denoting the number of 'molecules' of electrolyte per cubic 
centimetre by n, one may write: 

where K is the ordinary quantity of the Debye-Huckel treatment. 
Eigen and Wicke further propose that the mean effective volume 

of an ion should be calculated in term of the parameter a, the 
distance of closest approach of the ions, by the relation, 

4 01 + u2 
-&3 = - 
3 2 

This is, however, palpably inconsistent with the potential derivation 
since if a is the distance of closest approach it is the sum of the 
effective ionic radii, not their mean (Figure 4.1). If the ions have 
radii a12 one has: 

4 3 

3 u1= u2 = - 77 (;) 
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I t  would thus appear that the calculations of Eigen and Wicke are 
based on the use of effective volumes which are some eight times 
too large. Their justification for this course is that the value of u 
which affects the potential is the distance of closest approach of 
oppositely charged ions for which mutual partial penetration of the 
hydration shells may occur, while the value limiting the local con- 
centrations of ions of the same sign (and thus giving N,) is larger 
since such penetration will not occur. 

In point of fact, it is easily shown that the simpler Boltzmann 
distribution adopted by Debye and Huckel can never lead to 
physically impossible high values of the local concentration of ions 
of one kind, when account is taken of the dimensions of the ions. 
The argument runs as follows: 

I t  is clear that the maximum physically possible value of nf will 
occur when the i-ion is of opposite charge to the ‘central’ j-ion, 
when the concentration of the solution is as high as possible, and 
when the ions are as small as possible. For a fully dissociated 1 : 1 

1 e2 
electrolyte, the minimum diameter of the ions is a = - - * for 2 &kT7 
ions smaller than this, Bjerrum has shown that ion-pair formation 
will occur so that the electrolyte can no longer be regarded as fully 
dissociated (see Chapter 14). Now the maximum theoretically 
possible concentration of spheres of diameter u will occur when they 
are in contact, with close-packing, and is given by: 

fi 
qwx) = 7 spheres per cubic centimetre 

Since these spheres must be half anions and half cations, we have 
as the maximum bulk concentrations attainable: 

4 5  
%(mau) = %(max) = K3 

The maximum value of K is therefore given by: 

h e 2  4 2  
EkT’ u3 

= - - 

and the maximum value of (KU)  by: 
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1 e2 
2 EkT Now putting a = - - we have, 

( K % ~ ) ( ~ ~ )  = 8 d $  = 35.54, or (KO)(,) = 5.96 
This is the highest theoretically attainable value of (KU)  for a fully 
ionized 1 : 1 electrolyte: in aqueous solutions at 25" it demands a 
concentration of 26 mole/litre, which is never obtained in practice 
owing to limitations of solubility. 

The Debye-Huckel expression for the potential at distance r from 
a cation in a 1 : 1 electrolyte: 

e fa e-Nr 
v = ; m U - T  

reaches a maximum, as far as neighbouring ions are concerned, at 

the minimum physically possible value of I, r = a = 5 xTy where: 
1 ea 

e l  
%mar) = - 

E a(1 + KU) 

At this distance, i.c., in contact with the central ion, which we will 
take to be a cation for the present illustration, the concentration of 
anions is at its maximum given by: 

1 e2 

2 EkT) In this expression, we now put a = - - and tca M 6, when the 

result becomes : 

n;(rnax) = %(DUX) 8'' = 1*33%(1nax) = 0*67n(wx) 
If instead of the exact Boltzmann distribution we assume the 
approximate distribution law (4.9)) the corresponding result is 

The important conclusion to be drawn from these figures is that 
even when the most extreme conditions of concentration and small 
ion size are assumed, the Debye-Huckel formulae do not lead to 
impossibly high values for the local concentration of ions: for the 
figures show that at the worst only two-thirds of the available 
'sites' near the central ion need be filled by ions of one kind in order 
to satisfy the equations of the Debye-Huckel theory. At lower 
concentrations than the extreme one considered here, y j  will be 
greater and n;/na will therefore be greater than 1.33; but this does 
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not involve any difficulty since ni will be much smaller and n: is 
therefore unable to exceed the physically possible limit. 

It is also of some interest to estimate the maximum value of the 

quantity (9) which measures the ratio of the electrical energy 

of an i-ion to its thermal energy. According to the Debye-Huckel 
equation for ya this quantity is given by: 

zieyj zizie2 e-"+ 
kT  ekT 1 + ~ a  Y 

.. -=--- . .(4.17) 

and is greatest when the i-ion is as close as is physically possible to 
the centralj-ion, i.e., at r = a. If we take as the minimum a value 
of interest the Bjerrum critical distance (cf. eq. 14.1): 

this gives: 

Thus the electrical energy of the i-ion does not exceed 2kT, and 
diminishes as the concentration increases. The maximum value is 
of course only attained by ions in actual contact with the central 

c.e . 
ion. To evaluate - ' " for greater distances, we may consider dis- kT 
tances, a, 2a, 3 4  etc.: at the distance r = pa we have by equation 
(4.17) : 

This quantity is shown in graphical form for several values of (KU) 

in Figure 4.2. It will be seen that the ratio of the electrical to the 
thermal energy cannot be regarded as small compared to unity in 
dilute solutions until considerable distances from the central ion are 
reached; but that, rather unexpectedly, this ratio is smaller and 
more rapidly decreasing with increasing distance in more concen- 
trated solutions. At distances up to a few ionic diameters, however, 
the approximation : 

made in the Debye-Huckel treatment cannot be justified on the 
ground that zdeyj is small compared to k T  as is usually claimed: 
instead it must be justified on grounds of mathematical expediency 
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in order to obtain a distribution function consistent with the 
principle of the linear superposition of fields. Unfortunately, we 
now see that this linear approximation can lead to absurd results in 

Figure 4.2. Variation of the quantity IzplP$(kT)l with concdration and with distance 
from the central j-ion. The unit of distance is taken 0s the Bjcman critical distance fa 
fin-paiifirmaiion, a = 1 's. For 1 : 1 electrolytes in wate at 25", a = 3-57 A, 
and the curves for ua = 0.1, 0.3 and 1.0 thus c o ~ c s ~ n d  to concentrations of 0.0073 N ,  

0.0653 N and 0.726 N respectively. 

certain cases; for the local concentration of ions of the same species 
as the central ion is given by: 

n j = n j ( 1  -w) WYr 

and if, as it now appears, there are regions of distance and concen- 
tration where zfey, > kl, the local concentration ofj-ions becomes 
negative! This absurdity is, however, remedied if we consider the 
next term of the expansion of the Boltzmann exponential expression 

a course which, as we have shown above, is justified for symmetrical 
valency-type electrolytes where it does not violate the requirement 
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of linear superposition. For since outside the Bjerrum region 
.trey, < 2kT, n; cannot by equation (4.18) fall below zero. Thus 
once more we reach the conclusion that the theory is only really 
adequate for symmetrical electrolytes. The use of the modified 
distribution function proposed by Eigen and Wicke offers no solu- 
tion of this particular difficulty, for as Figure 4.2 shows, the greatest 

values of the vital quantity .21eyf are attained in dilute solutions, k T  
where the extra factors introduced by Eigen and Wicke make no 
material difference. We may, however, conclude from a study of 
Figure 4.2 that, since the Debye-Huckel treatment of the potential 
problem is known from experiment to be successful for dilute solu- 
tions of fully dissociated symmetrical electrolytes, it should, if any- 
thing, be more so in more concentrated solutions; and for 1 : 1 
electrolytes, at least, it does not lead to any physically absurd 
distributions such as negative concentrations of ions, or concentra- 
tions too high to be consistent with the known sizes of the ions. We 
therefore intend to use the Debye-Huckel expression (4.13) for the 
potential as a basis for all our theoretical calculations, along with 
the distribution function (4.14) for symmetrical electrolytes and 
with the less adequate (4.9) for unsymmetrical ones. 

The alternative distribution functions which we have discussed 
offer no improvement in respect of the self-consistency of the 
resulting theory, but have the disadvantage of adding considerably 
to the complexity of the formulae. 
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THE MEASUREMENT OF 
CONDUCTIVITIES AND TRANSPORT 

NUMBERS 

METHODS O F  M E A S U R I N G  ELECTROLYTIC C O N D U C T I V I T Y  

THE requirements for precise measurement of electrolytic conduc- 
tivity may be summed up as (0) accurate temperature control, (6)  
avoidance of polarization at the electrodes, and (c) accuracy in the 
electrical measurements themselves. 
As regards temperature control, the majority of aqueous electro- 

lytic solutions have a temperature coefficient of conductivity close 
to 2 per cent per degree at  25". That of the hydrogen ion is appreci- 
ably lower, about 1.4 per cent per degree at 25". If an accuracy of 
0.01 per cent is sought, the thermostat should therefore be capable 
of controlling the temperature to f 0.005" or better throughout 
the measurements. When, as is frequently the case, the solution 
studied has a temperature coefficient similar to that of the standard 
potassium chloride solution used for the cell calibration, it is less 
important to know the exact temperature with the same accuracy 
provided that it is constant, for a constant error of a few hundredths 
of a degree will largely be compensated by a corresponding change 
in the conductivity of the standard. This, of course, does not apply 
when the temperature coefficients differ appreciably or when the 
measurements and the cell calibration are made at different 
temperatures; in such cases sensitive and recently-calibrated 
thermometers, or preferably a platinum resistance thermometer, are 
desirable. The use of water as a thermostat liquid should be avoided 
owing to undesirable capacity effects across the cell walls in a.c. 
measurements and to the risk of electrical leakage currents in d.c. 
measurements. A light paraffin such as kerosene is a satisfactory 
thermostat medium at ordinary temperatures. The errors caused 
by the use of water as a thermostat liquid were thoroughly investi- 
gated by JONES and JOSEPH~'), who found differences of up to 0.5 
per cent between the resistance in an oil- and a water-filled thermo- 
stat. The errors varied in a complicated manner with the cell 
design, the conductivity of the thermostat water, and the resistance 
of the cell being measured; they were greater at higher frequencies 
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and with high cell resistances, indicating that they arose mainly 
from capacitance by-paths through the cell walls and the thermostat 
water. Earthing the thermostat tank changed the sign of the errors, 
and reduced their magnitude, but by no means eliminated them. 
Rather surprisingly, they were smaller when the conductivity of the 
thermostat water was increased by the addition of potassium 
chloride. 

Polarization errors are usually minimized by the use of audio 
frequency alternating current for the measurements and by coating 
the electrodes with a heavy deposit of platinum black, a system 
initiated by KOHLRAUSCH'*). While this procedure correctly applied 
is undoubtedly effective, the use of alternating current enormously 
complicates the electrical technique required for high-accuracy 
measurements, owing to the need for compensation of capacitative 
and inductive effects in the circuit. The only alternative is, however, 
the use of electrodes which are truly reversible to one of the ions in 
the solution; this permits the use of the simpler direct current 
measuring techniques. Though the d.c. method has received 
increasing attention in recent years the conventional a.c. method 
seems likely to remain the standard one for general applications. 

A L T E R N A T I N G  C U R R E N T  C O N D U C T A N C E  MEASUREMENTS 

In the simple Wheatstone bridge (Figure 5.1) used for d.c. resistance 
measurements, the galvanometer shows no deflection at balance ; 
the potentials at A and Bare therefore equal, whence RJR, = RJR,. 
In the a.c. bridge (Figure 5.2) the battery is replaced by a sinusoidal 
alternating potential from an oscillator, and the galvanometer by 
a suitable detector. The condition for balance ( ie . ,  no signal in 
the detector) is that the alternating potentials at A and B are of 
equal amplitude and exactly in phase, which leads to the relation 
&I<, = <J<,, where the impedance < is the a.c. analogue of 
resistance. 

Impedance is conveniently represented as a complex quantity 
having the following properties: (i) impedances combine like resis- 
tances, i.e., impedances in series add, while if in parallel their 
reciprocals (admittances) add; (ii) a pure resistance R has an impe- 
dance < = R which is entirely a real quantity; (iii) a perfect con- 
denser of capacity C has impedance < = l/(jwC) where w is angular 
frequency and j is an operator having the mathematical properties 
of fi, which represents a phase displacement of 90' between 
current and potential; ( iu)  a pure inductance L has impedance 
5 = jwL. This representation of impedances by complex numbers 
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A 
Figure 5.1 

A 
Figure 5.2. Basic circuil of a.c. bria'ge for measurement of clectrolylu conductanu 
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has considerable utility since equality of two impedances demands 
equality of both real and imaginary parts, so that amplitudes and 
phases in any part of an a.c. network can in principle be calculated 
by methods formally similar to those used in d.c. work. 

The design and construction of high-precision conductance 
bridges was studied intensively by GRINNELL Jo~~s(3-0) and his col- 
leagues and also by SHEDLOVSKY(~~) and the principles they laid 
down are the basis of today’s designs. Referring to Figure 5.2, the 
ratio-arms R3 and R4 are made equal (usually lo00 ohms) and of 
identical construction so that the residual capacities between turns 
and between the coils and nearby objects are exactly equal. The 
usual device of winding with doubled wire ensures that the induc- 
tances of all resistance coils in the bridge are negligible at audio- 
frequencies. The measuring-arm R, may be a separate resistance- 
box but is usually built into the same box as R8 and R4. In parallel 
with Ra is a variable capacitor Ca of maximum capacity 0.001 micro- 
farad; this is necessary to obtain a sharp balance-point since the 
cell will in general have an impedance .Z; which is not purely resis- 
tive. A further valuable aid to a sharp balance-point is the ‘Wagner 
earth’ comprising R6 and c6; the object of these components, which 
are used in conjunction with the earthing-switch Sly is to ensure that 
at balance the potentials at A and B are not merely equal but are 
actually earth-potential so that pick-up of hum and stray noise by 
the detector is minimized. A rough balance is first obtained with 
S, in the position shown by the full line; then S, is turned to earth 
and R, and c, are adjusted to give a minimum signal in the detector; 
S, is then restored to its original position and a final balance is 
obtained. IVES, PRYOR and FEATES(~~) obtain an equivalent effect 
by the use of two lo00 R radio potentiometers connected across the 
output of the oscillator, the moveable tappings being taken to the 
bridge input. 

The oscillator and detector are important auxiliaries. The oscil- 
lator should give a good sinusoidal wave-form at all frequencies 
from 500 c/s to several thousand. The amplitude should be variable 
from a few volts down to very low values and both the output 
terminals should be isolated from earth. It is best to isolate the 
bridge from both the oscillator and the detector by good quality 
transformers as otherwise the Wagner earth will not function pro- 
perly. The detector consists first of one or two stages of amplification, 
in which an automatic gain control may be incorporated to limit 
the maximum signal when the bridge is far off balance. The ampli- 
fier may be followed by a telephone headset, which is remarkably 
sensitive around 10oO c/s, but the tendency today is to use a cathode 
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ray oscilloscope which is much more versatile and less nerve-racking. 
The horizontal deflection plates are fed from the oscillator and the 
vertical ones from the amplifier; the out-of-balance trace is an 
ellipse which becomes a horizontal straight line at balance. An 
outfit of this kind can readily detect a variation of a few parts in a 
million in the bridge setting. 

Cell design. The object of the measurements is to determine the 
pure ohmic resistance R, of the solution between the electrodes. If 
the cell impedance <, consisted only of this resistance, R, would 
equal R2 at all frequencies and the capacitor C, would be required 
only to compensate for capacity between the cell leads and for the 
small capacity in parallel with the cell due to the action of its elec- 
trodes as a capacitor with the solution as dielectric. In practice 
there are several other sources of impedance which cause R2 and C2 
to vary appreciably with frequency. Some of these can be avoided 
by proper design and the others are inherent in the electrode pro- 
cesses. The former comprise the Parker etrect and the effect of a 
conducting thermostat medium discussed on p. 87. The Parker 
effect arises when the cell leads pass near to the cell solution giving 
the effect of a capacitor connected between one end of R, and some 
point in the middle of R,; it can be avoided by spacing the leads 
well away from parts of the cell containing solution as in the designs 
shown in Figure 5.3. Mercury-filled lead-in tubes are often used but 
are a nuisance: we replace them by heavy silver wires welded to 
the outer ends of the electrodes beyond the seals. 

Designs for electrode assemblies which can be used as dipping 
electrodes in containers of any size are given by BRODY and Fuoss"2). 

The effects associated with the electrode processes themselves are 
of interest and their understanding is necessary in order to eliminate 
them from the measurements. KOHLRAUSCH'~) showed that this 
could be largely achieved by coating the electrodes with platinum- 
black, when R, becomes practically independent of frequency; this 
course is, however, not always possible since platinum-black may 
catalyse unwanted reactions and may in dilute solutions adsorb 
appreciable quantities of solute, making necessary emptying and 
refilling of the cell until a constant reading is obtained. The 
platinizing solution recommended by JONES and BOLLINCER(~) is 
0.025N hydrochloric acid containing 0-3 per cent of platinic chloride 
and 0.025 per cent of lead acetate; the lead acetate improves the 
adherence of the deposit. The platinizing current should be 10 mA 
/cma, the polarity being reversed every ten seconds. Even a barely 
visible deposit greatly reduces the frequency dependence and a 
deposit corresponding to a few coulombs/cm2 is ample. 
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Electrode effects can also be eliminated by eliminating the elec- 
trodes. This is done physically in the transformer bridge due to 
CALVERT(~~) et af., in which a loop of solution links a current trans- 
former with a voltage transformer; and virtually by the double cell 

Figure 5.3. Typual conductimty ulI designs for (a) nunhate, (b) high, and (c) low 
concenlratwns; #he last a f h  DAGCETT, H. M., BAIR, E. J. and KRAUS, C. A., 

3. A m .  chon Sw., 73 (1951) 799 

design of FEAT=, IVES and PRY OR(^^) who use two cells with identical 
electrodes but with different lengths of solution between them and 
measure the difference in the resistances of the two cells, this differ- 
ence showing only a small residual frequency dependence. They 
also employ two independent leads to each electrode so that lead 
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resistances can be completely eliminated by the ‘four leads’ method 
used in platinum resistance thermometry. By these means they have 
attained remarkable accuracy in the conductometric measurement 
of ionization c0nstants.(1~) 

The elimination of electrode effects from ordinary cells, without 
platinization, is still of great importance. The modern theory of 
electrode processes leads to a schematic representation of the con- 
ductance cell shown in Figure 5.4, which is that proposed by IVES’ 
school(11) with the addition of the ‘Warburg impedance’ -W-. In this 

Figure 5.4. Network elec1ncally equiualenl lo condwlance cell 

figure R, is the true ohmic resistance of the electrolyte, which is to 
be determined. This is independent of frequency at audio fre- 
quencies, because the Falkenhagen effect, associated with the relaxa- 
tion of the ionic atmospheres, does not become appreciable until 
radio frequencies are attained. In series with R, is the capacity C, 
of the double layer of ions at the electrode surfaces: this is also 
expected to be independent of frequency. Because of the small 
thickness of the double layer, this capacity is surprisingly large, 
often amounting to several microfarads per sq. cm. of electrode 
surface. The current through R, is transported across the double 
layer mainly by virtue of this capacity without any actual discharge 
or formation of ions, for the cell gives definite resistance readings 
when the potential across it is only a few millivolts, far too little to 
cause electrolysis of most solutions at bright platinum electrodes. 
However, some electrolysis will normally occur simultaneously, per- 
haps through the depolarizing action of dissolved oxygen and the 
discharge of ions of the solvent, and in some cases through reversible 
discharge of ions of the electrolyte, for example in a cell with silver 
electrodes in a solution of silver nitrate. The electrolysis process is 
represented as a ‘faradaic leakage’ in parallel with the double layer. 
In general, as shown by GRAHAME(~~) and by RANDLES,(~~)  it will 
consist of two parts: a pure resistance R,, independent of frequency, 
and a ‘Warburg impedance’ at the electrodes. For the full theory 
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of the Warburg impedance, the original literature should be con- 
sulted: here we merely note that it can be regarded as equivalent 
to a resistance and a capacity in series, the impedance of both being 
the same at any one frequency but both varying inversely as 04. 
They can therefore be represented together by: 

-W- = k( 1 - j)/d/o 
where k is a constant of dimensions (resistance x time-)). Solution 
of the balance conditions leads to the result that, if the impedance 
of the cell arm with the omission of C, is denoted by <, then: 

1/R2 = real part of 4-1 
from which R, may be determined in terms of R,, C,, R, and k. 
The following special cases are of interest. 

( i )  R, infinite: the electrodes are ideally polarized and: 
R, = R, + ( O > ~ C ; R , ) - ~  . . . . (5.1) 

This is unlikely to arise in practice, as pointed out by Ives, Pryor 
and Feates, because of the depolarizing action of dissolved oxygen: 
it might perhaps be expected in solvents of very low self-dissociation 
and with an electrolyte whose ions have high discharge potentials. 

( i i )  If the Warburg impedance is negligible compared to R,, 

which, since in any ordinary conductance cell R, >> R,, ap- 
proximates well to : 

. . . . (5.2) 
This is the model proposed by Feates, Ives and Pryor as applicable 
to a conductance cell with grey platinized electrodes; it also corres- 
ponds to the behaviour of a cell with bright platinum electrodes in 
an aqueous solution. Although equation (5.2) is ill-adapted to 
graphical extrapolation to infini te frequency, it is found in practice"" 
that R, as obtained by solving it for three frequencies agrees well 
with the value obtained by a linear extrapolation of R, against w-1. 

(iii) If C, is very large, so that its impedance is small compared 
with that of the faradaic leakage, R, = R, at all frequencies. A 
very near approach to this behaviour is found with heavily blacked 
platinum electrodes. 

(iu) Where the Warburg impedance is large compared to R, but 
small compared to R,, one obtains solutions approximating to: 

. . . . (5.31 

R, = R, + RJ(1 + w2CfR:) 

R, = K, -t kid/., 
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This corresponds to the behaviour found by JONES and CHRISTIAN(') 
in their studies of electrode polarization, more particularly at silver 
electrodes in silver nitrate solution or at platinum electrodes in acid 
solutions. It does not appear to be as general as was thought earlier 
for bright platinum electrodes: Jones and Christian themselves 
found marked curvature of the R, vs. 1 /A curves for such electrodes 
in potassium chloride solution and BRODY and Fuoss(1*) report a 
number of cases in which R, is quadratic ink/&. These are presum- 
ably intermediate between (ii) and (iu). 

To sum up, it is necessary when using bright platinum elec- 
trodes to measure at a number of frequencies, preferably including 
higher frequencies than the usual 2 Kcls., and to extrapolate to 
infinite frequency according to the kind of frequency dependence 
observed. 

Standards of specijic conductance-The actual measurements are of 
the resistance between two electrodes of fixed shape and size in a 
cell filled with the solution. This resistance naturally depends on 
the geometry of the cell as well as on the dimensions and separation 
of the eiectrodes; it is therefore the invariable practice to calibrate 
the cell by means of a solution of known specific resistance. It is 
usual to define a cell constant a by 

K,, = a/R, 

R being the measured resistance with a solution of specific con- 
ductivity, K,,, in the cell. To provide such a standard, a great deal 
of careful work has been expended on determinations of the specific 
resistance of potassium chloride solutions. The standards generally 
accepted today are those ofJoNEs and BRADSHAW(~), and in view of 
their fundamental importance the methods used in obtaining them 
will now be described. 

At the time the work was done, the accepted unit of electrical 
resistance was the international ohm, defined as the d.c. resistance 
at the ice-point of a uniform column of mercury 106.300 cm in 
length and of 14.4521 g mass. Thus a conductivity cell could be 
calibrated in international ohm units by measuring its resistance 
when filled with mercury at OOC. Jones and Bradshaw prepared 
cells having resistances of approximately one ohm when filled with 
mercury at O"C, and measured their resistance (to direct current) 
on a Kelvin bridge in terms of the international ohm. However, it 
was not possible to use these cells directly for determining the 
specific conductivity of standard potassium chloride solutions, since 
a one molar solution at 0" would have had a resistance of the order 
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of 100,OOO 51, which is too high for accurate determination on an 
a.c. bridge. They therefore measured the conductivity at 0" of a 
relatively concentrated (6 N) sulphuric acid solution, which was 
then used to calibrate smaller cells. In these smaller cells, the 
specific conductivity of one demal solutions (see below) was meas- 
ured at 0", 18" and 25") with allowance for the thermal expansion 
of the cell at the higher temperatures. The one demal potassium 
chloride solution was then used to calibrate still smaller cells in 
which the conductivity of 0.1 demal potassium chloride was 
measured and finally the 0.1 demal solution was used to calibrate 
even smaller cells in which the conductivity of 0.01 demal potassium 
chloride was found. Thus the series of steps by which the standard 
values for potassium chloride were obtained may be represented: 

International ohm + Hg + H,SO, --t 1 D KCl + 0.1 D KCl 
+ 0.01 D KCl. 

In these measurements, the exact concentration of the sulphuric acid 
was not required as it served only as an intermediate standard; but 
the concentration of the potassium chloride was very carefully 
defined in terms of the weight ofsalt in 1,OOO g ofsolution. Appendix 
5.1 gives the compositions and specific conductivities of the three 
standard solutions determined by Jones and Bradshaw. 

The term 'demal' was introduced by PARKER and PARKER"*) in 
an earlier determination of standards; it is not in general use as a 
measure of concentration, but the name was retained by Jones and 
Bradshaw as a convenient label for their standard compositions. It 
will be noted that Jones and Bradshaw's standards, being defined 
only in terms of weights in uacuo, are independent of volume stan- 
dards and of atomic weights, changes in both of which have caused 
considerable confusion ever since the first standards were proposed 
by Kohlrausch. I t  is particularly unfortunate that the extensive 
compilation of electrolytic conductivities in the International 
Critical Tables is in terms of the earlier Parker and Parker standards, 
which are now generally considered to be unsatisfactory. Practically 
all recent work, in English-speaking countries at least, has, however, 
been based on the Jones and Bradshaw standards (Appendix 5.1), 
and for the sake of consistency they should be retained even if future 
work shows them to be slightly in error. Already one change has 
occurred which emphasizes the difficulty of defining a standard to 
a high degree of accuracy: the international ohm is no longer the 
recommended unit of resistance, having been replaced by the 
absolute ohm which is defined in terms of the fundamental units of 
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the c.g.s. electromagnetic system. The relation between the 
absolute and international ohm is: 

1 int. ohm = 1~O0050 abs. ohm. 
It  follows that the measure of a given resistance in absolute ohms is 
0.050 per cent larger than its measure in international ohms; and 
the measure of a given specific conductivity in (abs. ohm)-' cm-1 
0.050 per cent smaller than in (int. ohm)-' cm-I. 

However, there seem to be no point in revising all the literature 
values of conductivities of electrolytes into (abs. ohm)-' cm-I, as 
we are far more concerned with the variation of conductivity with 
concentration than with its exact value to five significant figures; 
theory is unable to predict conductivities a priori to even two 
significant figures, though it can do much better with the change of 
conductivity with concentration. The fact that resistance bridges 
are now calibrated in absolute ohms need not cause any difficulty, 
as the usual experimental determination is not that of an actual 
specific conductance, but its ratio to the specific conductance of one 
of the standard solutions, via the cell constant. Hence as long as 
the standard is defined in international units, the conductivity of 
the substance studied will be in the same units. It must be noted 
that the standard specific conductivities recorded in Appendix 5.1 
are corrected for the specific conductivity of the water used in 
preparing them. As this is usually of the order of 1 x 10-6 0 - 1  cm-1, 
it will not be significant for the 1 demal standard, but must be 
allowed for when the 0.1 D and especially the 0.01 D solutions are 
used for cell calibration; in the last it can make a difference of the 
order of 0.1 per cent to the cell constant. 

Variation of the Cell-constant with Temperature 
The standard solutions specified by Jones and Bradshaw have 

accurately known conductivities at O", 18", and 25". For work at 
other temperatures, the cell constant measured at one of the standard 
temperatures must be adjusted slightly to allow for expansion of 
the glass and the platinum electrodes. The naive expectation that 
the correction factor would be the same regardless of the geometry 
of the cell is disappointed, as the following argument shows. 

Treating the cell as consisting of a number of regions in each of 
which the current density is uniform, the cell constant is given by 

1 a = C -  
A 

where l is the length of each region and A its cross-sectional area 
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normal to the current. Two extreme types of cell design may now 
be considered : 

(i) A long narrow tubular cell with large electrodes in bulbs at 
the ends. Here nearly all the resistance is contributed by 
the narrow tube. If the glass has a linear expansion coeffi- 
cient a,, the relative change in a with temperature ( t )  is 
given by : 

I d a  1 dl 1 dA 
a dt I dt A dt 
- - % - - - - -  

= ag - 2ag = - a, 

(ii) A cell consisting of two large electrodes of area A separated 
by a small distance I .  The electrodes are supported by 
platinum wires sealed into the cell at points distant S apart, 

the length of wire between the electrode and the seal being 
d in each case so that the separation of the electrodes is 
1 = S - 2d. Thermal expansion has three distinct effects: 

(a) The area A of the electrodes is increased. 
(6) The distance S is increased. 
(c) The distances d are increased. 

The cell constant is given approximately by: 

1 S - 2 d  
A A 

(I=-=- 

By logarithmic differentiation with respect to temperature 
one obtains the temperature coefficient : 

S - d  23(& ~- S 
X g  - - __ 1 da -- - 

a dr S - 2d S - 2d 
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If the expansion coefficients of the glass and the platinum are 
equal, as is approximately the case with a soda-glass cell, we have 

- -a, 1 da i z -  
just as for the long tubular cell. In this case therefore the expansion 
correction is the same for both, and the result clearly generalizes to 
cells of any shape. But if Pyrex glass is used, differences can arise. 
Taking 

a, = 3.6 x 10-6 deg C-l, and ap6 = 9 X lo-' deg C-1 
we have for the two cases: 

1 da 
a dt 

Ci) - - = -3.6 x 10-6 deg C-1 

(ii) Putting S = 10 nun and d = 2 mm 
1 da - - = -18 x 10-6 deg C-l 
a dt 

so that for a temperature change of 100" the cell constants would 
change by 0.04% and 0.18% respectively. 

A very large temperature coefficient may occur if the electrodes 
are very close together and supported by rather long wires sealed 
into Pyrex glass: thus for example if S = 20 mm and d = 9 mm, 
giving electrodes only 2 mm apart supported on 9 mm lengths of 
wire : 

1 da - - = 63 x 10-6 deg C-l 
a dt 

corresponding to a change of 0-63 per cent in the cell constant for 
100" change. 

Direct Current Conductbig Measurements 
It will be clear from the foregoing account that the alternating 

current method for conductivity measurements, though capable of 
extreme accuracy, introduces a great many new complications due 
to capacity effects in the circuit; the compensating advantages are 
the elimination of polarization, the fact that electronic amplifiers 
are easily incorporated in the detector circuit and that t h e m e  
electric effects and contact potentials in the resistance box are 
unimportant. 

The direct current method is therefore simpler in principle, 
requiring only the passage of a steady current through the solution 
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and through a standard resistance in series, and the comparison of 
the potential developed between two fixed points in the solution 
with that across the standard resistance. Since potentiometric 
measurements can be made with an accuracy of 0.001 per cent the 
method should be capable of accuracy comparable with that of the 
best a.c. technique. It is, however, essential that the potential 
measurements in the solution be made between strictly reversible 

A B  8’ A’ A B  

Figure 5.5. CORDON’S d.c. coriductiuity cell 

electrodes. The greatest success with the d.c. method to date 
has been achieved by GORDON and his c~l laborators~~~) on dilute 
halide solutions in water and in methanol. 

A slightly modified form of their cell, described by ELIAS and 
SCHIFF(~@~’, is shown in Figure 5.5. 

A cylindrical Pyrex tube, about 20 cm in length and 5 cm in 
diameter, has two side-tubes about 10 cm apart to hold the probe- 
electrodes, By B’, each of which is made of an 8 mm platinum disc, 
so mounted that its position is not subject to appreciable variation 
in successive experiments. Each electrode is covered with fused glass 
except for a narrow slip 1 x 6 mm in size which is silver-plated and 
chloridized (or bromidized). The electrodes, A, A‘, which introduce 
the current are inserted in narrow collimating tubes at each end: 
they are of heavy silver-plated platinum, dipped in fused silver 
chloride (or bromide). Through this cell, with a calibrated 500 R 
resistance in series, current is passed by means of the constant current 
circuit used in transport number work. The potential across the 
500 R resistance is measured first, then the potential across the probe- 
electrodes; to eliminate any bias, it is advisable to reverne the current 
and measure the potential again, with a further measurement across 
the standard resistance as a check. 

In Gordon’s design the fact that there is a potential gradient near 
the potential-measuring electrodes makes it essential that these be 
small and reproducibly located, so that only silver-silver halide 
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electrodes are really suitable. IVES and S W A R O O P A ( ~ ~ ~ )  used a cell 
in which the solution being measured was connected to two quin- 
hydrone electrodes via arms so placed that no potential gradient 
occurred in them; this made possible the use of a liquid junction 
between the quinhydrone electrode and the solution, increasing the 
scope of the method. ELMS and SCHIFF(~~*) have developed a more 
precise apparatus on the same principle. Their cell is that of 
Figure 5.5, but the tubes B and B’ carrying the potential-measuring 
electrodes are replaced by the components shown in Figure 5.6. 

flectrodes 

(a) (b) 
Figure 5.6. Liquid junction elrcrrodc vesseh. A f h  ELIAS, L. and 

SCHIFF, H. I., j .  phys. Ch., 60 (1956) 595 

Silver-silver halide electrodes mounted in the small central tubes 
are surrounded by alkali halide solution in tubes u or b, this solution 
making a liquid junction with the main cell solution at the position 
shown by the dotted lines. Type a is used when the cell solution is 
denser than the probe solution and type b in the opposite case. 
Since no electrolysis current flows through the solution in the side 
arm, the potential between the probe electrodes is proportional 
to the resistance of the cell solution. The current carrying electrodes 
are silver plated platinum; no electrode is needed reversible to 
either ion of the electrolyte being studied and the method has general 
application. 

Radio Frequency Measurement of Conductivity 
The audio frequency a.c. bridge technique and the d.c. methods 

discussed above are high precision methods designed to meet the 
exacting requirements of the physical chemist whose concern is with 
the nature of electrolyte solutions and the mathematical interpreta- 
tion of their behaviour. Conductivity measurement is, however, 
also an everyday analytical tool of immense value; for purposes 
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such as conductimetric analysis it is seldom necessary to adopt all 
the refinements of technique described above. Many commercial 
instruments for conductimetric titration, for example, operate at the 
rather low frequency (- 50 c/sec) of the electric mains, with an 
accuracy of one or two per cent, which is quite adequate for the 
purpose. A very interesting development of recent years, with great 
possibilities for analytical and process-control applications, is the 
use of radio-fiquency methods for conductivity measurements. 
The great virtue of these methods is that the electrodes need not be 
in contact with the solution; polarization errors are therefore com- 
pletely absent. The cell vessel may be a simple test-tube or flask 
which is placed either within a coil or between the plates of a 
condenser which form the elements of an oscillatory circuit. The 
presence of the electrolytic resistance alters the frequency of the 
oscillations, or in another method, the coupling between two 
oscillatory circuits, and the change is measured by suitable meters. 

MEASUREMENT O F  T R A N S P O R T  NUMBERS 

The experimental methods available for measuring transport 
numbers fall into three categories: ( i )  the Hittorf method, (ii) the 
moving boundary method, and (iii) a method depending on con- 
centration cells with a liquid junction. 

The first of these is so familiar that it requires little comment. 
Devised in 1853, it was the instrument for an outstandingly compre- 
hensive study lasting over half a century and, although it has been 
superseded by other techniques, the value of this one man's contri- 
bution should be recognized. It is especially remarkable that many 
of these measurements were made before the Arrhenius ionic theory 
was developed. Several modifications of the apparatus have been 
made, but all consist essentially ofan anode compartment, a cathode 
compartment and a third intervening compartment. Current, in 
amount measured by a coulometer, is passed and the change in 
composition of each section determined analytically; assuming that 
the current is not passed so long that the composition of the central 
compartment changes, then the loss in either the anode or the 
cathode compartment gives one of the two transport numbers. 

The application of the Hittorf method is limited by two main 
factors: at least one and preferably both the electrodes must be 
reversible and extreme accuracy is needed in the analysis of the 
solution before and after electrolysis. There are few electrodes 
through which it is possible to pass a substantial quantity of electri- 
city, e.g., 20 coulombs, without gassing or other unwanted side- 
reactions. Well annealed, very pure silver behaves satisfactorily in 
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aqueous silver nitrate solution provided oxygen is excluded ; silver- 
silver halide electrodes are suitable for aqueous chloride and bromide 
solutions. The possibility of electrode reactions with the solvent 
must be considered. ‘The analytical problem can be reduced in 
importance by passing sufficient electricity to produce a large change 
in concentration, but this involves either long runs with the danger 
of diffusion of the anode and cathode solutions into one another, or 
large currents with consequent overheating of the solution, resulting 
in turbulent mixing. 
Figure 5.7 shows a modern form of Hittorf apparatus developed 

by STEEL and STOKES(~~) for use with alkali bromide solutions in 

Figure 5.7. Diagram oftratis@rt numbtr apparatus afbr .%Em, B. J 
and STOW, R. H., J. phys. Chon., 62 (1958) 450 

mixed solvents. The important feature of this apparatus is the built- 
in conductance-cell which makes possible the analysis of the cathode 
solution without removal from the apparatus. After an initial 
measurement of the conductance,current is passed through the silver- 
silver bromide electrodes to produce a 10 to 20 per cent change in 
concentration of the solution near the electrodes. The tap is then 
closed, the whole of the cathode solution is thoroughly mixed in the 
bulb and returned to the position shown €or a second conductance 
measurement. As a check on the reversibility of the electrode- 
reactions, the tap is then opened, the anode and cathode solutions 
are remixed in the bulb, and a final conductance reading-which 
should agree with the first-is taken. The volume of the cathode 
solution is read off from the calibrated stem of the mixing-bulb; to 
ensure proper drainage, the bulb is coated with a water-repellent 
silicone film. The ‘apparent’ transport number of the cation is 
vAcF/Q, where v is the volume of the cathode solution, Ac is the 
change in its concentration in equivalents per unit volume and Q 
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is the quantity of electricity passed; this is converted to the Hittorf 
frame of reference, (motion relative to the solvent), by the use of 
density data. Some results obtained by this method will be con- 
sidered in Chapter 11 ; while not quite equal in precision to the 
moving-boundary method, it offers some prospect of success in non- 
aqueous solutions where transport number data are urgently needed. 

The Moving Boundary Method 
The considerations upon which this method is based are simple: 

let solutions of two salts (having a common anion, X-), form a 
boundary ab and let current be passed so that the cations move up 
the tube and the anions down the tube (Figure 5.8). If the conditions 
are chosen properly the boundary will remain distinct but will move 

d 

a b II ' 
Figure 5.8 F i p e  5.9 

up the tube. After a certain time let it be at the position cd. In this 
interval all the cations, M+, in the volume V between cd and ab 
must have crossed a plane at  cd. If the amount of electricity passing 
be Q coulombs, then the amount moving upwards is tlQ coulombs. 
If V is the volume between ab and cd and the concentration of the 
solution of M+X- is c ion equivalents of M +  per unit volume, the 
amount of electricity moving upwards must be V[c]F  whence: 

t ,  = VcF/Q 
All variants of this method depend fundamentally on measuring 
this volume for unit amount of electricity passed and the successful 
application of the method depends on three factors: (1) the con- 
struction of an apparatus capable of producing a sharp boundary, 
(2) the use of a suitable salt N+X- (called the indicator) and its use 
at the proper concentration, and (3) a small correction for changes 
in the position of the boundary due to volume changes. The sharp 
boundary can be produced by one of three methods. The first was 
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developed by MACINNES and BRIGHT ON'^^) and is called the ‘sheared 
houndary, method. In its simplest form (Figure 5.9) the tube con- 
taining the two solutions is divided with the upper half held in a 
hole in a disc ,4 over a depression in another disc so that a drop of 
the solution hangs from the end of the tube. The other half is held 
in the disc B immediately under a cut or indent in the disc A and 
is filled with the other solution until a drop protrudes at the end. 

i 
d Figure 5.10. From HARTLEY,G.S. 

and DONALDSON, G. W.,  Trans. 
Faraday Soc., 33 ( I  937) 457 

If the two discs have plane surfaces and the discs are moved over one 
another so that the two tubes are adjacent the excess of each liquid 
is ‘sheared off’and a sharp boundary is formed. The second method 
is the ‘autogenic’ method of FRANKLIN and C A D Y ( ~ ~ )  in which the 
indicator solution is formed by making the anode at the bottom of 
the tube of a metal such as cadmium, with a solution of potassium 
chloride over it: on passing a current, a solution of cadmium 
chloride is formed and a boundary is produced between this solution 
and the potassium chloride solution. Again, an anode of silver can 
be used to give a boundary between a silver nitrate solution and a 
potassium nitrate solution. The third method is the ‘air bubble’ 
method@). The apparatus is shown in Figure 5.10. To the top of the 
capillary tube F, two pinchcocks are attached, one closed and one 
half open. At the beginning of the experiment, the whole apparatus 
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is filled with the leading solution and by closing one pinchcock an 
air bubble is formed by compressing the air in the capillary F; 
this expands into A at G separating the solution into two parts. 
That in C, D and E is removed, these portions of the apparatus are 
rinsed several times with water and filled with indicator solution. 
By unscrewing the pinchcock the air bubble can now be withdrawn 
into F and a boundary formed at C. 

If the boundary moves up the tube, it is necessary to have the 
indicator solution of greater density than the leading solution and, 
conversely, if the indicator solution is to be on the top of the leading 

' Distonce along tube 
Figure 5. I I 

solution and the boundary is to move downwards, then the indicator 
solution should be lighter. Moreover, in whichever direction the 
boundary moves, the ion of the indicator solution must have a 
mobility lower than the ion of the leading solution. Fortunately, 
there is a kind of self-regulating effect which restores the sharpness 
of the boundary if it is for some reason diminished. Let us consider 
what will be the concentration of the indicator ion N+ behind the 
moving boundary. We have already seen that during the passage 
of an amount, Q coulombs, of electricity all the M+ ions between cd 
and ab cross the boundary cd. Let a further Q coulombs pass: then 
all the N+ ions between a6 and cd must cross the plane at cd and 

VCN+F 
t; = - 

Q 
where ti is the transport number of the N+ ion at the concentration 
cN+ at which it is present in the volume V behind the boundary. 

Then tJt; = cM+/cN+ 

This is sometimes called Kohlrausch's regulating function. Now ti 
must be less than t, and therefore CN+ must be less than tM+. Thus 
if we consider the fall in potential along the tube (Figure 5.1Z), 
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both the lower mobility and the lower concentration of the indicator 
ion will combine to produce a sharper drop in potential in the 
indicator solution than in the leading solution. If by any mischance 
a leading ion diffuses into the indicator solution its comparatively 
high mobility shoots it forward again down the comparatively large 
potential gradient; conversely should an indicator ion find itself 
too far ahead, its lower mobility combined with the lower gradient 
slows it up: in either event, there is a mechanism at work to restore 
the sharpness of the boundary. The same mechanism adjusts the 
concentration cN+ of the indicator solution: if t N +  is initially too 
large, the potential gradient is lower than that demanded by the 
condition tJt; = cM+/cN+ and the N+ ion travels more slowly until 
the correct value of cN+ is reached, and conversely, if the initial 
value of cN+ is too small. Naturally it cannot be expected that this 
‘self-regulating mechanism’ can cope with wide departures from 
ideal conditions. MacInnes has found by experiment, however, 
that considerable tolerance is permitted so that it is sufficient to 
adjust the concentration of the indicator solution to within only 5 
to 10 per cent of the required value. 

During the passage of the current there may be volume changes 
resulting from electrode reactions, etc. Except in concentrated 
solutions, the correction for this effect is small but it may be con- 
sidered here in some detail because of its bearing on the distinction 
between the Hittorf and the moving boundary transport numbers, 
a matter appreciated very clearly by LEWIS‘~)  as long ago as 1910. 
The moving boundary method gives an ionic mobility relative to 
the fixed glass tube in which the measurements are made. The 
Hittorf experiment measures the number of ions crossing a plane 
fixed relative to a hypothetical plane in the solvent which of course 
moves if the solvent moves. MACINNES and LONGSWORTH(~S) illus- 
trate this by reference to an experiment (Figure 5.12) in which 
potassium chloride forms the leading solution, barium chloride the 
indicator solution and the tube is sealed at the bottom by a silver 
electrode; x marks the position of a water molecule of a hypo- 
thetical type, hypothetical since it is presumed free of Brownian 
motion. cd is a plane in a region not subject to change of concentra- 
tion. On passing a faraday of electricity the following changes occur: 

1. t,  equivalents of K+ cross the plane cd in an upward direction 
giving a volume decrease t,PE?, Le., 1, times the partial molal 
volume of the potassium ion in potassium chloride solution. 

2. t8 equivalents of C1- cross cd in a downward direction with a 
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3. An equivalent of metallic silver is lost with volume decrease vAg. 
4. An equivalent of silver chloride is formed with volume increase 

5. An equivalent of Cl- is lost by reaction with silver with volume 
decrease P&@*. 

6. Since the number of Ba++ ions below the boundary remains 
unchanged the loss in process 5 above must be exactly com- 
pensated by a transfer of an equivalent of CI- downward 
across the boundary with a volume increase P&CC'9 - PaGI. 

PAgCl. 

C d 

a & 

Ag C 1  
A 7  

Figure 5.12. After MACINNES, D. A. and LONGSWORTH, L. G., Chmt. Rev., 
I I (1932) 204 

The net volume increase is: 
A v = PA,c~ -  PA^ - t 1 P E F '  - ( 1 - I,) P@l 

= PAgCI - VAg - 11PKCl 

The moving boundary transference number is t, = VtK+ but 
because of the increase in volume, AV, the water molecule at x is 
raised to x'. Relative to this molecule, the boundary has not moved 
so much and the Hittorf transport number is: 

t1  = (V - AV)CK+ 
There is a further correction to be applied if the solvent conducts 

an appreciable fraction of the current, which has been shown'26) to 
take the form: 

(1 + K,, solvent/K,, solution) 

This becomes important with very dilute solutions. 
Although microcoulometers have been used to measure the 

current(%'), the usual practice is to hold a known current as steady 
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as possible for a measured time interval. A somewhat elaborate 
device is used by the Rockefeller Institute workerd28) although 
others@3* 8s) have preferred a simpler mechanism. 

The accuracy of moving-boundary measurements depends to a 
large extent on the precision with which the boundary position can 
be determined at any time. The usual method makes use of the 

C 

a b Porous 

Figure 5.13. After SPIRO, M. and PARTON, H. N. 
Trans. Faroday Soe., 48 (1952) 265 

difference in refractive index between the leading and indicator 
solutions, a schlieren image of the boundary being formed by a lens 
system. It is not however always possible to secure a clearly visible 
boundary while meeting the other requirements of the method, and 
GORDON and his co-worker@" have reported a technique of dctect- 
ing the boundary by means of the abrupt change in conductance 
which occurs as it passes a pair of micro-conductance electrodes 
sealed into the walls of the tube. 

Transkort Numbers by the Analytical Boundary Method 
In this variant of the moving boundary method(31), a tube is 

divided (Figure 5.23) into two compartments by a sintered glass 
I09 
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disc; one compartment contains the solution under investigation 
and the other the indicator solution. After electricity in amount Q 
has passed, the boundary, originally at the disc, has moved to cd 
through a volume V given by 

where the primed quantity refers to N+ and the unprimed to M+. 
Thus a quantity c N + V  of the ionic spccics N+ passes through the 
disc; this can be measured by ordinary analytical methods and is 
equal to Qt;/F. The upper solution is now the indicator and the 
method gives the transport number of the ion in the following 
solution. The apparatus used by Spiro and Parton is shown in 
Figure 5.13. The indicator solution containing sodium or potassium 
nitrate is in the tube A of 20.5 mm diameter, the disc D has a pore 
diameter of 20-30 p and the cathode, C, is a piece of platinum gauze 
in ferric nitrate solution, the ferric nitrate being introduced to 
reduce the amount of gas evolution. E is a coarse porous disc 
designed to prevent diffusion offerric nitrate into A, and TI and T2 
are filling taps. The non-gassing anode R is a rod of silver and the 
compartment B contains 0.1 M silver nitrate. The amount of silver 
ion migrating into the compartment A is determined by a careful 
potentiometric titration. For the details of the current regulator 
the original paper should be consulted. Spiro and Parton found, 
using potassium nitrate as indicator, that there was a range of 
indicator concentration around 0.1 1 M (the Kohlrausch concen- 
tration for 0.1 M AgNO,) for which the transport number was 
independent of current, time and indicator concentration. The 
value found was 0.4676 compared with the accepted value of 0.4682. 
Using sodium nitrate as indicator, i.e., using an indicator cation 
which moves more slowly than the silver ion, there appeared to be 
no range of indicator concentration over which the transport 
number remained constant. The correct result was obtained not at 
the Kohlrausch concentration but at that concentration of indicator 
where the specific conductivities of the two solutions were equal. 
This may have been coincidental and further work is needed on this 
point. The paper by Brady is interesting in that in one set of 
experiments he used radioactive tracers and made the analysis by 
counter methods. He developed the method for colloidal electro- 
lytes which do not lend themselves to the moving boundary method 
and in a subsequent paper(32' he has described the determination 
ol' the transport numbers of four surface active agents. 
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Tramport &umbers from Cell Measuremmts 
The potential, E, of the cell: 

Ag, AgClIMCl(m')l MIMCl(m) IAg, AgCl 

Ag, AgCIIMCl(m') IMCl(m) IAg, AgCl 

Cell I 
can be combined with the potential, Et, of the cell: 

to give the transport number of the cation, t,, as: 
Cell I1 

t,  = Et/E 
This is the well-known Helmholtz relation and leaves undecided, 
without a more detailed study of the theory, the concentration to 

Figure 5.14. call with honrpml for determining tronrpor! numbers in zinc pnchloratc 
solurionr. STOKES, R. H. and LEVKEN, B. J., 3. A m .  chnn. Sat., 68 (1946) 333 

which t,  refers. By considering the case where m' is held fixed and 
m is varied, measurements of E and Et being made for a range of m 
values, it is readily shown that t,  = dE,/dE. Systems similar to 
those designated Cell I1 have been used by MacInnes and Shed- 
lovsky and also by Gordon to determine activity coefficients, i.e., 
finding Cell I not particularly amenable to measurement because 
of experimental difficulties with the electrode M, they prefer to 
determine the transport number by one of the other methods 
described in this chapter and combine the result with the potential 
of Cell I1 to give an activity coefficient. Very valuable work has 
been done in this way, particularly with solutions less than 0.1 M 
concentration, to which reference will be made in Chapter 8. For 
the present we shall content ourselves with a description of the use 
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of Cell I1 for the measurement of a transport number, for example, 
that of zinc in zinc perchlorate, by this method'333'. Whilst the zinc 
amalgam electrode is known to work very well and could replace 
the silver-silver chloride electrode mentioned in Cell I above, there 
is no electrode known to be reversible with respect to the perchlorate 
ion which could take the place of the electrode M. However, using 
the isopiestic vapour pressure method, it was possible to determine 
the activity coefficient of zinc perchlorate over a wide concentration 
range, from which the potential of the hypothetical cell: 

Z+gl Zn(C104) 2 b ' )  1x1 Zn (C104) 2 ( 4  IZnzHg 
where X is an electrode reversible to the perchlorate ion, can be 
calculated. The cell with transport is shown in Figure 5.14. The 
vessel A was first filled with the more dilute solution and warm 
liquid 5 per cent zinc amalgam run in. The solution had previously 
been degassed and the dissolved air replaced by hydrogen. The 
other vessel, B, was filled with the more concentrated solution to the 
mark shown, amalgam run in and the two parts of the cell united 
at the ground glass joint C. The electromotive force became steady 
after an hour and remained steady within 0.03 mV for a day. It 
was found that the potential of the cell with transport E,, was 
related to that of the cell without transport, E, at the same concen- 
trations, by the equation: 

E, = aE + bE2 +- cE3 

SO that t2 = dE,/dE could be obtained easily. A similar s t~dy(3~'  of' 
the transport number of zinc iodide failed to reveal any such simple 
relation between E and El, and a method of calculating the differ- 
ential due to RUTLEDCE'~~) was used. 

The transport number given by these amalgam cells is not that 
of either the zinc ion or the halide ion since allowance has to be 
made for the formation of autocomplexes. For example, if we sup- 
pose that a concentrated solution of zinc iodide consists only of zinc 
and complex Znli- ions in equal amount we find, on considering 
the details of the cell reactions, that: 

t ,  (observed) = 1 - dEJdE = 1 - !&,Ii - = tZ,,tt - tZ,,Ii - 
KERKER and ESPENSCHIED'~~) given an interesting discussion of 

Hg, Hg2HP041H3P0,( m') I H2-P t-H,I H3P04( rn ") Hg,HPO,,Hg I 

11 

the cells: 

and 
Hg, Hg2HPO4IH3PO4(m') I IH3PO4(m") IHg,HPO,, Hg 

I I:! 



METHODS OF MEASURING TRANSPORT NUMBERS 

the mercury-mercurous hydrogen phosphate electrode being rever- 
sible not directly to the HgPOi ion, which is the only anionic species 
present in any amount, but to the HPOr - ion which is in equili- 
brium with it. At the concentrations used, very small amounts of 
HPOr - and POT - - ions are present and the current is carried by 
H+ and HaPOi ions. 

The passage of two faradays through cell I (mu < m') corresponds 
to the reaction : 

HgaHPO, + H, -+ H,PO, (mu) + 2Hg 

in the right hand half cell and 
HaPO,(m') + 2Hg + HgaHPO, + Ha 

in the other half cell, so that the net reaction is: 
H,PO,(m') + HaPOJm") 

and the e.m.f. of the cell is given by: 
- 2EF = AG = RT In a"/a' 

There are three processes to be considered when two faradays pass 
through cell 11: 

(4 2Hg + HPOi  - + HgaHPO4 + 2 ~ -  

i.c., the loss of a mole of HPOT - in the left hand compart- 
ment; 

(b) a corresponding gain in the right hand compartment; 
(c) a transfer of 2tH+ = 2dH+/(&+ + &,PO;-) moles of hydrogen 

ion from left to right across the liquid junction and a trans- 
fer of 2tH,pO; = 2d~&pOr/(dH+ + AH,PO;-) dihydrogen phos- 
phate ions in the opposite direction. 

Some reaction will proceed in each compartment to maintain 
the various ionic species in equilibrium but since t ~ +  + tH,POT = 1, 
the stoichiometric result is the transfer of (2tH+ - 1) moles of phos- 
phoric acid from the left to the right compartment so that: 

a" 
a 

- E, F = (2tH+ - 1) RTln 

and in the limit when m' and m" differ only infinitesimally: 

~0bsUp.ed = d E t P  
= (2tE+ - 1) 
= - tEp0: 

(1 - 21E'pOy) 
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Thus the 'observed transport number' is neither of the true transport 
numbers but their difference. It seems desirable when using the 
cell method to work out the details of the cell reaction for each case 
along the above lines rather than to depend blindly on the formula 
t = dEt/dE, which is clearly of limited application. 

Transport Numbers from CentrijugaL CeLLs 
The first measurements on gravity and centrifugal cells were 

made by DES COVDRES'~'). The effect in a gravity cell is of the order 
of a few microvolts per metre but by means of a specially constructed 
potentiometer circuit GRINNELL and KOENIG(@) have increased the 
accuracy of measurement and obtained 0.4900 and 0.4893 for the 
cation transport number of 0.975 and 0.712 M potassium iodide at 
20'. TOLMAN(~*) made experiments with a powerful centrifuge 
corresponding to a gravity cell some 1,200 m in height and his 
potentials were of the order of several millivolts. 

MACINNES(~~) has devoted much attention to cells of this type in 
recent years. In a centrifugal cell such as: PlIZ, in MZlPt where 
M is a cation, two identical iodine-iodide electrodes situated at dis- 
tances Y ~ ,  r, from the point about which the cell is rotated develop 
a potential E. If current passes inside the cell from the outer to the 
inner electrode, the cell reaction is: 

Z- --+ iZ, + e- at the outer electrode, 
bZ2 + e- --t Z- at the inner electrode. 

At the same time, for each faraday of electricity which passes, tl 
equivalents of the cation pass from the region around the outer 
electrode to the region around the inner electrode and te equivalents 
of iodide ion pass in the opposite direction. The net result is the 
transport of one equivalent of iodine from the inner to the outer 
electrode and tl equivalents of the salt MI in the opposite direction. 

MacInnes and Ray have given a rigid deduction of the equation 
for the potential of such a cell. The equation can be derived less 
rigidly as follows: 

The kinetic energy due to the rotation of the equivalent of iodine 
at the outer electrode is 277f&9 W,, o being the number of revolu- 
tions per second and WI the atomic weight of iodine. The increase 
in kinetic energy of the iodine on transferring an equivalent from 
the inner to the outer electrode is therefore: 2neoz(r~ - tf) W, and 
there must be a similar term for the t ,  equivalents of salt transferred 
in the opposite direction. But the volumes occupied by the salt and 
by iodine may not be the same and therefore there may be a move- 
ment of solution as a whole to compensate, involving a transfer of 
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p (  PI - tlPMl) grams ofsolution wherep is the density ofthe solution. 
By equating the electrical work to the net change in kinetic energy 
we get: 
EF = 2 d d ( 4  - Y:)[( WI - tlWMl) - p(PI - tlPMI)] . . . . (5.4) 

The apparatus used by MacInnes and his colleagues is shown in 
Figure 5.15. The rotor R is a magnesium disc 23 cm diameter and 
5 cm thick, turned by the pressure of the disc D on the plate P 

R 

Figure 5.15. Diagram of upparafur afh MACINNES, D. A. and DAYiioFF,  M. 0. 
J .  chem. Phys., 20 (1952) 1035 

which is rotated by a synchronous motor M. The potential is 
measured through the mercury wells Gl and C, whilst the wells G,, 
G, are used to measure the temperature of the rotor with a copper- 
constantan junction 3 and an external ice-bath I. Radial tempera- 
ture gradients are eliminated as far as possible by maintaining a 
vacuum of 10 p around the rotor (thus avoiding gas friction) and 
circulating cooling water at the vacuum bearing. Another impor- 
tant feature of the technique arose from the presence of minute 
suspended particles in the cell solution, which all precautions failed 
to eliminate and which gave rise to erratic potentials. This error 
can be avoided by sealing the electrodes El, E, in the form of 
platinum rings several millimetres from the ends of the cell C. The 
centrifugal force then drives the suspended particles clear of the 
electrodes and they collect harmlessly at the base of the cell. Rotor 
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speeds between 40 and 120rev/sec are used. It is important to 
realize that the cell potential originates from a difference of centri- 
fugal potential at the two electrodes and not from a concentration 
gradient set up in the solution as a result of centrifugal force. The 
theory assumes uniformity of concentration. On continued centri- 
fuging a concentration gradient should be set up sufficient to reduce 
the cell potential to zero, and at high speeds of the rotor MacInnes 
did observe a slow fall in potential if the experiment was prolonged. 
PEDERSEN(~) has obtained similar sedimentation with some salts 
using an ultracentrifuge at much higher speeds. 

The work of MacInnes is still at the stage where very fine tech- 
nique is being developed: so far the experiments have yielded a 
transport number t ~ ~ +  = 0.3827 for 0.191 1 N sodium iodide and 
t ~ +  = 04873 for 0.1941 N potassium iodide compared with the 
value, 0.4887, found by LONGS WORTH(^^). More recently(43), the 
transport numbers of lithium, rubidium and caesium iodide have 
been measured. The method is being developed for application to 
non-aqueous solutions where other methods encounter difficulties 
due to the joule heat. 

I t  should be added that the experimental data had to be inter- 
preted in the light of a further complication, the formation of 
complex iodide ion, and that the assumption of the formula 1; for 
this complex ion was sufficient to reconcile the, at first sight, con- 
fbsing results obtained with varying iodide concentrations. 
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THE LIMITING MOBILITIES OF IONS 

THE transport of electricity through electrolytes differs funda- 
mentally from metallic conduction in that the carriers are ions, the 
dimensions and masses of which are much larger than those of the 
electrons responsible for metallic conduction. The ions of course 
share in the general Brownian motion of the liquid, and may be 
expected to have randomly-directed instantaneous velocities of the 
order of lo4 cm sec-l, though of course with the extremely short 
mean free path characteristic of the liquid state. In the absence of 
an external field or a concentration-gradient, the Brownian move- 
ment is entirely random, and does not lead to a drift of ions in any 
one direction. The presence of an electric field, as in conductance, 
or of a concentration-gradient, as in diffusion, has the effect of 
biasing the Brownian movement in a particular direction. In a 
field of 1 V/cm the average velocity of the ions in the direction of 
the field is of the order of 10-3 to 10-4 cm sec-I, and hence represents 
only a very small perturbation of the random ionic motions. The 
actual path of an ion under an electric field of ordinary intensity is 
thus extremely erratic, bearing very little resemblance to that of a 
billiard-ball sinking in water. Nevertheless, the drastic simplifica- 
tion of substituting for the actual chaotic motion a steady progress 
of all the ions of one kind with equal velocities in one direction of 
the field is extraordinarily successful : the Brownian motion needs 
to be considered only in regard to its effect on the interionic forces. 

Experimental data on conductivity are fortunately extremely 
plentifid and of high accuracy, at least for low concentrations; in 
the best work agreement to one part in 10,OOO between different 
workers is not uncommon. Especially in non-aqueous solutions and 
in mixed solvents, conductivity measurements are far more easily 
made than those of activities, and provide the greater part of our 
knowledge of the behaviour of electrolytes in such solutions. Further- 
more, the measurements can be carried to extraordinarily low 
concentrations provided proper precautions are taken. Whereas 
the measurement of the electromotive forces of cells usually becomes 
unreliable at concentrations below about 0.001 M even in the most 
favourable cases, accurate conductivity measurements can be made 
at concentrations down to about 040003M. The experimental 
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techniques have been discussed in Chapter 5 ;  here we are con- 
cerned with the theoretical interpretation of the results. 

The equivalent conductivity of strong electrolytes at low concen- 
trations is found to be accurately a linear function of the square 
root of concentration, decreasing as the concentration increases. 
Extrapolation to zero concentration yields the limiting equivalent 
conductivity AO, and the equivalent conductivity A, at very low 
concentrations can therefore be represented by the equation : 

A = A0 - A ~ c  . . . . (6.1) 
as was observed by Kohlrausch. 

A complete theory of electrolytic conduction should therefore be 
capable of (0) predicting the value of Ao from the dimensions, 
charges and other properties of the ions and the solvent molecules, 
(6) predicting the value of the constant A in equation (6.1), (c)  
accounting quantitatively for deviations from equation (6.1) at 
higher concentrations. Of these three problems, the first is farthest 
from solution, the second is solved and the position with regard to 
the third has recently been greatly improved. 

T H E  L I M I T I N G  V A L U E S  OF E Q U I V A L E N T  C O N D U C T I V I T Y  

In the state of infinite dilution to which A0 refers, the motion of an 
ion is limited solely by its interactions with the surrounding solvent 
molecules, there being no other ions within a finite distance. In 
these circumstances, the validity of Kohlrausch's law of the inde- 
pendent migration of ions is almost axiomatic; according to this 
law each species of ion present contributes at infinite dilution a 
definite amount to the total equivalent conductivity, regardless of 
the nature of the other ions present. Thus for an electrolyte giving 
two kinds of ions, 

Ao = A! + A! . . . . (6.2) 
The values of At and Af may be determined by measurements of 

transport numbers t, which may also be extrapolated linearly to 
infinite dilution against the square root of concentration. Thus 

. . . .(6.3) 
The accuracy with which such measurements confirm Kohlrausch's 
law of the independent migration of ions may be seen from the 
data in Table 6.1 for aqueous potassium and sodium chloride 
compiled from papers by GORDON and his collaborators'1). These 
measurements represent probably the most accurate test yet made 
of the Kohlrausch principle; it will be noted that even at 45" where 
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'limp. OC 15' 25' 35O 45" 

A; NaCi 101-18 126.45 153.75 182.65 I 76.35 92.22 108.88 
tt (NaCI) 
g(NaCI) 61-43 

0.607 I I 0.6038 I 0.5998 1 0-5961 

121.07 149.85 180.42 

2.2 KCI) 61.41 76.35 92.21 
%F&) I 0.5072 1 0.5095 1 0.51 I 1  

ho in (cm* Int. R-* equiv.-') 

values of Ao in terms of other properties of the ions is, however, a 
much more difficult problem, of which at present only a qualitative 
treatment can be given. 

The limiting equivalent conductivities of a number of ions at 
25" in water are compiled in Appendix 6.1. These have been 
obtained as follows: the best available data for A0 for various salts 
have been selected from the literature as indicated by the references 
quoted. In the case of chlorides, the cation mobility At has been 
computed as A! = A0 - A&- using the value ,I&- = 76.35 obtained 
from Gordon's data (Table 6.1). The values for other anions have 
then been computed as 4 = A0 - A! using wherever possible A0 
values for potassium or sodium salts and the tabulated values for 
A&,+ or A&+. This is done to ensure the self-consistency of the 
tabulated values, but means that in some cases the value given for 
A0 is not quite that decided upon by the workers referred to, owing 
to a different choice of the limiting transport numbers. The table 
will, however, permit the calculation of Ao from the constituent A0 

values within the experimental error. 

T H E  INTERPRETATION OF T H E  LIMITING EQUIVALENT 
CONDUCTIVITIES O F  IONS 

The most striking feature of the ionic conductivities compiled in 
Appendix 6.1 is the extremely high mobility of the hydrogen ion, 
which clearly suggests that a special mechanism is involved in its 
motion. It is scarcely possible to imagine that the bare proton 
could be moving freely through the solution, for this would lead to 
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LIMITING EQUIVALENT CONDUCTIVITIES OF IONS 

an almost infinite mobility. Nor is it possible to regard the moving 
entity as the H,O+ ion, (though this formula is often written for the 
aqueous hydrogen ion) since this ion would have dimensions 
similar to those of a water molecule, and the mobility of the water 
molecule is known from experiments on the self-diffusion of water 
to be similar to that of simple ions such as K+ and CI-.t A nason- 
able explanation has been found") in t e r n  of a 'proton jump' 
mechanism, by which a proton passes from one water molecule to 
a fhvourably oriented neighbouring one, but in doing so leaves 
these molecules unfavourably oriented for another jump. 

At any one time, only a few of the protons in a solution will be 
indulging in these 'jumps'. The majority will be definitely associated 
with one water molecule or another, and to this extent it is legitimate 
to write the hydrogen ion as H,O+. However, it is believed that this 
ion can fit into the normal coordinated structure of water almost as 
well as can an ordinary water molecule, so the charged molecule 
may become the centre of a rather firmly associated group of water 
molecules; it may, in fact, become fbrther hydrated. This would 
explain the remarkable similarity between the activity coefficients 
of lithium chloride, bromide, iodide and perchlorate and those of 
the corresponding acids, which implies that from a thermodynamic 
point of view the hydrated lithium ion and the hydrogen ion are of 
nearly the same size and involve about the same number of water 
molecules, while the proton-jump mechanism accounts for the fact 
that the mobility of the hydrogen ion under an applied electrical 
field is some ten times that of the lithium ion. The suggested proton 
jump mechanism can be represented diagrammatically (after 
GLASSTONE, LAIDLER and E Y R I N ~ ~ ) )  as follows: 

H H H H 

H-0-H + 0-H + H-0 + H-0-H + + 
The abnormally high mobility of the aqueous hydroxide ion, which 
is second only to that of hydrogen ion, may be similarly accounted 
for by the proton-transfer process: 

H H H  H 

0-H + 0 + 0 + H-0 

I I I I 

I I I  I 
- -  

t The mobility of the H,O+ ion as a unit may be approximately calculated in 
units of equivalent conductivity as D* = RTA/( lzlFa) where D* is the sclf-diiusion 
coefficient of water (- 2.4 x - Wcm* 
0 - 1  quiv.-l. 

c m * s c ~ - ~  at 25'). This gives 
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If (A'frc, - AbC,)/A& is taken as a measure of the abnormal 
hydrogen ion mobility, the data in Appendix 6.2 give 2.26, 1.84 
and 1.07 for this ratio at 0", 25" and 100" respectively, suggesting 
that the breaking of the water structure reduces the abnormal 
mobility. A pressure of 3,000 atm.,('a) however, increases the abnor- 
mal mobility, the ratio being 2.15 compared with 1.84 at 1 a m .  

The equivalent conductivity of hydrochloric acid which is 426.1 
in water at 25" is only 198.5 cmz 0-l equiv-' in methanol whilst it 
has a minimum value in a water-methanol mixture containing about 
10 per cent by weight of water(s). In this mixed solvent its conduc- 
tivity is similar to that of sodium chloride. It is evident that the 
proton jump via the CHsOH; complex is less effective than it is via 
the HsO+ complex and that the abnormal mobility is absent in 90 
per cent methanol. 

Having eliminated these two exceptional cases, we find that some 
further interesting generalizations emerge from an inspection of 
Appendix 6.1. The maximum mobility of monovalent ions (at 25" 
in water) is about 75 equivalent conductivity units; the mobilities 
of K+, TI+, NH;, C1-, Br-, I-, NO;, C10; all cluster closely about 
this value. It appears that these ions lie in a critical range of size: if 
they were smaller (in terms of crystallographic radius) they would 
acquire a permanent hydration sheath and end up larger and with 
lower mobility, as do sodium, lithium and fluoride ions; if they 
were larger in crystallographic radius, they would not hydrate, but 
would be slower-moving merely on account of their size like, for 
example, the carboxylic acid anions. 
The order of the mobilities of the alkali-metal cations is the 

inverse order of their crystallographic size, which is of course in 
accordance with the expectation that ions of the greatest surface 
charge will be most strongly hydrated. The same order holds for 
the bivalent cations, though the practically identical values for Ca++ 
and Sr++ suggest that these two hydrated ions have very similar 
dimensions. (This similarity is not so marked in the activity 
coefficients of calcium and strontium salts.) The mobilities of the 
bivalent cations cover only a small range, about 53-63 units; this 
may well be because they all have one firmly attached layer of 
water molecules and only a few in a second layer. Among the few 
bivalent anions for which data are available the symmetrical tetra- 
hedral sulphate ion shows a substantially higher mobility than the 
others and even than the bivalent cations, suggesting that it is 
sufficiently 'padded' with oxygen atoms to prevent any extensive 
hydration. Comparison of the structurally rather similar sulphate 
and perchlorate ions on the basis of Stokes' law radius, 
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I = 0.8201zl/(A0q0), however, indicates that the sulphate ion has a 
substantially larger ‘radius’, about 70 per cent greater than that of 

The trivalent cations of the rare earths, as might be expected, all 
show very similar mobilities, close to A0 = 70; the ions are evidently 
all hydrated to much the same large extent. This conclusion is 
confirmed by the fact that the activity coefficient data for their 
chlorides all require values of the ion size parameter u which lie in 
the range 5.6-6.0A. Their mobilities are strikingly lower than 
those of the trivalent complex ions C0(NH3);8++ and Fe(CN);--, 
which are both close to 100 units; in these ions the place of the first 
layer of water molecules is taken by NH, and CN- respectively, and 
water molecules do not appear to attach themselves to these 
‘foreign’ groups as readily as to other water molecules. The various 
polyphosphate ions, which have been carehlly investigated by 
DAVIES and MONK(*), provide interesting examples of anions with 
high negative charges, and attention should also be drawn to 
JAMES’ studyc6) of the sexavalent cation [Co, ttim$+ of tris-triethy- 
lenetetraminecobaltic chloride, a quadridentate compound con- 
taining two cobalt atoms and three triethylenetetramine 

( NH2*CH2*CH,*NHCH,*CH3*NHCH2*CH2-NH2) 

CIO,. 

molecules. 
The tetra-alkyl ammonium ions(6) are of great theoretical interest 

because they combine large size and symmetrical shape with low 
charge, and furthermore, some of their salts are soluble in many 
solvents besides water. In the other solvents, however, the individual 
ionic mobilities are less certainly known because (a) the conductivity 
measurements are in general less easily extrapolated to infinite 
dilution and (b) the limiting transport numbers are seldom known 
experimentally but have to be guessed on some reasonable basis. 
The 1 0  values used in compiling Appendix 6.1 for these ions in 
water at 25” represent the latest values given by Kmus and his 
collaborators(’), obtained from measurements by the most fastidious 
techniques extending to concentrations as low as molar, and 
are almost certainly to be preferred to the numerous earlier values 
to be found in the literature. They are of great value as a test of 
the validity of Stokes’ law for ions in aqueous solutions. There is 
strong reason to believe, from an examination of the temperature- 
dependence of ionic mobility (see pp. 128-129) that for ions which 
are (a) intrinsically large and of low surface charge, or (b) of 
sufficiently large surface charge to form firmly hydrated entities, 
Stokes’ law is of the correct form though the numerical constant 
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may not be 6R. For these ions the product Aoq0 is very nearly 
constant over a fair range of temperatures in water. The possibility 
therefore presents itself that we might use the mobilities of the 
tetra-substituted ammonium ions to calculate correction factors for 
Stokes’ law in water, and then by using these factors, calculate the 
size of the strongly hydrated ions from their mobilities. In order to 
do this it is of course necessary to know the sizes of the substituted 
ammonium ions. A fair approximation to their sizes may be 
obtained as follows: 

1. The effective radius of the N(CHs)t ion can be estimated from 
the N-C internuclear distance of 1-47 A to which is added Pauling’s 
value of 2.0 A for the Van der Waals radius of the methyl group 
as a whole, giving 3-47 A. 

2. For the ion N(C,H,)$ a similar calculation from bond-lengths 
and angles indicates a maximum radius of about 4*2A, while a 
scale model (using ‘Catalin’ atomic models) suggests an average 
radius of about 4.0A; the value is somewhat dependent on the 
configuration given to the C-C-H linkages. The latter value is 
probably preferable. 
3. For the higher homologues, it is not easy to estimate a radius 

from bond lengths or models, as too many configurations exist. The 
following rather tentative method may be tried: the first two 
members of the series are structurally very similar to the sym- 
metrical paraffins C(CH3), and C(C,H,), which have molal volumes 
of approximately 120 cm3 and 170 cms respectively. One would 
expect the radii to be directly proportional to the cube roots of the 
molecular volumes, and one finds, in fact, that the empirical 
relation : 

r w 0.72v1‘3 

(with r in A and Pin cms per mole) gives for the first two members 
r = 3.55 A and r = 3.99 A in adequate agreement with the values 
given above. One may then estimate approximate radii for the 
higher members by this formula, assuming for the density of the 
corresponding paraffins the value of 0.75 which is typical of the 
higher paraffins. The radii of the ions calculated in this way are 
given in the column headed r in Table 6.2. The Stokes’ law radii 
obtained from the limiting mobilities of Appendix 6.1 are given in 
the column headed rs; since the viscosity of water at 25” is 0.008903 
poise, equation 2.49 becomes r, = 92-1/P for monovalent ions. 
The ratio r/rs can be regarded as a correction factor for Stokes’ law 
in water and the table su gests that the law is applicable for 
particles greater than - 5  R in radius, but gives radii which are 
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Tdla 6.2 

I = radius estirnated &om molecular volumes or models. 
1, =radius calculated from the limiting mobility by 

Stokes’ law. 

considerably too small when applied to particles smaller than this. 
The correction factor is plotted against the Stokes’ law radius in 
Figure 6.1. We may now very tentatively use this graph to estimate 

Figure 6.1. T U  concctiOn faGbrJ for Shkes’ law in water at 25O 

the radii of heavily hydrated ions from their limiting mobilities, 
assuming these corrections to apply. The results for a number of 
ions are given in Table 6.3; the calculation is of course confined to 
cases where the ion is of symmetrical shape and has a Stokes’ law 
radius, rs = 0.8201zl/(A0q0), in the range above 2-0 A. 

The ‘corrected Stokes’ law radius’ of the hydrated ion can then 
be used to estimate its volume, and since the volume of the bare 
ion itself is negligible compared to the resulting values, a rough 
estimate can then be made of the average number of water molecules 
involved in the hydrated entity by neglecting the electrastriction of 
these molecules, and ascribing to them their ordinary liquid volume 
of 30 As. The hydration numbers ‘h’ so obtained are given in the 
last column of Table 6.3, and it must be admitted that they are 
eminently reasonable. 
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Tabk 6.3 
Estimaks of the Radii of Hyakated Ions from Modifid Shkd  Low: 

Ion 

Na+ 
Li+ 
Be++ 

ca++ 
Sr++ 
Ba++ 
Zn++ La+++ 

Mg++ 

r 
r tnrJ h It0 '8 (vs@- (cu A) lografihu) 

50.10 1.83 3.3 0-97 150 5 
38.68 2-37 3.7 0.60 210 7 
45 4.08 4.6 - 410 13-14 
53.05 3.46 4.4 0.65 360 12 
59.50 3.09 4-2 0.99 310 10 
59-45 3-09 4.2 1.13 310 10 
63.63 2.88 4.1 1.35 290 9-10 
53.0 3.46 4-4 0.74 360 12 
69.75 3.95 4-6 1.15 410 13-14 

(The correction factor L is read from Figure 6.1 for the value of r, in thc third 
column.) '8 

T H E  V A R I A T I O N  O F  L I M I T I N G  I O N I C  C O N D U C T I V I T I E S  
WITH T E M P E R A T U R E  

The data given in Appendix 6.1 are mainly confined to cases 
where accurate values of the limiting conductances of salts of the 
ions have been determined at 25" by means of measurements 
extending down to very low concentrations, e.g., 10-8 to lO-*N, 
making possible reliable extrapolations for no. A few less reliable 
values, e.g., that for Be++, have been included for completeness. A 
much more extensive tabulation, including data for other tempera- 
tures, is given by WALDEN(*). There is an extremely large body of 
conductivity data for 18", which was the standard temperature for 
many physico-chemical studies in Britain and Europe until the 
1920'~~ when the American practice of using 25" as the standard 
temperature became general. Other temperatures for which data 
are fairly plentiful are 0" and 100". However, the use of the precise 
moving boundary method for determining transport numbers has 
been mainly confined to 25", with the result that transport numbers 
for other temperatures are less certainly known. 

The most accurate information we have on the variation of ionic 
mobilities with temperature comes from the work of GORDON and 
his collaborators(1~ 9),  who have measured the conductivities and 
transport numbers of potassium chloride, sodium chloride and 
calcium chloride and the conductivity of potassium bromide at 15", 
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25", 35" and 45". Their measurements were carried to concentra- 
tions low enough to permit reliable extrapolation to zero concen- 
tration. 

Their transport numbers for the chloride ion in potassium 
chloride solution at infinite dilution, &-, are plotted against the 
temperature in Figure 6.2. (The results do not confirm the claim 
of some earlier workers that transport numbers tend to approach 
the value 0.5 as the temperature is raised,) From this curve a value 

Figure 6.2. Limiting transjwt number of Ilu chloride ion in aqueous polassium 
chlmidc as a fmtwn  oftcmjicrahac 

of &- = 0.5079 may be interpolated at 18". The four points on 
this graph suggest that an extrapolation to 0" would give @I- m 
0.504. Walden, before Gordon's data were available, estimated a 
value of 0-507. OWEN('@) has fitted the conductivity data for a 
number of electrolytes to a cubic equation in the temperature; if 
his equation is used for extrapolation, it appears that at low 
temperatures the transport number decreases more rapidly with 
decreasing temperature than the results between 15" and 45" 
suggest. On this basis values of 0.502 and 0-504 at 0" and 5" 
respectively would seem reasonable and will be used for fbrther 
calculations. At high temperatures the position is much less satis- 
factory. To wrtrapolate Gordon's data for more than 10" or so 
beyond 45" would be risky; but it seems likely that even at 100" 
fcl- should lie between 0.51 and 0.53. Owen's equations lead to 
0.522 ; Walden in his compilation in Landolt-Barnstein's 'Tabellen' 
adopts the value 0.509; here we shall assume that &- (100") = 0.52; 
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the difference is unimportant for the purpose of examining trends 
in ionic mobility with temperature, but our figure seems more in 

keeping with the slow increase observed by Gordon between 15" 
and 45'. 

Having settled upon these values for the transport number of 
chloride ion in potassium chloride, we can now use them in con- 
junction with the limiting conductivities of potassium chloride to 
calculate values for the limiting conductivity of the chloride ion at 
various temperatures. 

With these values for the chloride ion as a basis, the limiting 
conductivities of many other single ions may be computed from the 
Ao values for various salts. A representative selection is given in 
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Appendix 6.2 which has been compiled from the sources given in 
the footnotes. 

The temperature variation of ionic conductivity is large, involving 
a five- or six-fold change over the range 0" to 100". There is no doubt 
that the increasing mobility is closely related to the increasing 
fluidity of water; this can be shown by plotting the product Aoqo 
( q o  = the viscosity of water) against the temperature as in Figure 
6.3. It  is noteworthy that the ions for which PqO is most nearly 
constant are those of large size, whether this large size is due to their 
being polyatomic (e.g., acetate and substituted ammonium ions) or 
to extensive hydration (e.g., Li+, Ca++, La*+). This observation 
does a good deal to justify the arguments by which we estimated 
the sizes of highly hydrated ions in terms of those of the substituted 
ammonium ions (see pp. 124-126). 

The monatomic ions, K+, Rb+, Cl-, Br-, I-, and ClO;, NO; are 
of similar mobility, and show a similar variation of the product 
A O q O  with temperature; this behaviour shows up clearly in Figure 6.3 
in contrast to the approximate constancy of A O q O  for the larger ions. 
I t  should be noted, however, that even with these ions the variation 
of Aoqo with temperature is only of the order of 30 per cent over 
the range 0' to 100". This suggests that ordinary viscous forces 
account for most of the resistance to the motion of these ions in 
water, though there is evidently some other effect operative as well, 
which is important enough to render useless any attempt to estimate 
the sizes of these ions on the basis of Stokes' law. 

IONIC MOBILITIES I N  NON-AQUEOUS S O L V E N T S  

The measurement of the conductivities of non-aqueous solutions is 
a straightforward matter, the main requirements being careful 
attention to the purity of materials and the exclusion of atmospheric 
moisture. The work of KRAUS and his school(11' may be quoted as 
examples of the most precise techniques. It is, however, much more 
difficult to obtain from the experimental results accurate values for 
limiting ionic conductivities. First, the low dielectric constants of 
most non-aqueous solvents result in a much more pronounced 
decrease of the equivalent conductivity with concentration than is 
the case for aqueous solutions; and the theory required in extra- 
polating the conductivity to zero concentration is complicated by 
the effects of ion-pair formation. These difficulties can, however, 
be overcome, partly by carrying the measurements to very low 
concentrations, and partly by the introduction of a finite dissocia- 
tion-constant into the conductivity formulae. The latter method 
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has been highly developed by Fuoss, and is discussed in Chapter 14. 
The second and more serious difficulty is that at present there are 

practically no accurate transport number data available for non- 
aqueous electrolytes. The measurement of transport numbers in 
aqueous solutions has been developed to a high pitch of precision, 
the moving-boundary method of Longsworth being the standard 
method for dilute solutions. GORDON and his cO-workers(l*) have 
successfully applied this method to sodium and potassium chlorides 
in pure methanol and in methanol-water mixtures, (see Chapter 7) 
and HARNED and DREBY(~~) have derived the transport numbers of 
hydrochloric acid in dioxane-water mixtures from electromotive 
force studies. Measurements in mixed solvents, interesting though 
they are, present new theoretical problems connected with the 
preferential solvation of ions by one component of the solvent, and 
are therefore of less direct interest than would be the corresponding 
data in single non-aqueous solvents. 

Many attempts have been made to estimate separate ionic con- 
ductivities from those of salts on a hydrodynamic basis. WALDEN(~') 
found that the limiting equivalent conductivity of tetra-cthyl- 
ammonium picrate in a wide variety of solvents including water 
conformed closely with the formula: 

AOqO = constant 
which is derivable from Stokes' law and is known as Walden's rule. 
Walden's data showing the constancy of the product AoqO for this 
particular salt at various temperatures and in various solvents are 
quite striking. A similar constancy was found for tetramethyl- 
ammonium picrate, but the higher homologues, e.g., tetra-iso-amyl 
ammonium picrate, showed considerably larger variations of the 
AOqO product. Walden considered that the constancy found for 
tetraethyl ammonium picrate justified the assumption that the 
picrate ion separately would have constant values of the product 
AOqO; on this basis, he deduced Ao values for the picrate ion in 
non-aqueous solvents from the known value of A0 in water, the only 
solvent for which accurate transport number measurements are 
available: for water, the value is found to be Aoqo = 0.270 cm2 
51-1 equiv-1 poise. Limiting conductivities of other cations can then 
be found by subtraction of the appropriate value for the picrate ion 
from observed value of A0 for various picrates in other solvents. 

Walden's assumption of a constant value of AoqO for the picrate 
ion has been challenged by KRAud6), who prefers to estimate trans- 
port numbers on the basis that the large tetra-n-butylarnmonium 
and triphenylborofluoride ions should have equal mobilities in 
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all solvents: thii permits the estimation of separate ionic equiva- 
lent conductivities which are believed to be reliable within 5 per 
cent. The ionic conductivity values so obtained for the picrate 
and tetra-ethylammonium ions do not exhibit the constancy of the 
product A O q O  assumed by Walden, that for the picrate ion varying 
from AOqO M 0-24 in ethylene dichloride to 0.30 in pyridine. 
Furthermore, Kraus cites data which show that the product AoqO 
for tetra-ethylammonium picrate itself is by no means as constant 
as Walden claimed: this argument is independent of any arbitrary 
choice of transport numbers. In pyridine, in particular, the con- 
ductivity is abnormally high. While Walden’s rule gives a useful 
guide to the conductivity to be expected, it cannot be considered 
quantitatively reliable. In a limited way, it is ofvalue in interpreting 
the variation ofionic conductivities with temperature in one solvent: 
this aspect has been considered for aqueous ions on p. 124. The 
obtaining of accurate experimental transport number data for non- 
aqueous solutions is clearly the key to further progress in under- 
standing the interactions of ions with these solvents. 

The conductivities of electrolytes in methanol and hydrogen 
cyanide and some amides as solvents are discussed in the next 
chapter and concentrated sulphuric acid as a solvent for electrolytes 
is considered in Chapter 13. In solvents of lower dielectric con- 
stant, electrolytes readily form ion-pairs; this is discussed in Chapter 
14, but mention may now be made of Appendix 14.2, which gives 
the limiting equivalent conductivities and dissociation constants of 
a number of electrolytes in non-aqueous solvents. 
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7 

THE VARIATION OF' CONDUCTIVITIES 
AND TRANSPORT NUMBERS WITH 

CONCENTRATION 

IN THE last chapter we have considered the equivalent and ionic 
conductivities at infinite dilution, i.e., in a state where the ions are 
far enough apart to be without influence on one another. We now 
take up the question of the variation of conductivity with concen- 
tration, a problem which calls on all the resources of ionic inter- 
action theory. There are two main effects of the interaction 
between the electric charges of the ions: these are the electropiroretic 
effect and the relaxation efect. 

THE ELECTROPHORETIC EFFECT 

The electrophoretic effect arises in the following way. When an 
ion moves through a viscous medium it tends to drag along with it 
the solution in its vicinity. Neighbouring ions therefore have to 
move not in a stationary medium but with or against the stream 
according as they are moving in the same direction as the first ion 
or oppositely. The effect will clearly be concentration-dependent, 
falling to zero at infinite dilution, and its computation will require 
the use of the distribution function, since it involves the distances 
between ions. For the equilibrium case where no external forces 
such as electric fields or concentration-gradients are acting on the 
solution, we have been obliged to adopt the distribution functions 
(4.9) for unsymmetrical electrolytes, and (4.14) for symmetrical 
electrolytes; these conform to the Boltzmann distribution law as 
nearly as is permitted by the principle of the linear superposition 
of fields, and are mathematically consistent with the expression 
(4.13) for the potential yfi If the ions are moving under the 
influence of external forces, these distributions will in general be 
disturbed. In the case of the diffusion of a single electrolyte, how- 
ever, all the ions must move with the same velocity, and the sym- 
metry of the distribution is not affected. In this case, therefore, 
the electrophoretic effect may legitimately be computed from these 
distribution functions. In electrical conduction the symmetry will 
be disturbed; this gives rise to the relaxation effect which will be 
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discussed later, but we shall neglect the effect of the dissymmetry 
when calculating the electrophoretic effect in conduction. Also, for 
the sake of generality, we shall use the Boltzmann distribution law 
(4.5) rather than forms (4.9) or (4.14), in order to facilitate the 
investigation of questions of convergence; the results corresponding 
to the distributions (4.9) and (4.14) can then be obtained as special 
cases of the general formula. However, we retain the simple expres- 
sion (4.13) for the potential y,. The treatment of electrophoresis 
given here is essentially that of ONSAGER and Fuoss'~), but employs 
the general term of the Boltzmann distribution law. We shall also 
confine ourselves to solutions containing only a single electrolyte, 
subscripts 1 and 2 denoting cations and anions respectively, and a 
subscript A the solvent. 

In the cases considered here, bulk motion of the solution as a 
whole is irrelevant; it follows that the forces k ,  and k ,  acting on 
the ions must be balanced by other forces kA acting on the solvent 
molecules; and denoting the respective bulk concentrations by 
nl, na and nAy we have: 

. . . . (7.1) 

At a distance r from a chosen cation the local concentrations of ions 
are given by the Boltzmann expression (4.5). A spherical shell of 
radius r and thickness dr is subject to a resultant force given by: 

(nik, + nik, + nAkA)'hTY2 dr 

Provided that we neglect any variation in nA at this point from its 
bulk value (a course which is safe for dilute solutions), we can 
eliminate nAkA by means of (7.1) obtaining for the resultant force 
on the shell: 

[(n; - n,)k, + (ng - n,)k,]4m2 dr 

This force is assumed to cause the shell and all points within it to 
move with a velocity obtained, according to Stokes' law, by dividing 
the force by h q r .  Each shell thus contributes an electrophoretic 
increment to the velocity of the central ion, and the whole incre- 
ment, AD,, is obtained by integrating over all the shells, beginning 
at r = a (the distance within which no other ions can penetrate and 
within which the electrophoretic velocity remains constant). This 
gives : 

[ (n;  - n,)k, + (n; - %)k&dr . . . .(7.2) 

134 



THE ELECTROPHORETIC EFFECT 

If we take n; and 6 to be given by the Boltzmann distribution (4.5), 
we have on expanding the exponentials: 

I t  will prove convenient to express the concentrations n, and n3 in 
these formulae in terms of the quantity (KU). From equation (4.12) 
we have, using the electrical neutrality condition, n,z, + n8z) = 0, 

1 
n 8 = -  - Ei' (&:=)-' Z~( -?O - 21) 

Using these values in (7.3) and taking the potential fp to be given 
by equation (4.13), we obtain from equation (7.2): 

&'k, - 4-'k,  (- 1)" .- 
21 - 28 n !  

The integral occurring in (7.4) can always be evaluated as:* 

. . . . (7.5) 

where &(KO) is a function of (KU)  only. Equation (7.4) may there- 
fore be more briefly expressed as: 

where the function # n ( ~ ~ )  is a function of (KO) only, and is defined 
by: 

* See appendix to this chapter, p. 170. 

135 



7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION 

The corresponding equation for the electrophoretic increment to the 
velocity of an anion, Avo, is obtained by merely interchanging the 
subscripts 1 and 2 throughout equation (7.6). The further 
abbreviation : 

is useful where A, depends only on (KO),  temperature, and solvent 
properties and is given by: 

A, = - . . . . (7.8) 

Equation (7.7) contains the (as yet) unspecified forces kl and k, 
which act on the ions. In  conductance, these forces are given by 
the product of the field intensity and the ionic charge; in diffusion, 
they are the combination of a virtual force produced by the gradient 
of chemical potential, and an electrical force due to the ‘diffusion 
potential’ which results from the electrical attraction of the faster 
moving for the slower moving ionic species. The application of 
equation (7.7) to these phenomena will be discussed later. 

T H E  ‘RELAXATION EFFECT’ I N  CONDUCTIVITY 

In general, the motion of ions under the influence of external forces 
will disturb the symmetrical distribution of the ions, and one would 
therefore expect that this disturbance would tend to decrease the 
velocity of the ions. In the solution in equilibrium, the ‘ionic 
atmosphere’ (which is a convenient description of the whole 
assemblage of ions outside the central one chosen) is on a time- 
average distributed with spherical symmetry, and therefore exerts 
no resultant force on the central ion. The central ion may then be 
pictured as moving to an off-centre position and experiencing a 
restoring force, which, however, rapidly dies away as the ‘atmo- 
sphere’ is rearranged by the thermal motions of its constituent ions. 
The molecular picture thus involves the concept of the ‘relaxation 
of the ionic atmosphere’ and the average restoring force experienced 
by the ion is called the relaxation effect. The external force acting 
on the ion may, in the conductivity problem, be taken as a field of 
intensity X acting in the x-direction; the ‘relaxation field’ will 
clearly act in the same direction but in the opposite sense, and will 
be denoted by AX. The computation of AX involves a combina- 
tion of the ideas of the interionic attraction theory with the equation 
of continuity of hydrodynamics, and is mathematically the most 
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difficult part of electrolyte theory. Because of the unavoidable 
complexity of the treatment we shall not give the complete deriva- 
tion here, but shall merely give a statement of the main results. 

The first attack on the problem of the relaxation effect was made 
by DEBYE and HUCKEL‘~); a more successful approach, however, 
was that of ONSAGER(~), who obtained the following limiting law 
for the relaxation effect on the conductivity of an extremely dilute 
solution of a single electrolyte dissociating into ions 1 and 2: 

AX z1z2e2 QK 

X 3 ~ k T  I +dq 
-.=-.- ....( 7.9) 

Here the quantity q is defined by: 

= 3 for symmetrical electrolytes where lzll = Iz2[ . . . . (7.10) 

The total electric force acting on the ion is thus given by Xqe 

(1 + g) and produces a velocity (relative to the solvent) of: 

uj’ = X z e d  1 + - 
f ’ (  “x“) . . . .(7.11) 

where uj is the absolute mobility of the ion. At infinite dilution, the 
velocity produced by the field X is: 

uj = Xzjeuy . . . .(7.12) 

Hence introducing (7.9) we have: 

as Onsager’s expression for the velocity of the ion, corrected for the 
relaxation effect. Before calculating the further correction required 
to take the electrophoretic effect into account, we shall consider 
later developments in the theory of the relaxation effect. In 
Onsager’s treatment, several approximations are made : (a )  The 
potential ‘pi is taken as given by the expression: 

zre e-* y, = -- - 
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P 
i.c., the factor - is omitted from equation (4.13). This means 1 -k KU 

that the resulting expression is valid only at great dilutions where 
KU is small compared with unity. (b) Various other approximations 
involving the relation AX << X are made: these also will be admis- 
sible at great dilutions where the relaxation effect is small. 
For some twenty-five years after the appearance of Onsager's 

theory no major progress was made with the relaxation-effect. From 
1952 onwards however a number of extensions and refinements have 
appeared, in all of which the most important new feature is the 
introduction of the ion size parameter u, making possible a con- 
siderable increase in the range of validity of the theory. 

The 1952 paper of FALKENHAGEN, LEIST and KELBGta) employed 
the Eigen-Wicke distribution function mentioned in Chapter 4, in 
place of the usual Boltzmann one; this makes only a minor differ- 
ence in the meaning of the quantity K and need not be considered 
further here. They obtained for the relaxation-effect, allowing for 
finite ion size, the expression: 

[P"('-''q) - 13 . . . . (7.13) AX - t l Z s e 2  q K 
- - - * -  
X 3ekT I - q ' (1  + KQ)KU 

Expanding the exponential in (7.13) as far as the first power of (KO) 

gives: 

(7.14) 

which differs from Onsager's result (7.9) only by the factor (1 + KU) 

in the denominator. Thus they found the effect of finite ion size on 
the relaxation-effect to be of the same form as its effects on the 
free energy and on the electrophoretic effect ($. equation 9.5 and 
7.27). 

Almost simultaneously, PITTS(~) investigated the conductance of 
symmetrical electrolytes; his equation is compared with others in 
reference (6). His result, on separating out the part dealing with the 
relaxation-effect, may be written: 

AX cze2 q K r 2 e 2 K  

.- + ( 2 T ) O ?  --=- 
X 3 ~ k T  I + di'(1 + K U )  ( l - + ~ ~ d i )  . . . .(7.15) 

The second term on the right arises from the 'higher terms', S, being 
given as a function of ( K U )  in a table in the original paper. Ignor- 
ing this term, which will not appear if we adopt the 'self-consistent' 
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treatment of the potential problem as discussed in Chapter 4, we 
see that (7.15) differs from (7.14) by the presence of a further fmtor 
(1 + K U ~ )  in the denominator. 

In a subsequent paper(’), Falkenhagen’s school introduced another 
boundary condition, that the normal component of the relative 
motion of two ions must vanish at the surface of ions in contact 
since they are treated as hard spheres. On this basis they evaluated 
the relaxation-effect as: 

AX e2 4 K 
- = - - * -  

X 3ekT 1 + 4’ (1  + KU) [l  + ~a 4; + K * u * / ~ ]  

. . . . (7.16) 

for 1 : 1 electrolytes, with q = 0.5. This equation is identical with 
the first-order term of Pitt’s result (7.15), except for the further 
term (~a)*/6 in the denominator. 

In 1953 MIRTSKHULAVA(*) also published a treatment of the 
problem along the same lines as Pitts. Her result for the relaxation- 
effect is given as a complicated power series (equation 38 of ref. 8), 
involving also a term containing the exponential integral function. 
The latter is of especial interest since at very low concentrations it 
gives rise to a term in (c log c), as had been anticipated by ONSACER 
and Fuoss(I’. 

Fuoss and ONSACER(~) have recently given the most comprehen- 
sive treatment, including numerical tables of certain transcendental 
functions related to the exponential integral functions. Their final 
result, giving the contributions of both the relaxation effect and the 
electrophoretic effect, is expressed as Onsager’s original limiting- 
law result together with a very complicated function of K and a, 
for which the original papers must be consulted. They demonstrate 
that the transcendental functions involved lead to a term of order 
(c log c), although the approximations giving this form are valid 
only at extremely low concentrations. This contribution from the 
transcendental terms is quite small, but its relative importance 
increases at low concentrations, and Fuoss and Onsager show that 
neglect of it can lead to small errors in the extrapolation of conduc- 
tance data. They emphasize that the approximation of their trans- 
cendental terms to the form (c log c) at low concentrations does not 
just;+ the use of such terms with arbitrary coefficients for the repre- 
sentation of conductance data at higher concentrations, a practice 
which has been followed by many workers in the past. An arduous 
but worthwhile task for an enthusiastic algebraist would be to deter- 
mine to what extent the formulae of Fuoss and Onsager agree with 
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those of Mirtskhulava, which as far as we know have not yet been 
tested against experimental results. 

We do not consider it practicable to present the Fuoss-Onsager 
treatment in detail; even the original papers give only a condensed 
account of the development of the formulae. We shall therefore 
use for illustrating the general form of the theory, Falkenhagen's 
expression (7.16) for the relaxation effect. 

T H E  EFFECT OF ELECTROPHORESIS O N  THE 
CON DU CTlV ITY 

The general equation (7.7) for the electrophoretic increment to the 
ionic velocity may now be specialized for the case of conductivity 
by replacing the forces k, and k,, which act on the ions, by the sum 
of the forces produced by the external field X and the relaxation-field 
AX giving: 

kl = (X + AX)zle, k, = (X + AX)z2e 
. . . .(7.17) 

Equation (7.7) then becomes: 

Hence the final velocity of the ions, corrected for both electro- 
phoretic and relaxation effects, is given by combining equations 
(7.1 1) and (7.18): 

But the absolute mobility u! is also given by equation (7.12) in 
terms of the velocity v! produced by the field X at infinite dilution: 

v! = Xzleu! . . . . (7.20) 

Dividing equation (7.19) by (7.20) gives: 

Since the velocities v, and v i  are those attained under the same 
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external field X in the actual solution and in the infinitely dilute 
solution respectively, the ratio vl/$ may be replaced by the ratio 

of the equivalent ionic conductivities Al/%; and the factor - 
preceding the summation on the right may be put in terms of At, 
by the relation (cf. 2.46): 

1 
219 

U: = N1;/(F21Z11) 

so that (7.21) becomes: 

. . . , (7.22) 

the relaxation term - being given by equations (7.9), (7.14) or 
(7.16) according to the degree of approximation desired. The 
corresponding expression for the anion is: 

AX 
X 

. . . . (7.23) 

The equivalent conductivity of the electrolyte A = 1, + A,, is 
therefore : 

. . . . (7.24) 

Though we have retained the general expression('@) for the electro- 
phoretic terms in developing these expressions, it will be recalled 
that the Boltzmann distribution on which this expression is based 
is not mathematically consistent with the Poisson equation, and 
that for consistency the series can be taken only as far as the first 
term for unsymmetrical valency types, and the second for sym- 
metrical types. Furthermore, it is obvious from equations (7.22), 
(7.23) and (7.24) that in the case of symmetrical electrolytes, 
(zl = - zo), the second-order electrophoretic term (n = 2) 
vanishes identically. Hence, in all cases the first-order term alone 
need really be considered though examination of the convergence 
of higher-order terms may throw useful light on the validity of the 
approximation made to the Boltzmann distribution. 
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Thjrst-order electrophoretic term in the conductivity equation 

4, and S,, given on pp. 135-136, we have: 
Taking only the term for n 5: 1 and using the definitions of A,, 

1 KU A , =  --.- 
67711 1 + KU 

Equations (7.22), (7.23) and (7.24) therefore become: 

L ) ( l  +?) ....( 7.26) 

A = (A@ F2 AX 

. . . . (7.27) 
h11N 

T H E  ONSAGER L I M I T I N G  L A W  FOR T H E  C O N D U C T I V I T Y  

In Onsager's treatment, the further approximation of writing 
(1 + KU) m 1 in the denominator of the first-order electrophoretic 

correction is made, and the relaxation term - is expressed by the 

limiting equation (7.9). Further, in evaluating the electrophoretic 
effect the forces k, and k, are taken as Xz,e and Xc2e rather than as 
(X + AX)zle and (X + AX)c2e; this is equivalent to neglecting the 
cross-product of the electrophoretic and relaxation terms in (7.25)- 
(7.27). All these approximations are of course quite justified for the 
purpose of finding the limiting law, but it is clear that the resulting 
expression will apply only at extreme dilutions, since ( ~ a )  is far 
from negligible compared to unity at ordinary concentrations, and 
diminishes only as dc. The Onsager limiting law is thus: 

AX 
X 

Since K is given by equation (4.12) it may be written as: 

K = ( - )  %Ne2 
1000ekT 
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where I is the 'ionic strength' defined by: 

with the usual convention that c implies the mole/l scale. Equation 
(7.28) then becomes, on inserting the values of the physical con- 
stants: 

in which q must be expressed in poise and T in OK. 
This limiting law is of the form: 

A =  A O - A ~ ~  . . . . (7.30) 

which was found by Kohlrausch to describe the variation of equiva- 
lent conductivity with concentration in dilute solutions. For aqueous 
solutions at 25' it reduces on putting E = 78.30, T = 298.16'K and 
q = 0.008903 poise, with A expressed as (cm2 51-' equiv-l), to: 

+ 30.32 (lzll + z,]) dj I 0.78521~1~81 - 
l+fi 

. . . . (7.31) 

C O N D U C T I V I T Y  EQUATIONS FOR H I G H E R  
C O N C E N T R A T I O N S  

For many years equation (7.29) was employed with added terms in 
c, 8'2, c log c, etc., to represent data at concentrations above 0*001N, 
where Onsager's limiting form is no longer adequate. For purposes 
of extrapolation, an equation proposed by SHEDLOVSKY(~~) has been 
widely used: equation (7.29) may be written: 

A = Ao - (B, A0 + BJ 6 
where B, and B2 are parameters given by the theory. Rearranging 
this to : 

Ao = (A + B2&)/(l - Bldi ) ,  . . . . (7.32) 

Shedlovsky observed that for strong aqueous 1:l electrolytes the 
quantity on the right of (7.32) is not constant, as it would be if 
equation (7.29) were obeyed exactly, but varies almost linearly 
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with c up to concentrations of about 0.1N. He therefore defined an 
extrapolation function, no', by: 

Ao' = (A + Bg&)/(l - B 1 6 )  . . . . (7.33) 

which when plotted against G would yield on extrapolation to c = 0, 
the true limiting conductivity no. This implies that data up to 
0. IN can be fitted by the expression: 

A = A 0 - ( B l A o + B 2 ) A + b ~ ( 1  - B l d c j  ....( 7.34) 

where the coefficient b is chosen to fit the data. Useful as this device 
is, its weakness lies in its empirical nature, no simple meaning being 
attached to the b coefficient. Fuoss and ONSAGER(*) have shown 
that the approximate constancy of b can be accounted for as a 
fortuitous consequence of the numerical values of certain terms in 
their complete theory. 
Still denoting the coefficients of the relaxation and electrophoretic 

terms in equation (7.29) by B, and B, respectively, we can combine 
Falkenhagen's equation (7.16) with equation (7.27) to obtain: 

. . . . (7.35) 

If we expand this product in powers of di, putting KU = Bu&, 
we obtain: 
A = A0 - (B,AO + B,)& + c(uBB2 + B,B, + 1*707A0 u BB,) 

- 2.707 u BBlB2 $I2 + . . . 
Since for most aqueous 1:l  electrolytes Bu w 1 (mole-* litrei), 
whilst B, w 0.2, B, M 60 and A w 100, the coefficients of the 
terms in c and B 1 P  are of the same magnitude; to this extent the 
expression provides some justification for the form of Shedlovsky's 
function. 

Another useful approximation is that proposed by the authorst12) 
shortly after the appearance of Falkenhagen's earlier equation 
(7.13). Combining (7.14) with (7.27) and neglecting the cross- 
product of the relaxation and electrophoretic terms, gives: 

. . . . (7.36) 

i e . ,  we have merely to divide the square-root term of Onsager's 
original limiting law by (1  + KU) in order to allow for the finite 
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ionic size. Equation (7.36) gives a very fair account of the conduc- 
tances of aqueous 1: 1 electrolytes up to 0.05 or 0.1N. It  may be 
rearranged as: 

A O = A +  BlA 4 - 4  - & 
1 + (Bu - B , ) d c  . . . . (7.37) 

0.0 
0.05 
0.1 
0.2 
0-3 
0.5 
0.7 
I .o 
I *2 
1 -4 
1 -5 
1 *6 
1 *8 
2.0 
2.5 
3-0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 

0 
4.762 
9.09 1 

16.67 
23-08 
33.33 
41-18 
50-00 
54.55 
58.33 
60.00 
61.54 
64.29 
66.67 
71.43 
7542 
77-78 
80.00 
8 1 *82 
83.33 
84.62 
85.7 1 

0 
0-4566 
1.235 
2.91 1 
4.405 
6.628 
7.987 
9.032 
9.327 
9.434 
9.429 
9.41 I 
9-316 
9.170 
8.692 
8.172 
7.662 
7.187 
6.753 
6.359 
6.002 
5.68 1 

0 
0-1609 
0.476 I 
1.166 
1.734 
2.425 
2.686 
2-678 

0 
0.0884 
0-2624 
0-6 192 
0-876 
1.100 
1.096 
0-938 

0 
0.0584 
0.1693 
0.3764 
0.499 
0-552 
0.49 I 
0.37 

From STOKES, R, H., J .  AM. c h .  Soc., 75 (1953) 4563. 

where K = B d i ,  which is a useful form for determining Ao. Its 
advantage over Shedlovsky's function is that the parameter u has a 
simple physical meaning and can be expected to lie in the range 
3 - MA; for fully dissociated 1 : 1 electrolytes it has been found 
to be nearly independent of temperature for any given electrolyte 
(see Tubk 7.3). 

145 



7 VARIATION OF CONDUCIWITIES WITH CONCENTRATION 

To each of these equations (7.29, 7.35, 7.36) for A there of course 
corresponds a pair of equations for 1, and A2 separately; these are 
obtained from equations (7.25) and (7.26) by the same method, 
and differ only in that 1, or 1, replaces A, or 1; replaces A@, 
and in the electrophoretic term lcll or Ic21 replaces the sum 
[I.z,l + IzSl). The relaxation term for the separate ions in the 
equations corresponding to (7.33) and (7.34) is exactly the same as 
in these equations for A. 

C O N V E R G E N C E  OF T H E  ELECTROPHORETIC TERMS 

W e  now return to equation (7.24) where the electrophoretic contri- 
bution appears as the series: 

In this series the quantities A, are given by the equation: 

The dimensions of A, are those of (viscosity-' length"-'). The 
dimensionless function #,, (KU) for values of n up to 5 is given in 
Table 7.1. In deriving the conductivity equations, we have used 
only the first-order electrophoretic term, obtained by putting n = 1 

Tablc 7.2 

Valency typc n = I 

1 : 1  

1 : 2 a n d 2 :  1 

in the above formula, a course adopted in the interest of self-con- 
sistency. The question as to whether the series does converge rapidly 
enough to make this expedient successful has been investigated by 
STOKES('~' who showed that for aqueous solutions at 25' convergence 
depends on the factor : 

(2: - t32 
a" (IZll + Iczl) 

rather than the quantity A,. Table 7.2shows how this factor behaves 
for various valency types. 
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Bearing in mind that the ion-size parameter u is in the vicinity 
of 4A for most simple ions, it is apparent from Table 7.2 that the 
electrophoretic terms given by the series in (7.24) will converge 
quite satisfactorily for 1 : 1 electrolytes in water, so that the formulae 
proposed for the conductivity, in which only the term n = 1 is 
accepted, should be adequate. For 2 : 2 electrolytes, in spite of 
the vanishing of the even-order terms, the convergence is unsatis- 
factory since the third- and fifth-order terms will be of comparable 
magnitude to the first. For unsymmetrical valency types, none of 
the terms vanish and convergence will be slow, though somewhat 
assisted by the alternation of signs. In non-aqueous solvents the 
dielectric constant is usually lower than that of water (hydrocyanic 

acid is one exception) ; therefore the factor - which appears to 

the (n - 1)th power in the expression for A,, will be larger and will 
militate further against satisfactory convergence. We cannot, 
therefore, really expect the present treatment to be quantitatively 
successful except for 1 : 1 electrolytes in water, unless there are 
good reasons for ascribing a large effective size u to the ions; this 
foreboding is, in fact, fulfilled. Merely to include the highersrder 
electrophoretic terms is not a satisfactory solution, since the formulae 
from which these terms have been computed are self-consistent only 
as far as the first order for unsymmetrical electrolytes and as far as 
the second order for symmetrical ones. The formulae obtained 
above for the higher-order terms are therefore helphl only when 
these are negligible; in other cases they serve to demonstrate the 
inadequacy of the treatment rather than to provide an adequate one. 

e2 

ekT 

EXPOPIMENTAL TESTS OF T H E  T H E O R Y  OF 
CONDUCTIVITY 

The Onsager limiting law (7.29) has been exhaustively tested by 
extremely precise experimental studies, and its validity, for the 
conditions assumed in its derivation, has been conclusively demon- 
strated. These conditions may be summed up by the requirements 
that the dimensionless parameter (KU) should be very small com- 
pared to unity, and that the electrolyte should be fully dissociated 
into ions. For aqueous solutions at ordinary temperatures, K is 
approximately 0.3 x 108 d I  (see Appendix 7.1); and the mean 
ionic diameter u is 3-5 x lo-* cm; hence KU is of the same order 
of magnitude as d I .  At a concentration where the ionic strength 
I is 0.001, KU is about 0.03, and the approximation of neglecting it 
in the factor (1 + KU) therefore involves an error of about 3 per 
cent in the value of (A0 - A). At this ionic strength, (A0 - A) is 
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about three equivalent conductivity units for 1 : 1 electrolytes, and 
rather more for higher valency types, so that the approximation is 
of the order of 0.1 units in A. This is several times the experimental 
error of the best work and shows that a concentration of one- 
thousandth normal must be regarded as a theoretical upper bound 
to the range of validity of the limiting law, even for aqueous 1 : 1 
electrolytes. In other solvents and for higher valency-types the 

Figure 7.1. Equivalent con&tioi@ if hydrochloric acid in any 
dilute aqueous soluiion at 25" 

bound is even lower. However, conductivity measurements can in 
favourable cases be carried out accurately at concentrations as low 
as O~ooOOS N: although the measured values at such concentrations 
are ofteri close to the limiting value for infinite dilution, the experi- 
mental precision is such that the difference still makes a significant 
test of the limiting law. The very carefii measurements of 
SHEDLOVSKY ct d.(18) have shown that in the concentration-range 
from 040003 to 0.001 N the Onsager formula (7.29) is obeyed 
within experimental error by aqueous sodium chloride, potassium 
chloride, hydrochloric acid, silver nitrate, calcium chloride and 
lanthanum chloride. 
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Silver nitrate actually conforms to the limiting law up to sub- 
stantially higher concentrations: this is due to the effect of ion-pair 
formation, which, though negligible below 0401 N, reduces the 
conductivity at higher concentrations by amounts comparable to 
those involved by neglecting the factor (1  + KU). Figure 7.2 illus- 
trates the concordance between the experimer tal data of Shedlovsky 
for aqueous hydrochloric acid and the predictions of the Onsager 

Figure 7.2. Conductivity of cadmium sulphak at 18" 

limiting law at concentrations below c = 0.003. For 2 : 2 electro- 
lytes and higher valency types, however, the limiting law is obeyed 
only at extraordinarily low concentrations, the formation of ion- 
pairs being appreciable even at high dilutions. It is only recently 
that evidence has been advanced to show that the limiting Onsager 
equation is valid for a 2 : 2 electrolyte. By taking extraordinary 
precautions, DEUBNER and HEISE(~~) have been able to measure the 
conductivity of cadmium sulphate solutions at concentrations as 
low as t = 2 x 10-6. Figure 7.2 shows how the seven values of the 
conductivity determined by Deubner and Heise do agree with the 
values predicted by the limiting law: 

It is clear that with increasing dilution the experimental values 
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION 

approach more nearly to the theoretical and are in good agreement 
for the four most dilute solutions. At higher concentrations the 
experimental values are lower than the predicted; as we shall see 
in Chapter 14 this is characteristic of salts subject to ion-pair 
formation. The deviation is in the opposite direction with non- 
associated salts, and Figure 7.3 illustrates this by using the data of 
Shedlovsky for sodium chloride up to comparatively high concen- 
trations. 

Valuable though the confirmation of the limiting law at these 
extreme dilutions is, there is little practical use for a theory dealing 

VC -L 

Figure 7.3. Equivalent conductivity of sodium chloride solutions al25' 

only with such solutions. More interest therefore attaches to testing 
the more complete equations for higher concentrations in which 
the factor (1 + KU) is not omitted; since these all necessarily reduce 
to the Onsager form when ~a < 1, it is clear that if they hold, the 
Onsager limiting law must also do so when only the concentration- 
range below about 0401 N is considered. 

The most careful experimental work has largely been confined to 
solutions less than 0.1 N in concentration, and the very precise 
direct current method of Gordon has been employed only up to 
0.01 N. Below 0-01 N the best measurements by different observers 
often agree within about 0.03 in A, but at higher concentrations 
uncertainties of several tenths of a unit exist. For example, the 
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Table 7.3 

M a d  I M w . 8  Jvmk 
eq. (7.36) per cent per cent of points Tmb. "C Observer (S.E.F.) Rnnsc 

( m 4  

HCl.a = 4.3 A at all r c m p c r ~ k n ~  I 
5" 297.6 1 0.03 0.09 12 

L 15" 361.89 0.04 0.09 1 1  2 25" 425.98 0.03 0.06 12 
25" 426.10 0.03 0.05 1 1  

489.02 0.02 0.06 14 35" 
550. ia 0.02 0.05 1 1  45" 

55" 609.34 0.02 0.05 1 1  
666.64 0.02 006 12 

0*001-0-083 O & S  297-6 
0-001-0.082 O & S  362.0 
0*0024*086 O & S  426.2 
O~oooO3-0.003 S 426.16 
0-001-0.062 O & S  489.2 

550.3 0.0024.090 O & S  
609.5 0*002-0*070 O & S  

0001-0*072 O & S  666.8 



7 VARIATION OF CONDIJCTIVITIES WITH CONCENTRATION 

equivalent conductivity ofO-1 N potassium bromide solution at 25" is 
given as 131.19 by JONES and BICICFORD(~~) and as 131-39 by LONGS- 
 WORTH(^^). However, since the significant quantity for the theory 
is (A0 - A) and this is larger at higher concentrations, such 
discrepancies in the data are not serious; one should, however, be 
prepared to tolerate deviations of a few tenths of a unit in A at the 
higher concentrations. 

All of the proposed equations can be expressed in the form: 

so that the problem is to find the best values of the two constants A0 
and u. T o  illustrate the precision with which their equation will 
reproduce the experimental results for a strong 1 : 1 electrolyte, 
Fuoss and ONSAGER(*) quote details for aqueous potassium bromide 
at 25'. The experimental data used are those of OWEN and ZELDES(~') 
which cover the concentration range 0.00 14-0.0072 N. By a method 
of successive approximations, the best values are found to be 
A0 = 151.75, u = 3.6 A, and the corresponding equation fits the 
data within 0-01 cm* ohm-' equiv.-'. 

Shedlovsky's empirical equation (7.34) will represent the same 
data with only slightly inferior accuracy but requires A0 = 151.68. 
Our equation (7.36) gives a similar fit with Ao = 151.67 and 
u = 3.2 A. Equation (7.35), which is that of Falkenhagen's school, 
or that of Pitts without the 'higher terms,' requires an ion size of 
2.0 A and gives A0 = 151.71. In Tub& 7.4 the predictions of these 
various equations are compared with the experimental results. 
Whilst the table shows that the Fuoss-Onsager treatment gives an 
almost perfect fit to this set of experimental results, it must be 
emphasized that the other theoretically less exact equations give 
deviations of at the worst only 0.02 cm* ohm-' equiv-l or 0.014 per 
cent. The important question is therefore whether the A0 value 
given by the Fuoss-Onsager theory is more correct than the others, 
which are 0.04 to 0.08 lower. There is no method of determining 
A0 absolutely; it must always be found by extrapolation and the 
Fuoss-Onsager theory demands that the simpler extrapolation func- 
tions should curve upwards slightly in very dilute solutions. Whether 
this actually occurs is obscured by the increasing importance of 
experimental errors at high dilutions. Probably the mmt effective 
test can be made by using data for very dilute hydrochloric acid; 
here the solvent corrections are less important than for other elec- 
trolytes, and the data in the dilute region should be correspondingly 
more reliable. Application of the Fuoss-Onsager formulae to SHED- 
I.OVSKY'S(~~) data for the range up to 0.003 N, gives Ao = 426.27, 
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compared with the values 426.16 obtained by Shedlovsky, and 
426.10 using equation 7-36 with a = 4.3 A, from the same data. 
It seems safe therefore to estimate that AQ values obtained by the 
SHEDLOVSKY(~~) or ROBINSON-STOK~~(~*' methods from data in the 
range 0.001 - 0.01 N will not be more than 0.05 per cent lower 
than the Fuoss-Onsager values. 

Bearing in mind that unless quite exceptional precautions are 
taken, the experimental data will not be of better than 0.02 per cent 

Tabk 7.4 
&uiualent conductam of potassium br& solutwns at 25" 

IWC 
mole/l. 
13.949 
27.881 
42.183 
59.269 
71.696 

Aexp. AF-o As AIL-s AP-F 

148.27 148.27 148.26 148.26 148.28 
I 46.9 1 1 46.9 I 146.92 146.92 146.93 
145.88 1455.89 145.89 145.90 145.90 
144.90 144.9 1 144-90 144.9 1 144.89 
144.30 144.30 144.28 144.29 144.28 

- 151.75 15168 151.67 151.71 - a = 3 * 6 A  b = 9 1  a=3 .2A a=2*0A 
AF-o-cakdated by Fuoss-Onsager theory including transcendental terms 

As 
A ~ - c a l c u l a t e d  by Robinson-Stokes equation, (7.36). 

(ref. 9). 
-calculated by Shedlovsky's function, quation (7.34). 

Ap-p--calculated by Falkenhagen 
equation (7.35). 

or Pitt's equations, ignoring 'higher terms.' 

accuracy, it is clear that the simpler equations will be adequate for 
most work, and the arithmetical labour of applying the Fuoss- 
Onsager theory will be undertaken only when extreme precision is 
needed. To illustrate the reality of experimental errors, we compare 
in Fig. 7.4 the results for potassium bromide at 25' obtained by 
three investigators, OWEN and ZELDES(~'), BENSON and GoRDoN(~*), 
and JONES and RICK FORD(^^). The quantity plotted is the arbitrary 
deviation function (A + 81 A). It is evident that the differences 
between various investigators are as great as the differences between 
AQ obtained by the various equations tested in Table 7.4. 

Equation 7.36 is particularly convenient for representing conduc- 
tances up to 0.1 N, though the best value of the parameter u and 
consequently of A0 depend slightly on the concentration range 
fitted. Tab18 7.5 compares the experimental conductances of sodium 
chloride with the predictions of this equation using u = 4 A; the 
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deviations are less than 0-05 per cent up to 0.05 N. Since the equa- 
tion involves little more calculation than does the limiting law (7.29), 

Figure 7.4. Dwiufionfuncria, f i  the wdutivity of aqurous fiobrsium 
bromids softdwns at 25" according to ~ariour investigators 

0 Own and .+Ides. 0 Benson and cordon. @ Jones and Bukfid 

its slight theoretical inadequacy compared with the more exact 
equation of Fuoss and Onsager may well be forgiven. 

Tablc 7.5 
Conducriuities of sodium Chloridr Solutions at 25" 

0 
0*0005 
040 1 
0.002 
0.005 
0.0 1 
0.02 
0.05 
0.1 

(126.45) (126.45) (126.45) I 124.51 I 124.51 I 124.45 
123.74 123.75 123.63 

1 122.66 I 122.68 I 122.46 
120.64 120.68 120-14 
118.53 1 18.57 117.53 I 115-76 I 115.81 I 113.83 

I 111.06 I 111.03 I 106.50 I 106.74 I 106.52 I 98.23 

A (Q. 7.36) dculated with a = 4A; 
AL.L. by Onsager limiting law. 

LIMITATIONS OF CONDUCT1 V l T Y  EQUATIONS 

In deriving the various equations for the conductivity discussed 
above, the following assumptions are made, each resulting in some 
restriction on the applicability of the final equations. (a) Complete 
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ionization is assumed; the formulae will however apply to the 
ionized part of weak electrolytes and to the 'non-paired' part of 
electrolytes in which ion-association occurs. In practice, only a 
small number of 1 : 1 electrolytes in water and possibly in some 
other solvents of high dielectric constant can be treated as completely 
ionized. Fuoss and Onsager comment that the mere fact of intro- 
ducing the ion size parameter u implies some degree of ion-associa- 
tion, since it involves the idea that some ions do approach to mutual 
contact and whilst in mutual contact they will not contribute to 
the conductance. (This appears to us to be not quite the case, for 
even whilst the ions are in contact they can contribute something 
to the conductance by moving round each other.) (b) The treat- 
ments of Fuoss and Onsager and of Falkenhagen are based on the 
Debye-HUckel expression (4.13) for the potential in the absence of 
an external field. The limitations of this have been discussed in 
Chapter 4; it is an approximation which accords well with thermo- 
dynamic data (5cc Chapter 9) and is most accurate for ions of low 
charge in media of high dielectric constant. The more complicated 
potential expression employed by Pitts and by Mirtskhulava is a 
doubtful improvement in view of the departure from mathematical 
self-consistency involved. 

The theory is weaker at every point for unsymmetrical electro- 
lytes: the potential expression is less exact since the term in ya does 
not vanish from equation (4.7) ; the convergence for the series for 
the electrophoretic effect is unsatisfactory; and the theory of the 
relaxation effect has not been properly developed beyond the first 
approximation given by equation (7.9). There is therefore little 
justification for using any theoretical treatment except the Onsager 
limiting law (7.29) in such cases; empirical terms in c, c In c, 8 1 2  
cte., may be added but only for convenience of representation. Mere 
division of 1/1 in equation 7.29 by (1 + KU) does indeed give a rough 
fit, and with reasonable ion size parameters, but the discrepancies 
between its predictions and the measurements are much greater 
than experimental error. Two examples are given in Tuble 7.6. 

Even for aqueous 1 : 1 electrolytes, one is straining the mathematics 
to the limit in applying theory to solutions as strong as 0.1 N, and 
only approximate treatments can be given at higher concentrations. 
Some of these will be discussed in Chapter 11. 

T H E  VARIATION OF T R A N S P O R T  N U M B E R S  WITH 
CONCENTRATION 

Experimental results show that transport numbers are in general 
concentration-dependent, and the interpretation of this observation 
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provides a useful test of the theory. In the case of non-associated 
uni-univalent electrolytes the form of the concentration dependence 
is as follows: 

(0) If the cation transport number is close to 0.5, it scarcely varies 
with concentration; this is seen in the case of potassium 
chloride. 

Table 7.6 

carducliity of Cakium and Lunthanum Chbride Solutions at 25" 

O ~ o O i O  
0.0015 
0.0025 

CaCl, ( i )  

... .- 

128.20 
126.61 
124.23 

0 1 (135.85) 
0.00025 131.90 

0.0035 
0-0050 
0.0 1 
0.025 
0.05 

0*0005 I 130.32 

122.47 
120.36 
1 15.65 
108.47 
102.46 

heah. 

- 
132-02 
130.52 
128.47 
126.95 
124.65 
122.85 
120.69 
1 15.65 
107.19 
99.52 

(a = 431 A) 

LaCl, (ii) I 
- 0 (145.9) 

131.88 I 0*000167 I 139.6 I 139.9 1 139.6 
130.23 0.000333 137.0 137.6 137.0 
127.91 0.00167 127.5 128.8 126.0 

110.73 
96.14 
79-68 

( i )  Data up to c = 0.005 from BENSON, C. C. and GORDON, A. R., them. Phys., 
13 (1945) 470; above c = 0.005 from SHEDLOVSKY, T. and E ROW, A. S., 
j .  Amcr. khan. soc., 56 (1934) 1066 

(ii) JONES, G. and BICKPORD, C. F., J.  A m .  them. Soc., 56 (1934) 602; LONGS- 
WORTH, L. G. and MACINNES, D. A., ibid., 60 (1938) 3070 

(b) If the cation transport number is less than 0.5 as with lithium 
chloride, it decreases further with increasing concentration. 

(c) If the cation transport number is greater than 0.5, it increases 
with concentration; this occurs for example with hydro- 
chloric acid. 

These findings are completely and quantitatively explained by 
the interionic attraction theory(20). According to equations (7.25), 
(7.27) and (7.36) the transport number t, of the cation is given by: 
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where 

and ua = B a d 1  
82.5 

Ba = - 
?j( &Tp’  

For 1 : 1 electrolytes this simplifies to: 

. . . . (7.40) 

Thus the transport number expression contains only electrophoretic 
terms, the relaxation factor having cancelled out from equations 
(7.25) and (7.27). It isclear from (7.39) that ifthe limiting transport 

number t t  = - is 0.5 exactly, tl will not vary from this value, and 

that the behaviour described under (b) and (c )  above is also 
accounted for. Equation (7.39) gives an excellent quantitative 
account of the observed transport numbers; for aqueous 1 : 1 
electrolytes at 2 5 O ,  Ba = 60.65 and ua = 0.3291 adc. Table 7.7 
gives some observed and calculated values of 6. The high degree of 
agreement with theory exhibited in Table 7.7 is striking evidence 
for the soundness of the treatment of the electrophoretic effect for 
1 : 1 electrolytes. The values of the ion size parameter a needed to 
account for the transport numbers are very reasonable, and similar 
to those found from consideration of the activity coefficient data. 
The ions of potassium chloride, for example, appear from their 
mobilities to be very nearly of the same effective size, and the 
crystal radius of the chloride ion is 1.8 A; the value a = 3.7 A is thus 
just about what would be expected. For the fairly strongly hydrated 
sodium and lithium ions we have estimated in Chapter 6 radii of 
3.3 and 3.7 A respectively by using a modified Stokes’ law formula: 
combining these with 1.8 A for the chloride ion, we have a = 5.1 
and 5.5 A for sodium chloride and lithium chloride respectively, as 
compared with the value a = 5.2 A found adequate for both salts 
in Table 7.7. A Stokes’ law estimate cannot be used for hydrogen 
ion because of the abnormal transport mechanism involved, but the 
value a = 4.4 A for hydrochloric acid compares very well with 
a = 4.47 A required for the activity coefficient data (Chapter 9). 

Very few transport number data are available for solvents other 
than water, and such as there are have mostly been obtained in 
mixed solvents, e.g., the transport numbers of hydrochloric acid 
have been measured by HARNED and DFUBY@~) in a number of 
dioxane-water mixtures, and GORDON and his collaborators(=) have 
used the moving boundary method for sodium and potassium 
chlorides in equimolar methanol-water mixtures. These results for 
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VARIATlON OF TRANSPORT NUMBERS WITH CONCENTRATION 

hydrochloric acid appear to conform reasonably well with the 
requirements of the theory at low concentrations, but not so well 
at higher concentrations. This is perhaps to be expected since the 
convergence of the theoretical formulae for the electrophoretic effect 
is less satisfactory in media of low dielectric constant. 

For higher valency types, even in water, the theory is also found 
to be inadequate; with calcium chloride, for example, equation 
(7.39) gives results which are nearer to the observed values than are 
those predicted by the limiting law, but are still substantially low. 
In 0.05 M calcium chloride at 25" the observed cation transport 
number is 0.4070; equation (7.39) with a = 5 A gives 0.3952; and 
the limiting law equation (k, equation (7.39) with a = 0) gives 
0.3545. Thus while the ion-size correction gives a useful improve- 
ment, it does not lead to the quantitative agreement which can be 
obtained with 1 : 1 electrolytes. This is probably attributable to 
the lower degree of self-consistency of the interionic at traction theory 
for unsymmetrical electrolytes. 

For bi-bivalent electrolytes (i.e., of the zinc sulphate type), the 
theory should be applicable; but here the difficulty arises that a 
large proportion of the ions are present as closely associated ion- 
pairs; this effect is quite important at the lowest concentration 
accessible to transport number experiments, viz., about 0.005 M. 
Unfortunately no moving-boundary measurements have been made 
on 2 : 2 electrolytes, and we therefore have to rely on older and less 
precise measurements by the Hittorf method. The measurements 
on cadmium sulphate at 18" by JAHN and his co-workers'm' seem 
to be the best available, and internal evidence suggests a reliability 
of a few units in the third decimal place of the transport number. 
The curve of t, against dc also bears a strong resemblance to that 
found by the electromotive force method(24) for zinc sulphate, 
except in the most dilute region, where the Hittorf method may well 
be more reliable. 

The transport number of the cadmium ion is found to fall almost 
linearly in dc from t! = 0.396 at c = 0 to t, = 0.254 at c = 1 
mole per litre; deviations from this straight line scarcely exceed the 
experimental error. Taking the limiting equivalent conductivities 
at 18" as A&++ = 44.8, Agoo;- = 68.4, and inserting the appropriate 
numerical values for 18" in equation (7.39), we have: 

With 
ment 

44.8 - 101*7d~/(1 + 0.6546 X ~ O ' U ~ C )  . . . . (7.41) = 1 13.2 - 2-fi-1 + 0.6546 x 10' adc)  

the value a = 3.5 A, equation (7.41) gives very fair agree- 
with experiment as shown in Table 7.8. The formation of 
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ion-pairs in a symmetrical salt does not result in the appearance of 
any new ionic species and the effect on the transport number should 
therefore be merely that of ‘diluting’ the solution by removing 
some of the ions to form electrically neutral pairs, the ‘dilution’ 

0 0.0 1 
(0.396) 0.384 
0.396 0.378 

c (mole/litre) 
1, oh. 
1, Calc. 

0.09 0.25 0.49 1 *oo 
0.353 0.323 0.295 0-254 
0.347 0.321 0.299 0.270 

0 (0.440) - 
0.05 
0. I 0.409 
0.2 0.389 
0.5 0.36 I 

factor being a, the degree of dissociation of the ion-pairs. The 
success of equation (7.41) in which the ion pairing is ignored is 
apparently due to this ‘dilution factor’ being approximately 
compensated by the use of a rather small value (3.54 for the 
ion-size parameter. 

Negative cation transbort numbers 
The behaviour of the transport numbers of calcium chloride or 

zinc perchlorate may be regarded as normal for 2 : 1 electrolytes 
in spite of the inability of theory to cope with it. Many of the 

Table 7.9 
corion Trmport Numbers of Aqucour 2 : 1 Ekcfrolyfes at 253 showing 

Effect of Autocomplex Formmalion in zinc Halidw 

(0.4097) 
0.365 

0-363 0.349 0.350 
0.345 0.33 1 0.335 
0.320 0-306 I 0.331 

$:gy cg:$p 

1.0 1 0.335 I 0.291 I 0.286 I 0.171 
2.0 
3.0 
4.0 
5.0 
8.0 

10.0 

0.303 
0.28 1 
0.27 1 - - - 

0- I 78 
0.056 

- 0.050 - 0.190 - 0.444 - 0.550 

0.181 ‘ - 0.059 - 0.151 
- 0.233 

I -0445 
- 0.563 

0-OOO 
- 0.137 
- 0.256 
- 0.364 - 0.562 - 0.559 

m = mole salt per kg water 
STOW R. H. and LEVIEN B. 

t STO(LBI: R. H. and L~VIEN’ B. J:: i6id 68 (1946) 1852 
t Pmmu H. N. and MITCH~L 
f fit\n&,’A. C. and PARTON, Hi k.. ibid.. 36 (1940) 1139” 

3. Arne. chrm. Soc., 68 (1946) 333 

W.:)Trans. Faraday Soc 35 (1939) 758 

transition-metal halides(*s), however, show very different behaviour, 
which is illustrated in Table 7.9; at high concentrations the cation 
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transport number decreases rapidly to zero, then becomes negative. 
This is in marked contrast to the behaviour of the transport number 
of zinc in its perchlorate'26) which may be taken as typical behaviour 
for a normal 2 : 1 electrolyte at higher concentrations; the explan- 
ation of the anomaly is that the metal ion is to a large extent present 
as a complex negative ion, believed to be mainly an ion of type 
ZnXh-, a view which is supported by rneas~rernents'~') of the 
vapour pressures of ZnX2-KX mixtures. Though no quantitative 
treatment of the effect can be given, it would appear (p. 112) that 
to give a negative apparent transport number for the metal ion, the 
complex negative ion must have a higher mobility than the normal 
(hydrated) metal ion. This is quite possible since the bivalent 
cations are known to be strongly hydrated. 

C 0 N D U CT I V IT 1 E S I N N 0 N - A  QU E 0 US S 0 L V E N T S  

There is a substantial body of experimental data for conductivities 
in non-aqueous solvents. Such solvents frequently have a much 
lower conductivity than pure water, with the result that measure- 
ments can be made at lower concentrations without serious loss of 
accuracy; on the other hand they are more difficult to purify, and 
may require careful protection from atmospheric moisture, while 
simple salts are often only slightly soluble in them, with a consequent 
restriction of the concentration-range which can be studied. The 
theoretical interpretation of the results is at present hampered by 
a severe shortage of reliable transport numbers in non-aqueous 
solvents. It is to be hoped that the centrifugal cell method of 
MacInnes will soon be developed to a point where this difficulty is 
overcome; in the meantime a valuable start has been made by 
Gordon and his collaborators who have obtained accurate moving- 
boundary transport number measurements in anhydrous methanol 
solutions of sodium and potassium chlorides. These, together with 
their direct-current conductivity measurements in the same sol- 
vent(S*), provide the most precise information we have on the 
transport properties of ions in non-aqueous solutions. The results 
of their measurements are summarized in Table 7.20. Both cation 
and anion transport numbers were measured in several cases, the 
sum being within 04003 of unity; this provides a valuable check 
on the results. 

GORDON'S school(29) have also made measurement of transport 
numbers and conductances for lithium, sodium and potassium 
chlorides in anhydrous ethanol. Owing to the low solubilities, (the 
maximum concentration used was 0.0025 N) and to the occurrence 
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of ion-association, only their limiting ion conductivities are given in 
Table 7.20. 
First, examining the limiting ionic conductivities, we see that for 

both anions and cations the A@ values increase as the crystal radii 
Tabk 7.10 

Transfmrt Numbers in Methanol at 25" 

C ti (KCI) 

(101.76) 
99.19 
98.11 
96-04 
93.80 
90.86 
88.80 
85-66 - 
- 

0 
0-003 
0.005 
0.007 
0.0 I 
0.02 

(104.78) 

101-16 
99.07 
96.72 
93.56 
91.24 
87.79 
85.28 
82.32 

- 

(04633) 
04603 
0.4595 
0.4588 
0.4582 - 

(108.95) 
106.34 
105.26 
103.10 
100.71 
97-51 
95.19 
91.80 - - 

(0-5001) - 
0.5007 
0.5009 
0.50 I 3 
0.5012 

~~ 

( I  15-15) 
112-52 
1 1 I *43 
109-29 
106.94 
103.74 
101.50 
98.16 - 
.- 

c in mole/litrc 
From DAVIW, J. A., KAY, R. L. and CORDON, A. K. ,J .  chon. Phys., 19 (1951) 749 

Equivalent Conductivities, A, in Methanol at 25" 

- -- 
P(Mc0H) 39.82 45.22 52-40 52.38 

d 1 0.60 0.95 1.33 1.81 
A0 EtOH) 17.05 20.31 23.55 21.85 

G x 10' 
mole!l 

_- 
56.55 62-75 

1.95 2.16 
- - 

0 
1 
2 
5 

10 
20 
30 
50 
70 

100 

LiCl 

(92.20) 
89.74 
88-70 
86.65 
84.52 
8 I *74 
79.73 
76-73 - - 

NaCl 

(97.61) 

94.1 I 
92.09 
89.87 
86.9 I 
84.84 
81.80 
79.43 
76.7 I 

- 

~~ 

NaBr I KCI 

BUTLER, J. P., SCHIFF, H. 
JERVIS, R. E., Mum, D. 
Soc., 75 (1953) 2855 

I. and CORDON, A. R., chon. Pkys., 19 (1951) 752; 
b R., BUTLER, J. P. and &-N, A. R.,J. Ama. chcm. 

Limiting Ionic Conductivities in Methanol and Ethanol at 25" 
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mobilities bears no relation to the crystal radii. It is unlikely that 
any of the anions carries a permanent solvation sheath in methanol, 
but the increase in mobility with size may be due to decreased 
interaction of the larger ion with the solvent dipoles. Since the 
molal volume of methanol is about 41 cm3, the ‘radius’ of a methanol 
molecule must be substantially greater than that of a water molecule, 
so that the conditions for the validity of Stokes’ law are far from 
realization with these small ions. One may perhaps picture the ion 
as causing some rotation of solvent dipoles as the ion passes the 
molecule, which will result in a dissipation of energy and will there- 
fore increase the effective resistance; this interaction will increase 
rapidly with reduction of the ion-to-dipole distance, as required by 
the observations. Such an effect might well be more important in 
methanol than in water, where the ‘structure’ of the solvent is more 
definite. The possible existence of this effect requires further 
investigation. 

The variation with concentration of the transport number of 
potassium chloride in methanol is scarcely significant, as is required 
by the theory for cases where the limiting transport numbers are 
nearly 0.5. That of sodium chloride may profitably be examined 
by the theory. For methanol at 25O, the viscosity is 0.005445 poise 
and the dielectric constant 31.52*; these give for the values of the 
constants in equation (7.36) : 

B = 0.5188 x 108, B, = 0.9004, B, = 156.2; or in the trans- 
port number equation (7.39)) the constant B, = 156.2 and ~a = 
0.5 188 x 108 a l / c .  The equation : 

45.22 - 78.1 d c / (  1 + 3.0646) 
t1 = 97-61 - 156*21/c/(1 + 3.0644 

reproduces the observed transport numbers up to 0.01 N within 
O~OOO1. The ion size corresponding to KU = 3.062/c is a = 5.9 A, 
a rather large value unless the sodium ion at least is solvated, but 
about the value one would expect if the ions approach until 
separated by one methanol molecule only. 

In this medium, of dielectric constant 31.52, a considerable 
amount of ion-pair formation is to be expected even with 1 : 1 
electrolytes, since the Bjerrum critical distance is 8.9 A. We have 
remarked before that ion-pair formation in a symmetrical electrolyte 
will affect the transport numbers only by a sort of ‘dilution’ effect. 
The equivalent conductivities on the other hand, will be reduced in 
nearly direct proportion to the amount of ion-pairing; they are 
much more sensitive to it than are transport numbers. It is therefore 

* A more recent value is 32.63. 
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION 

not surprisiig to find that the conductivities of the alkali halides in 
methanol conform rather too closely to the Onsager limiting law. 
For sodium chloride, for example, the limiting law becomes: 

which at  0.001 N gives A = 89-89 in agreement with the observed 
value A = 89.87. Since the value of (KU) must be at least 0.05, this 
agreement is too close for a f d y  ionized electrolyte. In general, the 
conductivities at higher concentrations lie above the limiting law 
values, but not as much as they should for f d y  dissociated electro- 
lytes. The values cannot be accurately represented by equation 
(7.36); a value of a = 3.2 A for sodium chloride gives a rough fit, 
within about 0.5 in A, but this value of the ion size is inconsistent 
with that needed for the transport number equation. 

Liquid hydrogen cyanide is of great interest as an electrolytic 
solvent, having a dielectric constant of about 160 at 0" and 120 at 
18", so that ion-pair formation should be less than in water. It has 
also a much lower viscosity than that of water, the values at 0" 
being 0.00232 poise for hydrogen cyanide and 0.01787 poise for 
water. COATES and TAYLOR'~~) studied a number of alkali-metal 
salts in this solvent a t  18", and LANCE, BERCX and K O N O P I K ' ~ ~ )  
have made measurements at 0" on some potassium and some tetra- 
substituted ammonium salts. The 18" measurements were all at low 
concentrations (0~0001-0~0025 mole per litre) and conform to 
relations of the type: 

with A0 and A values given in Table 7.11. These linear relations 
hold over the whole of the concentration-range studied (up to 
0.002 or 0.003 N in most cases) except for lithium chloride, nitrate 
and thiocyanate and sodium nitrate. These show a downward 
curvature, most marked in the case of lithium thiocyanate, and 
probably indicative of ion-pair formation. The limiting Conductiv- 
ities are reasonably consistent with the Kohlrausch principle, as 
shown by the nearly constant differences: 

A 97.61 - 244*12/~ 

A = Ao - A ~ C  

nex - - 3 
A b  - A&* 19.6 

The range of A0 values is noticeably more restricted than in water, 
and there are indications that there is less actual solvation of ions 
than occurs in water. The values of the slopes (A) of the A versus 
dc curves .do not agree any too well with the theoretical limiting 
result, which for hydrogen cyanide at 18' becomes: 

A = A0 - [0*1271Ao + 233]d~ 
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CONDUCTIVITIES IN NON-AQUEOUS SOLVENTS 

Since the electrophoretic term is here much larger than the relaxa- 
tion term, all the theoretical slopes are much the same, lying in the 
range A = 259-269. In the cases where the curvature of the plots 
suggests ion-pair formation, the observed slope in the most dilute 

Table 7.11 

Conductivities ofsalts in Hydrogen Cyanide Solufwn at 18" 
A =  A'- A.\/c 

Licl 345.4 335 
LiBr 346.9 270 
LiI 348.0 258 
Lao, 336.6 402 
LiclO, 336.9 
LiCNS 340.6 
NaBr 343.8 243 
NaI 344-9 238 
NaNO, 333.8 250 
NaClO, 335.5 235 
NaCNS 337.7 230 

% 

l A 0 l A 1  
Na Picrate 266.9 195 
KCI 363.4 280 
KBr 363.2 248 
KI 363.9 235 

353.9 253 
353.3 275 
358.0 243 KCNS 

RbCl 363-2 195 
CsCl 368.2 200 
N(Et), Picrate 282.3 215 

K3' 

P I A  

The A values given arc the experimentally observed slopes; theoretical values 

COATIS, J. E. and TAYLOR, E. G., J.  c h .  Soc. (1936) 1245 
of A lie between 259 and 269. 

region is considerably steeper than the theoretical, which is reason- 
able; but the remaining presumably 'normal' salts appear to give 
straight lines lying above the theoretical slope. This is most noticeable 
with the picrates and rubidium and caesium chlorides, which have 
large ions. For the salts such as sodium bromide, where the points 
lie only slightly above the limiting-law lines, the introduction of the 
factor (1 + KU) into the denominator, as required by the more 
complete theory, gives a satisfactory account of the results. In this 
solvent at 1 8 O ,  K = 0.2703 x 108dc and for sodium bromide the 
value 4 = 5.1 A in the equation: 

(0*1271AO + 223) 
(1 + KO) 

A = A o -  dc 

is adequate and reasonable. Caesium chloride, however, requires 
4 = 28 A, which is quite absurd in view of the not greatly different 
limiting conductivities, which imply ions of comparable size to 
those of sodium bromide, but the concentrations are rather too low 
to permit an accurate evaluation of the parameter a. 
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION 

The measurements at 0' in hydrogen cyanide are rather more 
interesting, as they extend to concentrations high enough to make 
a significant test of equation (7.36) involving the ion-size correction. 
Data for potassium iodide solutionsts1), interpolated to round concen- 
trations, are given in Table 7.12. For this solvent at O'C, the viscosity 
(q) is 040232 poise, and the dielectric constant ( E )  is 161. (The 
latter figure is by no means well established, however.) These 
values give the following values of the constants in equation (7.36) : 

Bl = 0.0890, B, = 169.6, B = 0.240 x 10% 

Now if the ions of potassium iodide are unsolvated in hydrogen 
cyanide solution, the distance of closest approach may be estimated 

0 
0.00 1 
0.002 
0.003 
0.005 
0-007 
0.010 
0.015 
0.02 
0.05 
0.10 

Tabk 7.12 

Conductivities .f Potussium I d &  in 
Hydrogm cymidc 41 0" 

(310.3) 
304.4 
301-8 
300.2 
297.3 
294.9 
292.1 
288. I 
284-9 
269.6 
252.2 

(310.3) 
304.2 
301.8 
300-0 
297.1 
294.9 
292.1 
288.4 
285-4 
273.2 

, 261.0 
I I 

c in mole/litre 4 = 3.5 A 
Data from LANCE, J., BERGA, J. and KONOPIK, N., MOrurtJh., 80 (1949) 708 

from the crystal radii as u w 1-33 + 2.16 m 3.5 A. Taking the 
limiting value of the conductivity as Ao = 310.3, we then have for 
this solution from equation (7.35) : 

197*21/c 
1 + 0.844~ A-k. = 310.3 - 

The values of AdC. given by this equation are included in Table 
7.12; the agreement is qtiantitative up to 0.01 N and satisfactory 
up to 0.02 N, after which the calculated values are increasingly 
high. 

On the whole, the conductivity measurements in hydrogen 
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Formamide (32) 

Solvent 

N-methyl formamide 

N-N-dimethyl form- 

(359%) 
N-methyl acetamide 

N-N-dimeth yl 

N-methyl v p i o y  
amide( 0 - 6 0 )  
(38) 

N-methyl butyramide 
(30°-600) (38) 

(33) 

amide (33, 34) 5 

acetamide (37) 

HI I NaI I KI 1 GI I MqNI 1 Et,NI 1 Bu,NI 
I 

- : 23.5 
I 

25 00330 109-5 27.4 26.8 29-3 - - 

Temp. 
O C  

25 0.0165 182.4 - 44.4 45.0 47.2 - 49.0 I - -- .-- 
25 0.00796 36.7 - 82.0 82.6 - 91.0 87.5 ; 77.7 

I 
40 0.0302 165.5 23.7 22.8 23.0 (8;) 26.6 26.2 I 224 

I 25 000919 37.8 - 67.6 67- 1 - 74.5 1 64.6 - 

- - 30 00457 164.3 - 13.4 13.7 - - L- 
30 0-0747 124.7 - (NaCI - - - - I -  

I 6.3) 



To bk 7. I 3 o n t d .  

N-N-dimethyl form- 

N-methyl acetamide 

L amide (33, 34) 

(35, 36) 

8- 
25 

40 

KCI KBr KPi 
(picrate) KSCN Me,PhN I Solvent 

29.8 27-3 
~~ 

N-methyl form- 
amide (33) I 25 35.3 41.9 43.7 

84.1 90.3 

21.2 24.5 20.2 

56.8 

19.9 244 

70.1 
N-N-dimethyl 

acetamide (37) I 25 68.5 74.1 

N-methyl ropion- 
amide (!Oo-600) 
(38) 11.6 12.4 

N-methyl butyramide I 30 
(3Oo-6O0) (38) 6.5 



CONDUCTIVITIES IN NON-AQUEOUS SOLVENTS 

cyanide thus tend to support the theory; but there are sonic 
anomalies which clearly call for further investigation. Determina- 
tions of transport numbers, verification of the dielectric constant, 
and studies of the effect of solutes on the viscosity would all be of 
great value. 

The amides of the lower aliphatic acids and their N-methyl 
derivatives form a class of liquids with extremely high dielectric 
constants (Appendix 1.2), the most striking case being that of N- 
methyl formamide H.CO.NH(CHJ which has E = 182.4 at 25". 
Comprehensive studies of conductances in these solvents have 
recently been made by Sears and Dawson and co-workers and by 
French and Glover. In the case of formamide, an approximate 
measurement of the limiting transport number by the Hittorf 
method has also been made, giving tff' = 0.406 at 25", so that 
individual ionic mobilities in this solvent are known. In the other 
solvents of this class no measured transport numbers are yet avail- 
able, but reasonable estimates have been made on the basis of the 
behaviour of very large ions in relation to solvent viscosity. The 
original data are too extensive to present in detail, but Tubfe 7.13 
gives a summary of the major results. For compactness we have 
given A0 values only of iodide ion with various cations and of potas- 
sium ion with various anions; these do not necessarily represent 
salts actually studied in the original work, but in some cases have 
been obtained by the application of the Kohlrausch principle to 
measurements on related salts. 

A noteworthy feature is that the A0 values for strong acids are 
similar to those for salts; evidently the hydrogen ion has no special 
transport mechanism available in these solvents, as it has in water 
and the lower alcohols. 

The general pattern of concentration-dependence of the conduc- 
tance is, as might be expected, one of approach to the Onsager 
limiting law from above; but in the di-N-methyl amides, which 
have dielectric constants about half that of water, the results lie close 
to the limiting-law curve, and with some salts actually fall below it, 
indicating a slight degree of ion-association. 

Most of the other commonly used non-aqueous solvents have 
lower dielectric constants than methanol, and the conductivity of 
solutions in these appears to be so strongly influenced by ion associa- 
tion that little progress can be made by attempting to treat them 
as strong electrolytes. The extensive researches of Kraus and his 
collaborators have done much towards elucidating the behaviour 
of ion-aggregates in these solutions, and are discussed more fully in 
Chapter 14. 
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION 

A P P E N D I X  T O  T H E  T H E O R Y  O F  T H E  E L E C T R O P H O R E T I C  
E F F E C T  

E V A L U A T I O N  O F  T H E  I N T E G R A L  & ( X U )  O F  EQUATION (7.5) 
This integral takes an elementary form only for the case n = 1, 
when it becomes: 

1 "  c-ua 
S,(KU) = ;; 1 e-m dr = - 

KU 

For n 9 2 it involves the exponential integral function Ei(x) defined 
by : 

Ei(x) = c-y-' dy 

0, being merely a variable of integration). This function is available 
from tabledm for various values of x. 

1" 
For n = 2 

rn 00 

S,(KU) =$ c*rl dr =I e-"(2er)-ld(2er) = E i ( 2 ~ u )  

For n > 2 it is necessary to perform successive integrations by 
parts until the integral reduces to an exponential integral function. 

Thus one obtains: 

a 

&(KO) = €7- - 3KUEi (3KU)  

SJKU) = c-"(l - 2 4  + 8(~u)~Ei(4~u) 
and in general for n > 2: 

1 (- S,,(KU) = c-'wo - [n - 2 + ( n  -2)(n - 3 )  

1 ( -  nKu)2 (- nKu)"-* 

+ (n - 2)(n - 3)(n -4) + . . . +  (?-2) !  

there being (n - 2)  terms in the series enclosed in the square 
bracket. If the theory is taken only as far as the 'self-consistent' 
approximation, only S1(~u) and S*(KU) are involved, and the latter 
appears only in the theory of diffusion for symmetrical electrolytes. 
The higher-order terms have been computed to facilitate the inves- 
tigation of questions of convergence. 
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EQUATIONS FOR CONDUCTIVITY AND TRANSPORT NUMBERS 

S U M M A R Y  OF E Q U A T I O N S  F O R  C O N D U C T I V I T Y  A N D  
T R A N S P O R T  N U M B E R S  

1 = cation, 2 = anion 

where Z = ionic strength = #Cc& (c  in mole/litre.) 
K = 50.29 x 108(&T)-'l, dZ 

Equivalent Conductivities 
2.801 x I061z1Z&Ao + 4_1*25(ltil + 1281) 

q( &T)l/, 
A = A O -  

. . . . (7.29) 
(Onsager limiting law for extreme dilutions). 

2.801 x 10'ltltalqAo + 41.25(1til + 1 ~ 8 1 )  

q( €T)l/)  
A n A O -  

. . . . (7.36) 
(valid for moderate concentrations with suitable choice of a, 
especially for 1 : 1 electrolytes). 

Formulae reduced for the case of 1 : 1 electrolytes: 
A = A@ - (BIAo + BJdc  (Onsager limiting law.) 

. . . . (7.36) 
A = A@ - (BIAo + B , ) d ~ / ( l  + B u ~ c )  

(BlA + BJdC 
1 + (Ba - B1)dc or Ao = A + 

(for moderate concentrations). 

7.1. In other solvents: 
For values of B, Bl and B, for aqueous solutions, see Appendix 

B = 50*29(&v-'la x 108 

B, = 82.5/[q(eT)1/2] with q in poise, T i n  deg. K 
B~ = 8.209 x 105(&1)-3 /2  

Transport Numbers (Uring Jirst order eZectrophortic tmns only) : 
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7 VARIATION OF CONDUCTIVITIES WITH CONCENTRATION 

which reduces for 1 : 1 electrolytes to: 

with B, B, as given above. 
Limiting law for transport numbers, valid a t  extreme dilution: 
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8 

T H E  MEASUREMENT OF CHEMICAL 
POTENTIALS 

THE determination of the chemical potentials of the components of 
an electrolyte solution usually resolves itself either into a measure- 
ment of the activity of the solvent and the calculation of the activity 
coefficient of the solute by using the Gibbs-Duhem equation or vice 
VCTSQ. The methods in general use are therefore conveniently 
discussed under two headings : 
1. Methods depending on measuring the activity of the solvent. 

(A) Vapour pressure methods. 
(i) The static method 
(ii) The dynamic method 

(iii) The isopiestic method. 
(B) Determination of the depression of the freezing point. 

The elevation of the boiling point is similar in principle 
but has not been studied to the same extent. 

2. Methods which measure the activity of the solute, usually by 
measuring the potentials of suitable cells with or without 
liquid junction. 

In addition there are some methods which, because of difficulties 
of technique or for reason of limited application, have not come into 
widespread use: 

(u) Osmotic pressure measurements 
(b) Solubility measurements 
(c) Measurement of the solute vapour pressure 
(d) Distribution of solute bemeen two solvents 
(e) Sedimentation in an ultracentrifuge. 

T H E  MEASUREMENT O F  V A P O U R  P R E S S U R E  B Y  T H E  
D I R E C T  S T A T I C  M E T H O D  

In its essentials this method is a direct manometric measurement. 
Figure 8.1 shows an apparatus due to GIBSON and ADAMS(~), simple 
in construction but capable of high accuracy if a few precautions 
are observed. One of the features of their apparatus is the use of 
n-butyl phthalate as the manometer liquid; its vapour pressure is 

174 
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even lower than that of mercury, but as its density is 1.0418 at 25", 
its use results in a displacement in the manometer a m  many times 
that which would be given by mercury and consequently greatly 
increased accuracy of measurement. However, some precautions 
have to be observed in its use and SHANKMAN and GORDON(*) prefer 
Cenco Hyvac pump oil (density at 25': 0.895) as the manometer 

Figure 8.1. t;lom CISON, R. E., 
and ADAMS, L. H., J .  A m .  
c h .  SOC., 55 (1933) 2679 

liquid. Thorough outgassing of the solution is essential and this is 
accomplished by repeated solidification and melting whilst the 
flask is evacuated through the stopcock S. The flask is then con- 
nected to the manometer set up at C. The solvent is treated in the 
same way but, once outgassed and connected to the manometer, is 
left permanently in position. The solvent is then connected by the 
three-way stopcock A to one arm of the manometer, the other arm 
being connected to the vacuum line by stopcock B. The resulting 
displacement of the manometer fluid gives the vapour pressure 
of the solvent. By turning both stopcocks, the solution can be 
connected to one arm of the manometer, the other being connected 
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8 THE MEASUREMENT OF CHEMICAL POTENTIALS 

to the vacuum line so that the vapour pressure of the solution can be 
measured. Finally, suitable manipulation of the stopcocks connects 
both solution and solvent to the manometer so that the difference 
in vapour pressure between solution and solvent can be measured. 
When stopcock B is opened the manometer arm is filled with vapour 
by evaporation from the solution; this results in a slight cooling 
and the equilibrium pressure is only reached slowly. To overcome 
this trouble, the subsidiary flask W containing solvent is provided. 
Opening its stopcock for a short time fills the manometer arm with 
vapour after which stopcock B can be opened and only a small 
amount of vapour is condensed on the solution before equilibrium 
is reached. Because of the loss of solvent from the solution during 
the outgassing process, it is necessary to analyse the solution after 
completing the measurements. 

Although minor fluctuations in temperature may result in appre- 
ciable changes in the vapour pressure of solvent and solution, this 
apparatus gives remarkably concordant values of the water activity. 
In one experiment Shankman and Gordon quote valuespo = 361.1, 
p = 207-45 and A# = 153.75 mm of pump oil for the vapour 
pressure of the solvent, the solution and the differential lowering 
respectively, so that three values of the water activityP/Po = 0.5745, 

'3 = 0.5742 and - = 0.5743 can be derived depending 
on which two of the three measurements are used in the calculation. 
Twenty-four hours later they recorded P O  = 360.1, p = 206.7, 
Ap = 153.4 mm giving a value of 0.5740 for the water activity. 
Therefore, although the individual readings changed by about one 
part in three hundred, the water activity changed by only three 
parts in fifty-seven hundred. 

lb 
Po P + AP 

T H E  MEASUREMENT O F  VAPOUR PRESSURE BY T H E  
DYNAMIC METHOD 

In principle this method is extremely simple: if a dry inert gas is 
passed in succession through (1) water, (2) a desiccant to absorb 
water, (3) an aqueous solution, and (4) a second desiccant then, if 
the proper experimental conditions are observed, the amount of 
water absorbed in the first desiccant is proportional to the vapour 
pressure of the solvent and the amount absorbed by the second is 
proportional to the vapour pressure of the solution. A modern 
apparatus constructed by BECHTOLD and NEMJTON(~) uses successive 
layers of barium perchlorate and magnesium perchlorate as desic- 
cants, air is passed at a rate kept constant by a manostat relay, being 
bubbled through five saturators and then passed over the liquid 
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surface in a final saturator in order to equilibrate the air stream 
with the solvent; after absorption of the water vapour by the 
desiccants, the air stream is saturated with water vapour at the 
pressure over the solution by passage through a similar set of 
saturators containing the solution. The total pressure over the pure 
solvent is somewhat greater than that over the solution because 
there is a decrease in pressure owing to the resistance offered by the 
packed desiccants; it can easily be shown that if the total pressures 
at the outlet ends of the two series of saturators are Po and P and 
the water vapour pressures are pa and p ,  then: 

P W P  

p o  
- =  

W ' P  - w'p' + wp' 
when wo and w are the weights of water vapour absorbed by the 
two desiccants. It is clearly desirable to maintain constant the 
pressures Po and P in. order to avoid a series of tedious pressure 
readings during the course of an experiment with the consequent 
errors introduced by a process of averaging. For this reason a 
second manostat is introduced at the point where the air stream 
leaves the final saturator. From the data given by Bechtold and 
Newton for solutions of calcium chloride and barium chloride, the 
method seems to give water activities with a probable error of the 
order of O~OOO1 in a,. 

T H E  M E A S U R E M E N T  OF V A P O U R  P R E S S U R E  B Y  T H E  
ISOPIESTIC METHOD 

Introduced by  USF FIELD(^) in 1918 and improved by SINCLAIR~~), 
this is a comparative method depending on the principle that two 
solutions of non-volatile solutes will distil from one to the other 
until their concentrations are such that the solutions have equal 
vapour pressure. The comparative nature of the method is a dis- 
advantage in that the vapour pressure-concentration curve of 
some one 'reference' electrolyte must be known with accuracy but, 
apart from this drawback, the method is one which gives results 
rapidly and with an accuracy limited only by the accuracy with 
which the data for the reference electrolyte are known. 

Let X and Y be two solutions initially at the same temperature, 
the vapour pressure of X being initially greater than that of Y and 
let them be connected by a path through which vapour can pass. 
Then solvent will distil from solution X to solution Y, resulting in a 
cooling of X and a heating of Y from the heat of vaporization 
generated during the process. Because of these temperature changes, 
the vapour pressure of X decreases and that of Y increases and, if 
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perfect thermal insulation could be maintained between the two 
solutions, a steady state would be set up with a temperature differ- 
ence between the two solutions sufficient to equalize the vapour 
pressures. For example, 4 M solutions of sodium and potassium 
chlorides differ in vapour pressure by 0.4442 mm. Hg at 25' and 
a temperature difference of about 0.32' would equalize the vapour 
pressures. A method based on this principle will be described later: 
we are now concerned with the extreme case when perfect thermal 
contact is offered between the solutions and heat can flow back 
from solution Y to X. The distillation of solvent can now continue 
with a concentration of X and a dilution of Y, the vapour pressure 
of X decreasing and that of Yincreasing as a result, not of a temper- 
ature difference, but of a concentration difference. Equilibrium 
will occur when this concentration difference suffices to equalize 
the vapour pressure. For example, starting with two solutions each 
containing one gram of water and sufficient sodium and potassium 
chloride respectively to make each solution 4 M, the distillation of 
61 mg of water will concentrate the potassium chloride solution to 
4.260 M and dilute the sodium chloride to 3.770 M at which con- 
centrations the vapour pressures are equal. 

The attainment of equilibrium is greatly accelerated by evacua- 
tion of the container to the vapour pressure of the solutions; another 
critical feature of the experiment is the thermal communication 
between the solutions. This is secured by containing the solutions 
in metal dishes of high thermal conductivity such as siiver, although 
platinum or stainless steel dishes can be used with corrosive solu- 
tions. Seamless spun circular dishes about 4 cm in diameter, with 
hinged lids, are convenient. The dishes rest on a thick copper block 
(about 2.5 cm thick) and the upper surface of this block and the 
base of each dish should be as flat and smooth as possible. Thermal 
contact is further improved by a film of solution between each dish 
and the copper block. If it were desired to measure the vapour 
pressure of a sodium chloride solution with respect to a potassium 
chloride solution, sodium chloride would be weighed accurately 
into each of two dishes in amount sufficient, with between 1 and 2 
ml of water (which need not be known with any accuracy) to give 
approximately the concentration of sodium chloride at which it is 
desired to study the vapour pressure. Alternatively, between 1 and 
2 ml of sodium chloride solution could be weighed out, provided 
that its concentration was known accurately. In a similar way, 
a potassium chloride solution is introduced into each of another 
pair of dishes. The four dishes are placed on the copper block 
which rests in a glass desiccator which is then evacuated by a good 
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filter-pump. The desiccator is placed in a thermostat and rocked 
slowly to agitate the solutions gently. The time required for equilib- 
rium to be attained depends on the concentration of the solutions. 
Generally speaking, for solutions above 1 M, twenty-four hours 
should suffice; below this concentration, the time required increases 
and at 0.1 M three or four days may be necessary. Equilibrium 
having been attained, the dishes are reweighed and the concentra- 
tions of sodium chloride and potassium chloride calculated. These 
solutions have equal vapour pressure and are called 'isopiestic'. 
The solutions can now be diluted, the experiment repeated and the 
concentrations of another pair of isopiestic solutions found. Alter- 
natively, the inclusion of a fifth dish containing a more concentrated 
solution will give a pair of isopiestic solutions higher in the concen- 
tration scale. I t  is possible to have a simple wire device attached to the 
inlet tube of the desiccator so that, at the end of a run, the lids of the 
dishes can be closed before air is admitted to the desiccator, thus 
diminishing error due to evaporation of the solutions or introduction 
ofgrease particles. It is also possible, with a slight modification of the 
apparatus'6), to introduce the solutions out of contact with air; 
measurements can then be made on electrolytes such as ferrous 
chloride which are readily oxidized on exposure to the atmosphere. 
The apparatus has been modified to permit the microdetermination 
of molecular weights using three to seven milligram samples(sa). 

Measurements are made more easily in concentrated solution and 
the only limit is the saturation of one of the solutions. At the other 
end of the concentration scale, about 0-1 M is the lower limit at 
which measurements are practicable although, by taking extreme 
precautions, GORDON(') has used the method down to about 
0.03 M. From a series of measurements at different concentrations 
we can construct a curve of the isopiestic ratio against the molality 
of either electrolyte. The isopiestic ratio is defined by: 

. . . . (8.1) 

where mB is the molality of electrolyte B in solution X and me the 
molality of electrolyte C in solution 1: B is the reference electrolyte, 
the vapour pressures of whose solutions are known over the necessary 
concentration range. It is usually convenient to plot R against me 
The condition of equal vapour pressure is given by: 

or 4C = R#B . . . . (8.2) 
Thus q5c can be derived from R and q5B 
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The accuracy of the method therefore depends on two factors: 
(a) R depends on the accuracy of weighing the dishes and can easily 
be measured with an accuracy of 0.1 per cent; with care the error 
can be reduced even further; (6)  assuming that +B is also known 
within 0.1 per cent (and this is a problem to which we shall have to 
return later) then 4, can be determined to this degree of accuracy. 
From 4, the activity coefficient yc can be calculated by some 

modification of the Gibbs-Duhem equation* as, for example 
equation (2.27) : 

- In yc = h, + hcd lnm, . . . . (8.3) 

where h,  = (1  - 9,). The alternate forms of the integral, 
2$hc/l/mc. ddmc and Jhc/mc. dmc can be used in many instances. 
If the activity coefficient of the reference salt is known then another 
method of calculation is available. For: 

r 
- 55.51 d In U, = VBmB d In mByB = VCmC d In mcyc 

where the subscript B refers to the reference electrolyte and the 
subscript C to the electrolyte whose activity coefficient is being 
determined. 

Then 

v f l B  d In y B  + vBmB d In mB = vcmc d In yc + vcmc d In mc 

d In yc + d ln mc = R d  In y B  C R d In mB 

= d ln Y B  + d ln m g  + ( R  - l)d In yBmB 
and 

mB 
In yc = In yR +l d In mB/mc + S ( R  - 1)d In yBmB 

0 

whence remembering that: 

Lt mB/mc = vC/VB 
m,40 

~ J R - 1  In yc = In y B  + In R + 2 T d G  ....( 8.4) 

and the last term can be evaluated either graphically or by tabula- 
tion, the equivalent form $(R - l)/UB.dUB being sometimes easier 
for numerical computation, especially for very concentrated solu- 
tions. Isopiestic measurements do not usually extend below 0.1 M; 

180 



THE MEASUREMENT 01: VAPOUR PRESSURE 

for many 1 : 1 electrolytes the curve used in evaluating the integral 
in equation (8.4) can be extrapolated to zero with considerable con- 
fidence, provided that the reference salt B is also a 1 : 1 electrolyte. 
In such cases the method gives the absolute value of yc, i.e., values 
relative to yc = 1 at m = 0. With higher valency types, however, 
the extrapolation is longer and less certain since the curve of R 
versus m often has a minimum below the experimental lower limit 
of 0.1 M, and a variety of methods have been tried to fix the values 
of y at 0.1 M. GUGGENHEIM and STOKES'*~) have recently proposed 
a method for 2 : 1 and 1 : 2 electrolytes based on the fact that the 
isopiestic method gives absolute values of the osmotic coefficient 9. 
If y is given by a Debye-Huckel expression (assumed valid to at 
least 0.3 M) : 

- l n y =  udm - 2 b m  . . . . (8.4a) 
l + P G  

the corresponding expression for Q is: 

. . (8.4b) 

(See p. 34.) The function: 

is tabulated for several values of the parameter in Appendix 2.3. A 
value of @ is chosen such that (y - 9 0 )  is directly proportional to 
m for m = 0.1 to 0.3, the proportionality factor being the other 
parameter b. Insertion of these parameters in Equation (8.4a) for 
m = 0.1 gives the required value of yo.1. The y values for 2 : 1 and 
1 : 2 electrolytes in Appendix 8.10 have been adjusted to this new 
basis wherever practicable. 

T H E  MEASUREMENT O F  V A P O U R  PRESSURE B Y  T H E  
METHOD OF ' B I T H E R M A L  EQUILIBRATION' 

We have already mentioned that if two solutions are connected by 
a vapour path but are thermally insulated, a steady state is set up 
in which the initial difference in vapour pressure between the two 
solutions is eliminated by the creation of a temperature difference. 
STOKES(*) has described a method depending essentially on this 
principle. Water is maintained at a fixed temperature, t, in vapour 
contact with a solution at 25'; distillation continues until the 
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concentration of the solution is such that its vapour pressure at 25" 
is equal to that of water at the lower temperature t. A knowledge 
of the vapour pressure of water at t ,  and an analysis of the solution 
when the steady state has been set up suffice to give the vapour 
pressure at 25" of a solution at a known concentration. Thus, with 
the water at a temperature 9.972" below that of a solution of sodium 
hydroxide at 25O, it was found that the latter changed in concentra- 
tion until it reached 9.150 M. The vapour pressure of water at 25" 

Figure 8.2. From STOKES, R. H.,J. A m .  c h .  Soc., 69 (1947) 1291 

is 23.753 mm and at 15.028" it is 12.807 mm whence it follows that 
the water activity of the solution is 12.807/23*753 = 0.5391. If the 
temperature difference were 9.977" the vapour pressure would have 
been 12.803 mm and the water activity of the solution 0.5390 so 
that to secure an accuracy of f 0.0002 in the water activity, the 
temperature difference between the two liquids must be controlled 
to within f 0.005". The apparatus used by Stokes is shown in 
Figure 8.2. The copper domes A were soldered to brass rings B, the 
lower faces of which were turned and lapped to fit the flat copper 
plates C. The resulting 'bells' were connected to the thin-walled 
copper tube D so that each leg could be put in a separate thermostat. 
The horizontal part of this tube carried a side tube for evacuation 
and a lever L, by means of which the apparatus could be rocked. 
The interior of the apparatus was heavily silver plated. The 
thermostats were quipped with special thermoregulators'10) de- 
signed to control the temperature within f 0.001". The tempera- 
ture difference between the two thermostats was measured by a 
100-junction copper-constantan thermocouple. To start a run, a 
silver dish, similar to that used in the isopiestic method and con- 
taining solution, was placed on one of the plates C, and another dish 
containing water was placed on the other plate. The 'bells' were 
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sealed on with stopcock grease and the apparatus evacuated for an 
hour on a filter pump followed by ten minutes evacuation with a 
Hyvac pump with a phosphorus pentoxide tube between the 
apparatus and the pump. A minimum of twenty-four hours of 
gentle rocking in the thermostats was necessary, after which air was 
admitted to the apparatus and the solution removed and analysed. 
' f i e  method is capable of high accuracy, but is a cumbersome one; 
it was developed for the specific purpose of making possible a choice 
between two alternative sets of data for the vapour pressure of 
sulphuric acid, one obtained by the static manometric method by 
SHANKMAN and GORDON(~), and the other derived from electro- 
motive force measurements by HARNED and HAMER('I). The re- 
sulting independent measurements led to the adoption of a standard 
set of vapour pressure data for sulphuric acid solutions in close 
agreement with those of Shankman and Gordon; these have been 
used as a basis for isopiestic measurements on numerous other 
concentrated electrolyte solutions. 

THE DEPRESSION OF THE FREEZING POINT 

The condition for ice to be in equilibrium with pure liquid water at 
the freezing point To is that the molal free energy shall be the same 
in each phase: - 

G I ~ T J  = G&T,) 

A solution has a lower freezing point, TF (we are dealing with 
solutions which freeze out the pure solvent phase and not a solid 
solution) and the condition for equilibrium is now given by: 

["&TI) - 4Mrp)] is the increase in free energy on the fusion of a 
mole of ice to pure liquid water at TF. Call it AQTP: it will be a 
function of T. From the Gibbs-Helmholtz equation: 

L 

where is the latent heat of fusion of a mole of ice, it follows that: 

since A" = 0 at  I,. 
183 



8 THE MEASUREMENT OF CHEMICAL POTENTIALS 

The latent heat of fusion can be written as a function of the 
temperature : 

i = Lo + J(TF - I,) 
where Lo is the latent heat of fusion at To and f is the difference 
of the molal heat capacities of liquid water and ice. In most work, 
j can be assumed to be independent of temperature. Then: 

f To . . . . (8.5) - In ad = - (lo - fTo) (:F - - - :,)+xlnG 1 
R 

It is convenient to eliminate T F  by introducing the lowering of the 
freezing point, 8 = (To - TF), when equation (8.5) approximates 
to : 

At  0" the latent heat of fusion of ice is 1435.5 cal mole-' whilst the 
heat capacities of ice and liquid water are 0.5026 and 1.0081 cal 
deg-l gram-' respectively(11'). For aqueous solutions equation (8 6) 
becomes: 

- iogaA = 0.004207e + 2.1 x lo-680 

In making this approximation, expansions in powers of 8/To have 
been introduced and taken only as far as the second power of 
8/TW In very accurate work it may be necessary to consider higher 
terms, but, if this is done, consideration should also be given to the 
possible variation of 5 with temperature. The water activity oA 
obtained from these formulae is of course that at the temperature 
T p  An alternative way of evaluating ad, which is especially 
convenient for concentrated solutions, is as follows: values of the 
vapour pressures of ice and supercooled liquid water are available 
at various temperatures below 0°C. Then since at the temperature 
T F  the solution is in equilibrium with ice, its vapour pressure is 
pice and the water activity of the solution is therefore: 

For example, if the freezing point of the solution is - lo", its water 
activity at - 10' is ad = 1.950/2.149 = 0.9074. 
As the solution becomes more dilute: 



CALCULATION OF THE ACTIVITY COEFFICIENT 

so that we can write: 

m+O Lt (:) RT: WA 
= v - - -  . . . . (8.7) Lo lo00 - v A  

R T f  W, 
The quantity. 1 = - is called the molal lowering of the 

freezing point. For water as solvent it has the value of 1.860. 
lo00 I .  

CALCULATION OF T H E  ACTIVITY COEFFICIENT FROM 
FREEZING POINT RESULTS 

If uA is independent of temperature, the calculation of the activity 
coefficient of the solute is a simple matter because, by the Gibbs- 
Duhem equation : 

iwL0 de +- 2000 [ I o  - - -  :] - e; 

de ede =z+5y- 

d In ug = - * - WART: m WART: To 

where 6 is a parameter independent of 13. The relative magnitudes 
of these terms can be seen by substituting the values for water as 
solvent, giving: 5 = 0.00054 whilst 1 = 1.860 so that the first 
term is by far the more important.* The integration is facilitated 
by introducing a function defined by: 

Then 
dI3 
-= - d j +  (1 --j)dInm v m l  

ode 
d In y = - d j  -jdInm + 5 -  vm 

e 
The last term is equivalent to (l [ ( I  - j)dO, the integration being 

JU 
made over the range of 8 corresponding to the range of m from zero 
to the molality in question. The j function is therefore used in 
much the same way as the h function in computing vapour pressure 

is very sensitive to the values selected for the heat capacities of ice and liquid 
water: we have used the data of WASIIBURN, E. W., quoted by DORSEY(~~*’. 

* 
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results; indeed, they would be identical if the ( term were zero. 
For most 1 : 1 electrolytes, at least, this 5 term contributes only a 
few units in the fourth decimal place of log y. 

Tabk 8.1 
C&&wn of the Activity CocJicicnt of Sodium Chloride at the Free.&(? Point 

Second term 

0.0753 
0.097 I 
0.1114 
0.1222 
0- 1308 
0. I380 
0.1442 
0.1491 
0.1539 
0- I578 

~~ 

Third term 

- 
O.OOO2 
0.0003 
O~OOO4 
O.OO06 
0-0007 
O-OOO9 
0*0010 
0.001 1 
0.0013 
0*0014 

First fcrm 

0.0288 
0.0341 
0.0366 
0.0380 
0.0389 
0.0393 
0.0394 
0-0392 
0.0389 
0.0384 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
I -0 

0.0663 
0-0785 
0-0843 
0.0876 
0.0895 
09904 
0.0907 
0.0902 
0.0896 
0.0884 

- logy 
- --- 
0.1039 
0.1309 
0.1476 
0.1596 
0.1690 
0.1 764 
0.1824 
0.1872 
0.1915 
0.1948 

First term = 0.4343j. 
6 8d8 Third term = 0.4343 - o m  

Tuble 8.2 illustrates the calculation of the activity coefficient of 
sodium chloride from freezing point measurementdl”. From this 
table we can see that the third term is almost negligible, and that 
it is the second term which dominates. Care must therefore be 
exercised in the tabular or graphical evaluation of this integral 
especially in the region of low concentrations. Equation (8.6) is 
written for aqueous solutions: 

vm rttp = (1 + 4.9 x lO-48)8 
and then using a procedure similar to that outlined on p. 181, we 
get: 

(1 + 4.9 x lO-*8)8 - y h q 0  = vAbm2 
so that a graph of the left hand side against m2 should give a straight 
line whose slope determines the parameter b and hence the activity 
coefficient at 0.1 M by an equation similar to (8.4a). GUCGENHEIM 
and TIJRCEON(~~) have made such calculations for a number of 1 : 1 
electrolytes with = 1 in equation (8.4b). 

CALCULATION OF ACTIVITY COEFFICIENTS A T  
TEMPERATURES OTHER T H A N  T H E  FREEZING P O I N T  

If, as is usually the case, a, does vary with the temperature, the 
correction from the freezing point TF to some other temperature 
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T, is a more complicated matter. It will often be necessary to 
calculate an activity coefficient at T, = 298*16O, a temperature at 
which measurements by other methods are more frequently made. 
For this purpose we write: 

being the relative partial molal heat content at the variable 
temperature T, EA(T8) its value at the fixed temperature Is, and 
JA the relative partial mold heat capacity of the solvent, which can 
usually be assumed independent of the temperature. LA and JA 
are to be distinguished from the z,, and J terms used before; unlike 
the latent heat of fusion, LA and jA are partial molal properties of 
the solution and are concentration dependent. By the Gibbs- 
Helmholtz equation: 

whence : 

. . . . (2.34) 

or 

The functionsy and have been tabulated for a range of I F  
values(1lbs 14) and the calculation of uA(T,) at, say, 25" from its value 
at the freezing point is not difficult. Since: 

the integration to be carried out over the range ofy and z values 
corresponding to the molality range from zero to the value at which 
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yTJ is to be calculated. yTp is obtained by the methods already 
outlined. Equation (8.9) can easily be transformed into: 

- 85 - 120 - 156 - 188 

where xB is defined in terms of the relative partial molal heat 
content and heat capacity of the solute: 

X B  = - EBJ $Be 

We can illustrate this by reference to sodium chloride (Tubb 8.2), 
the activity coefficient of which has been determined at the freezing 
point by Scatchard and Prentiss. 

Table 8.2 

13.2 
14.1 
14-9 
15.8 

Cokulatwn of the ActiviQ Coe&cient of Sodium Chloride ot 25'from Freezing 
Point Doto 

0-0139 
0.0152 
0.0164 
0.0179 

0. I 
0-2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 so 

0.1723 
0.1751 
0.1773 
0.1786 

0.1039 
0.1309 
0.1476 
0.1596 
0. I690 
0- 1 764 
0.1824 
0.1872 
0.1915 
0.1948 

102 5.0 
90 7-0 

8.7 
28 10.0 - 10 1 1 . 1  

-48 12.2 

0.0069 
0.0062 
0.0043 
0.0020 - O O X U  

- 04035 
- 0.0063 
- 0~0090 
- 0.01 19 
- 0.0 145 

The heat content and heat capacity data are from the paper of GULBRANSEN, 
E. A. and ROBINSON, A. L., J.  A m .  chem. Sot., 56 (1934) 2637, the interpolation 
of the heat content data having been made by HARNED, H. S., and OWEN, B. B., 
'The Physical Chemistry of Electrolytic Solutions,' Reinhold Publishing Cop. 
(1950) p. 541 ; the heat capacity data are represented by JB = 15.84rn. 

The determination of freezing points with the necessaiy accuracy 
i s  no easy matter; equation (8.8) shows that, if logy is to be 
determined within 0.0001, then j must be known within 0.0002; 
to secure this at a concentration of 1 M, the depression of the 
freezing point must be measured within f 0~0007". The permissible 
error decreases proportionally to the molality. Scatchard, after a 
careful consideration of the accuracy attainable with modern 
thermocouple technique, concluded that freezing point depressions 
could be measured within about two hundred-thousandths of a 
degree and that a concentration of 0401 M was about the lowest at 
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which measurements could profitably be made. Thus at 1 M 
concentration the thermometric errors are negligible, but at 0.001 M 
an error of 2 x 10-5 in the temperature measurement corresponds 
to an error of about 0.005 in j and about 0.002 in log y. Successful 
measurements therefore call for highly skilled experimental work, 
and Scatchard and his co-workers have obtained valuable results on 
26 salts. Their data are given in Appendix 8.7 as values of the 
activity coefficients quoted to three significant figures; the original 
papers give log y to four significant figures and should be consulted 
if four-figure activity coefficients are required. 

In their work all temperature measurements were differences 
between the temperature of ice in equilibrium with pure water and 
ice in equilibrium with a solution. Two gold plated silver containers, 
8 cm in diameter and 20 cm deep were used. They were divided 
into three compartments, the centre one W i g  4 cm wide and the 
two outer ones comparatively smaller. The central compartment 
was used to hold the ice and, by means of a pumping system, the 
solution was forced through the ice from each of the outer com- 
partments. Silvered Dewar flasks were used to contain the vessels 
in order to secure as nearly as possible adiabatic conditions; since 
nitrogen has only half the solubility of oxygen in water, dissolved 
air which would affect the freezing point was removed by passing 
a stream of nitrogen through the solutions. The temperatures were 
measured by a 48-junction copper-constantan thermocouple and 
the concentration of the solution after coming to equilibrium with 
the ice was determined by finding the specific conductivity at 10' 
of an aliquot removed from the equilibrium mixture. 

THE ELEVATION OF THE BOILING POINT 

The theory of t h i s  effect is very similar to that of the freezing point 
depression, but the mold elevation of the boiling-point, if water is 
the solvent, is only 0*513', about one-quarter the molal depression 
of the freezing point; thus boiling points must be measured with 
nearly four times the accuracy of freezing points to give activity 
coefficients of the same accuracy. Moreover, the experimental 
difficulties seem to be much greater. This is unfortunate because 
the boiling point elevation could give most useful information at 
temperatures where other methods fail. Unlike the freezing point, 
the boiling point is markedly susceptible to the pressure and, by 
making experiments at a series of reduced pressures, data over a 
temperature range could be acquired. Very little attention has 
been given to this method in recent years apart from the outstanding 
contribution of  SMITH(^^) whose paper may well be read by anyone 
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considering developing the technique: Smith considers that his 
results are consistent within f 0.0002": this corresponds to an 
accuracy of f OW01 in the osmotic coefficient at a concentration 
of 2 M-NaCl, but only f 0.004 at 0.05 M. Results, summarized 
in Appendix 8.8, have been obtained for sodium chloride and 
potassium bromide between 60" and 100". 

ACTIVITY COEFFICIENTS FROM CONCENTRATION CELLS 
W I T H O U T  T R A N S P O R T  

If a faraday of electricity passes through the cell: 
Ag, AgCllHCl (m')IH,(Pt) - (Pt)H,IHCl (m)IAgCl, Ag 

(the positive current flowing from right to left through the potentio- 
meter circuit outside the cell), the cell reactions are: 

AgCl + c- + Ag + Cl-(m) 
tH, --f H+(m) + c- 

H+(m') + c- + iH, 
Ag + C1-(m') + AgCl + c- 

HCl(rn') + HCl(m) 
The net reaction is: 

and the increase in free energy is: 

where y', y are the mean ionic activity coefficients at m', m respec- 
tively. The (reversible) potential of the cell (assuming that the 
hydrogen gas is at the same pressure at each electrode) is given by: 

E F =  - AG 

or 
2.303 R T y'm' y'm' 

log - = 2k log - 
Ym Ym 

E = 2  . . . . (8.10) 

The expression, 2-303RT/F, occurs so frequently that it is con- 
venient to abbreviate it to the symbol k;  this is not likely to be 
confused with Boltzmann's constant. Values of 2*303RT/F are 
given in Appendix 8.1 for temperatures between 0" and 100". 
From equation (8.10) we can determine the activity coefficient at 
one concentration relative to that at another. In practice it is found 
easier to measure the potential, E, of the half cell: 

(Pt)H,IHCl(m) IAgCl, Ag 
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Let EO be the (standard) potential of the half cell 

( Pt) H21 HCI I AgCI, Ag 

in which the acid is present at unit activity in its standard state. 
Then 

E = Eo - 2k log ym . . . . (8.1 1) 

and the problem reduces to one of finding the standard potential Eo. 
The simplest way is to plot the quantity E' = [E + 2k log m] 

Vm- 
Figure 8.3. Exfra@&fion to give Eo for Ilu cell: H,JHCIIHgCI, Hg 

against some function of the concentration, say the square root. 
Then the limiting value of E' as m + 0 is EO. This extrapolation is 
shown in Figure 8.3 for the potential of the analogous cell: 

H21HCIIHgCI, Hg 

on which very careful measurements have been made recently by 
HILLS and IVES(~~). I t  is easy to see that EO is not far from 0.2680, 
but the accuracy of the work justifies something better than this. 
We therefore seek a deviation function and find (see Chapter 9) 
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that the Debye-Huckel theory gives for the activity coefficient in 
very dilute solutions: 

where A rn 0.5 mole-+ 14 and the density of water, do, is introduced 
because the theory gives the activity coefficient expressed in terms 

1% Y - A d W O )  

m- 
Figure 8.4. Extropolatwn to give Eo for the cell : H*IHCIIHgCl, Hg 

of molarities (strictly the activity coefficient on the mole fraction 
scale, but the difference is inappreciable in dilute solution). Then 
we can write: 

E' = E + 2k log m - 2kAd(md0) 
and plot this against the molality. This is shown in the lower curve 
of Figure 8.4. Over the same concentration range, the extrapolation 
function now covers only a range of 0.002 V as against 0.007 V in 
Figure 8.3. This is sometimes called the Hitchcock method(17). The 
abscissa in Figure 8.3 is dm; but in Figure 8.4 it is m, because the 
drn texk has been incorporated in the extrapolation function, and 
deviations from the Debye-Huckel formula should be approximately 
proportional to m. 

An even easier extrapolation can be made by using a fuller form 
of the Debye-Huckel equation, corresponding to equation (9.7) : 

i.e., we plot the function: 
E' = E + 2k log m - 2 k A ~ ( n d o ) [ l  + Bud(md,)] 
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against the molality, selecting a reasonable value of u, the mean 
diameter of the ions. The upper curve of Figure 8.4 shows this, 
using u = 4 A. The function covers a range of only 0.0003 V and 
no doubt this could be reduced still further by using an u value 
somewhat higher. As it is, the extrapolation can be made easily, 
giving EO = 0.26796 V. Once EO is known, a potential measure- 
ment at a given molality suffices to give the activity coefficient at 
that molality by equation (8.1 1). 

An extensive series of measurements of the cell: H,IHCIIAgCI, Ag 
covering the concentration range 0.003 to 4 M and the temperature 
range 0" to 90" has been made('*). Another study(1B) has extended 
the measurements up to about 16 M over the range 0" to 50". The 
analogous cell : 

H,IHBrlAgBr, Ag 

has been measured(20) between O.OOO1 and 0 . W M  at 25" and 
between 0-001 and 1 M over the temperature range 0" to 60" to 
give the activity coefficient ofhydrobromic acid(21). An independent 
check'22) of the standard potential of this cell has been made. 

Another method of arriving at the standard cell potential is due 
to OWEN(=). I t  will be shown in Chapter 12 that the potential, El,  
of the cell: 

H,IHA(m), NaA(4, KCl(4AgC1, Ag Cell I 

where HA is a very weak acid (in this work, boric acid) and, for 
simplicity, the molalities of the three components have been put 
equal to one another, is: 

El = Ebcl - k log K - k log - - k log m 

K being the ionization constant of the acid; ycl-, yA-, ionic activity 
coefficients; and ym the activity coefficient of the tmdissociakd acid. 
Cells of this type have been used extensively to determine the 
dissociation constants of weak acids, the standard potential, E&a, 
of the cell: 

being known. But there is no reason why the procedure should not 
be reversed : if X is known, then this cell could be used to determine 
Eha. This particular standard potential is already well known but 
that of the cell containing hydriodic acid is not, so that the cell: 

H,IHA(m), N 4 4 ,  KI(m)IAgI, Ag Cell I1 

where the last activity coefficient term may be slightly different 
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from the former, can be measured at a series of values of m and the 
quantity E + k log (mX) extrapolated to infinite dilution to give 

It is even easier to make parallel measurements on both cells I 
a,. 
and I1 together, when: 

an equation which will be accurate except for the slight difference 
in the activity coefficient terms. By taking the concentrations low 
enough, say m = 0.003, this term will be less than 0.01 mV and 
therefore beyond the experimental error. Thus measurements are 
made in solutions dilute enough for the activity coefficient term to 
be negligible and yet in a buffered solution of sufficient concentra- 
tion to yield stable potentials. 

By using flowing amalgam cells of the type: 

43, AgXIMX(m')lMzHglMX(m) IAgX, Ag 

the activity coefficients of a number of alkali halides have been 
determined. Among the salts studied are lithium chloride("), 
sodium chloride('d7), potassium chloride(z8), caesium chloride(*@', 
lithium bromide("), sodium bromide(*s), potassium bromide("), 
sodium iodide(*6) and potassium iodide'*5). 

A combination of hydrogen and amalgam electrodes will give the 
activity coefficient of the hydroxides : 

(Pt)H*IMOH(m') IMzHgl MOH(m) IHAW 

The theory of the cell is slightly more complicated because the 
solvent takes part in the cell reaction: 

MOH(m') + H,O --f MOH(m) + H 2 0  

with the distinction that the water of the left-hand side of the 
equation disappears from the right half of the cell and reappears as 
water in the left half and allowance has to be made for the change 
in water activity so that: 

We shall deal with the general question of cells in which the solvent 
participates in the cell reaction on pp. 196-197. Cells of this type 
have been used with lithium'm), sodium(31), potassium(22* s3) and 
caesium'26) hydroxide as electrolyte. 
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If the electrolyte is polyvalent, allowance must be made for the 
multiple charge on the ions. For example, the potential of the cell: 

InIIn2(S03a(m) IHgsSO,, Hg 
has been measured("). The reversible working of the cell involves 
the reactions: 

21n + 2In+++ + 6e- 
3Hg2S0, + 6e- + 6Hg + 3SOi- 

The electrical work per mole of indium sulphate would be 6EF and 

yt being the mean ionic activity coefficient. In  general, for an 
electrolyte dissociating into v, positive and v2 negative ions, where 
(vl + VJ = Y,  and n electrons are involved at the electrodes for 
each molecule reacting and m is the stoichiometric molality of the 
electrolyte, 

The cells: 
Zn amalgamIZnSO,IHg,SO,, Hg 

and Cd amalgamICdSO,IHg,SO,, Hg 

are two examples of systems which give reproducible potentials, 
stable over a long interval of time; if the amalgams and solutions 
arc saturated, the cells are the standard Clark and Weston cells. 
The former has been measured'35) over a concentration range whilst 
a varianP) of the second cell: 

Cd,HglCdSO,I PbSO,, Pb,Hg 

has been used to give the activity coefficient of cadmium sulphate. 
The chlorides, bromides and iodides of both zinc and cadmium 
have been studied by combining zinc or cadmium amalgam elec- 
trodes with the appropriate silver-silver halide electrode(37). The 
barium amalgam electrode seems to work satisfactorily in solutions 
of barium chloride(38) or barium hydroxide(39) and the strontium 
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amalgam electrode in solutions of strontium chloride(40) but it is 
doubtful if the calcium amalgam electrode gives true reversible 
potentials. The cell: 

NazHglNa,S041PbS04, PbzHg 
is suitable for determining the activity coefficient of sodium 
~ulphate(~l) and a similar cell has been used with lithium and 
potassium ~ulphate '~~) .  Finally, mention should be made of two 
cells(1h 43): 

(Pt) H2I H a 0 4  I Hg804, Hg 
and (Pt)H,I HgSO4IPbSO4, PbO4 Pt) 
which give the activity coefficient of sulphuric acid. The cell 
reaction of the latter is: 

H, + PbO, + H,SO, + PbSO, + 2H20 
so that the formula for the cell potential will include a term for the 
water activity, and we may now consider the generalized treatment 
of such cells(44). A complete concentration cell can be written: 

Electrode AlSolution (Gf) IElectrode BlSolution (m) IElectrode A 
and the cell reaction as four processes: 
(a) A loss of one molecule of electrolyte at concentration m from the 

(b) A gain of one molecule of electrolyte at concentration m,f in 

(c) A loss of r molecules of water from the left-hand solution. 
(d)  A gain of r molecules of water in the right-hand solution. 
The increment in free energy per mole of electrolyte reacting is: 

where the subscript B refers to the solute. If n electrons are involved 
in the reaction: 

right-hand solution. 

the left-hand solution. 

AG = [oE(ref) - oE(m)l + r["w(tn) - Gw(ref)l 

nEF = - Ad = [G,m) - 8,,,)1 + "GMrer) - 0 ~ 4  
or nFdE = do,,) - rd&,,,) 

= RTd In aB - rRTd In a, 

d In a, - rRTd In a,,, 
55.5 1 

m 
= - R T -  

55.51 + rm 
m = - R T  d In a, 
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therefore 

nm 
55.51 + nn' Defining m' = 

In every case so far examined it has been found that a simple 
deviation function, x = E +f(m') can be defined, in such a way 
that x varies by only a few millivolts over a concentration range 
where E varies by several hundred millivolts. The form of f(m') 
is decided by trial: a logarithmic form, x = E + a log m', is 
usually applicable below 1 M, whilst at higher concentrations the 
form x = E + bl/;;;; or x = E + cm' may be more suitable. In 
any case: 

$m' dE = $m' d x  - $m'[df(m')/dm']dm' 

The second term on the right is a simple analytical integral and the 
first term may be obtained by graphical or tabular integration. 
Since the first term contributes only a few per cent to the total value 
of $m' dE, it is readily evaluated with all the accuracy inherent in 
the electromotive force determinations. This accuracy is not 
obtained if the direct integration of m' with respect to E or of m 
to log y is attempted. Alternatively the Gibbs-Duhem equation 
can be used to eliminate 0, instead of a,, and the activity coeffi- 
cients of the solute computed without successive approximations. 

Concentration Cells without Transport in Non-Aqueous Solvents 
Many measurements have been made of the potentials of cells con- 

taining hydrochloric acid in non-aqueous media or in mixed solvents 
of which water is one component. Harned and his co-w~rkers(~~) 
have made an intensive study of water-dioxan mixtures, that con- 
taining 82 per cent by weight dioxan having a dielectric constant 
of about 10. Measurements have also been made in solvents such 
as pure methanol(46* It), ethanol(4** 4a* and formic and acetic 
acid(s1) and in aqueous solvents to which were added methanol(47* s2), 
ethanol(4a* m), n-propanol(w), iso-propanol(w* m), acetone(=), 
glycerol(50s =a), glycols(a* m), glucose(s~), fructo~e'~7a) or sucrose(a). 
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E X P E R I M E N T A L  MEASUREMENTS 

The H,IHCllAgCl,Ag cell usually takes the form of an H-tube, 
one arm of which holds the platinum electrode around which bubbles 
hydrogen. The hydrogen may be obtained from a cylinder, in 
which case it should be freed from any traces of oxygen by passing 
it over heated copper; it can also be made by electrolysis of a 
strong solution of sodium hydroxide. The gas should be passed 
through a saturator containing the same solution as the cell so that 
the passage of gas through the cell does not result in a change of 
concentration by evaporation. The platinum electrodes may con- 
veniently be of 0.5 cm by 2.5 cm size, coated with platinum black 
by electrolysis of a chloroplatinic acid solution (a solution con- 
taining 0.5 g of platinum per 100 ml has been recommended with 
a current density of about 200 mA/cm2 for 10 min. : the amount of 
platinum black should be reduced by plating for shorter times, say 
one minute, if the electrode is to be used in very dilute acid solution, 
because heavily plated electrodes are sluggish in coming to equi- 
librium in very dilute solution). 

The normal potentials as tabulated assume that the hydrogen is 
at a partial pressure of one atmosphere. In practice there will be a 
small correction because of barometric variations and the vapour 
pressure of the solution in the cell : 

In the cell: 
H, (pressure P y p )  IHCIIH, (1 atm.) 

where P is the total pressure and p the vapour pressure, the reaction 
is : 

H, (pressure P - p) + H, (1 atm.) 

and the free energy change per mole is: 

- RTln (P -p) 

so that the potential of the cell is E l n  (P -p) and the observed 

potential is to be corrected by subtracting )k log (P - p ) .  
With proper precautions, the glass electrode gives results as accur- 

ate as the hydrogen electrode: COVINGTON and PRIJE(~*) have used 
cells with and without transport to get precise activity coefficients 
and transport numbers of hydrochloric, perchloricandnitricacid. An 
important study (60) has been made oftheglasselectrode in methanol- 
water mixtures from which it is concluded that accurate pH measure- 
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ments can be made provided that (i) the electrode is stored in and 
equilibrated with solvent of the composition which is to be used in 
the pH measurement, (ii) the electrode is standardized with a buffer 
in the same solvent and (iii) a small correction is made for the liquid 
junction potential. 

Silver-silver chloride electrodes of several types have been tried. 
What is sometimes called the Carmody type(61) is a piece of platinum 
gauze about 1 cm square, plated with silver by electrolysis in a 
solution of potassium silver cyanide. It is important not to use the 
excess of potassium cyanide which is common in ordinary silver 
plating; instead, a salt twice recrystallized from water is used. A 
current of 8 mA for 8 h has been recommended. The electrode is 
washed thoroughly for several days in running water and is then 
chloridized in a hydrochloric acid solution for one hour at 3 mA. 
It is well to do these operations with the electrode protected from 
direct lighting. 

A variant of this electrode is used(62) in cells with transport. The 
dimensions are very much reduced by using a 1 cm length of 
platinum wire, 0.045 cm in diameter, silver-plated by electrolysis 
for 2-6 h at 2-0.5 mA in a solution from which excess cyanide has 
been removed by adding a small amount of silver nitrate until 
opalescence occurs. After washing, the electrode is chloridized in 
0.1 N hydrochloric acid for half an hour at 2 mA. 

G~.~NTELBERG(~~) used a platinum wire spiral filled with silver 
oxide, the oxide being converted to metal by heating to 450"-500" 
and the spiral then immersed in crystalline silver chloride made by 
evaporating an ammoniacal silver chloride solution over sulphuric 
acid. In a third type(a) the oxide is converted to metal as before 
but the chloride layer is formed by electrolysis in normal hydro- 
chloric acid solution at 2 mA/cm2 for 2 h. It is well to avoid rubber 
stoppers, sulphur compounds in which cause the formation of silver 
sulphide and dissolved air should be removed from the solutions, 
especially if they are dilute. 

The calomel or mercury-mercurous chloride electrode has 
received more attention lately after being unfashionable for many 
years. HILLS and IvEs'~~) prepared their calomel electrolytically 
and coated their electrode vessels with a hydrophobic reagent 
(Dow-Corning Silicone Fluid No. 200 deposited from 1 per cent 
carbon tetrachloride solution). The excellent consistency of the 
results they obtained with solutions of hydrochloric acid as dilute 
as 0.0016 M is shown by the graph in Figure 8.4. 

Silver-silver bromide electrodes are prepared rather more easily. 
A mixture of 90 per cent silver oxide and 10 per cent silver bromate 
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is ground in an agate mortar, made into a paste with water, fed 
into a platinum spiral and heated at 650' for about 7 min("). 
For studies on alkali halide solutions it is not possible to use the 

pure alkali metal as one electrode, owing to its irreversible reaction 
with water. Instead a very dilute (-0.01 per cent) alkali metal 

0 0 
Figure 8.5. From HARNED, H. S., 3. A m .  k Soc., 51 (1929) 417 

amalgam is used; in order to avoid the problems introduced by 
variation of the amalgam composition, a complete concentration 
cell such as: 

Ag, AgClIKCl(m')lKzHg - WglKCl(m)IAgC4 Ag 
is employed, the amalgam being dropped in a line stream through 
the solutions from a common reservoir. Cells of this type have been 
perfected and studied extensively by Hamed and his collaborators. 

Figurc 8.5 shows a simple design of cell(*') for alkali metal halide 
solutions. A and C are silver-silver halide electrodes, DD are inlet 
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tubes through which solutions could be fed into the cell compart- 
ments, the solutions having been previously boiled in uucuo. The 
amalgam is made by electrolysis of an hydroxide solution to give 
about 0.1 per cent amalgam; the amalgam is dried in vacuo and 
allowed to stand until the impurities have risen to the surface, after 
which the clean amalgam is run off through an outlet in the base 
of the container into mercury and diluted to about 0.01 per cent. 
Using vacuum technique the amalgam is introduced into B and by 
manipulating the stopcocks I-Z the amalgam flows through the 
capillary tubes of the dropper B, through the solutions at a rate of 
about 1 cms in 20 sec. During the flow of amalgam, the stopcocks 
S-S are manipulated to remove the amalgam through 0-0 and as 
many potentiometer readings as possible are made whilst the supply 
of amalgam is flowing. The apparatus is designed so that a new 
dropper can be introduced, solutions rejected through 0-0 and the 
cells filled with fresh solutions. The elimination of oxygen is essential 
to the proper working of these cells. 

A C T I V I T Y  C O E F F I C I E N T S  FROM C O N C E N T R A T I O N  CELLS 
WITH T R A N S P O R T  

A paper from the Rockefeller Institute in 1935 forms a good intro- 
duction to this subject'66); this work was a natural corollary of the 
study of transport numbers which had been undertaken in the same 
laboratories and it made rapid progress in elucidating activity 
coefficients in more dilute solutions (up to 0.1 N) because, once the 
transport number has been found as a function of the concentration, 
the activity coefficient is given by measuring the potential of a 
comparatively simple cell. Thus in the case of sodium chloride one 
type of electrode only is needed, the silver-silver chloride electrode, 
and the difficult technique of the sodium amalgam electrode is not 
required. The method is limited, however, to salts towards at least 
one of whose ions there is known to be an electrode capable of 
nearly ideally reversible behaviour, and it is not surprising that the 
method has so far been applied almost exclusively to a series of 
chloride electrolytes. The cell: 

Ag, AgClINaCl(m') INaCI(m) IAgCl, Ag 

is one in which, for each faraday of electricity passing, an equivalent 
of chloride ion is liberated at the left-hand electrode and formed 
at the right, whilst tl equivalents of sodium ion pass from left to 
right across the junction between the two solutions and 1, equivalents 
of chloride pass in the opposite direction. The net result is the loss 
of 1, moles of sodium chloride in the left-hand solution and a 
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corresponding gain of 1, moles at the right. Considering first the 
case when m’ = m + dm the potential is: 

ClE, = - Pktld log . . . . (8.12) 

or, should the transport number be dependent on the concentration, 
as in practice is the case, then for a finite difference: 

Et = - 2k tld log ym s:: 
where the integration is to be carried out from the conditions 
prevailing in the left-hand solution up to those in the right-hand 
solution. The experimental side of the work is not difficult: using 

P 

Figurc 8.6. From HORNIBROOK, W. J., JANL, G. J. and GORDON, A. R., 
3. A m .  c h .  Soc., 64 (1942) 513 

silver-silver chloride electrodes based on the Carmody model but 
of much smaller dimensions(6*) and forming the liquid junction in a 
manner similar to the ‘sheared boundary’ of the transport number 
experiment, very stable and reproducible potentialscan be measured. 

In subsequent work the electrodes were modified and the ‘sheared 
boundary’ method discarded because it introduced traces of grease 
into the solutions. Figure 8.6 shows a simple design of cell used by 
GORDON(~) and very similar to the Rockefeller Institute cell. The 
platinum electrodes are much heavier and the boundary is formed 
by filling each electrode compartment and the side tubes with 
solution, after which the intervening compartment is filled with the 
heavier solution. The junction is, therefore, at one of the side tubes. 
Provided that no appreciable heat of mixing is involved at the 
junction, experience and theory agree that the potential is indepen- 
dent of the sharpness of the boundary region. 

Some of the published methods of manipulating the experimental 
data from such cells in order to give the activity coefficients necessi- 
tate a series of approximations. The following method is more 
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convenient. The experimental data consist of a series of values of 
the electromotive force, E,, of a cell with transport, the molality on 
one side being kept fixed at some known value m'. The potential 
is related to the transport number and the activity coefficients by 
equation (8.12), i.c., by: 

dE, - d log (ym) = - Zkt, 

dm- 
Figure 8.7. Vdws qflog yly' against t / m  fmm the data ~ J A N Z  and GORDON 

for sodium cklwidc. m' = 0.1 

Now t, usually varies only slightly with m, so that if we define a 
quantity x by the equation: 

where tan is the transport number at m', x will be only a small fraction 
of lit;. Hence: 

- d log (ym) = - (- dE, + xdEl) 

and, ti being a constant, th is  can be integrated between m and m' 
to give, since El = 0 when m = m': 

1 1  
2k t; 
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m' E, 
logy = logy' + logm - - - - or 2kt; !Z!k JmmxdE' 

(Care must be taken to give Et the correct sign.) 
The part of this expression involving the integral is now quite 

small and can easily be evaluated graphically or by tabulation 
without loss of accuracy. The activity coefficient y', at the fixed 
concentration m', is now determined as follows, using the fact that 
as m --+ 0, y + 1 by definition. 

In Figure 8.7 a plot of log y/y',  against d m  taken from the data 
of J A N 2  and GORDON(~*) for sodium chloride is extrapolated to zero 

0.06 0.7 
m- 

log y/y' + 0'5107dm ] against mfir sodium chloride 
+ I.350dm 

value of m and the intercept gives - log y' as approximately 0.1 1. 
A more accurate extrapolation can be made by assuming the validity 
of the Debve-Hiickel equation (8.4a). 

We now plot the function ( log . - i,' + ~ ~ ~ ~ ~ m )  against m as 

in Figure 8.8 and find that the intercept is - logy' = 0.1088 and 
values of log y at other concentrations follow immediately. 

In recent years the Rockefeller Institute workers'66* 6s) have 
obtained data on hydrochloric acid, sodium chloride, potassium 
chloride, calcium chloride and lanthanum chloride. It should be 
noted that their results are expressed on the molarity concentration 
scale and their activity coefficient, f, is the mean molar activity 
coefficient. The Toronto school(67* 6 8 ~ 7 0 )  have studied only three 
salts, sodium chloride, potassium chloride and calcium chloride, 
but they made measurements over the temperature range 15-45'. 
More recently an extensive study of the chlorides of lanthanum, 
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cerium, praseodymium, neodymium, gadolinium, samarium, euro- 
pium, erbium and ytterbium and the bromides of lanthanum, 
praseodymium, neodymium, gadolinium, holmium and erbium up 
to about 0.03 M has been published(71). 

When measurements have been made on the same salt by inde- 
pendent workers, the agreement +as usually been most encouraging; 
thus, for potassium chloride, Hornibrook, Janz and Gordon found 
y = 0.8172 and 0.7697 at 0.05 M and 0.1 M respectively compared 
with Shedlovsky and MacInnes’ values of 0.8172 and 0.7701. For 
s o d i u m  chloride the Toronto school found y = 0.7784 at 0.1 M in 
exact agreement with the earlier measurements of Brown and 
MacInnes, although a recomputation by Shedlovsky, using a 
different modification of the Debye-Huckel equation, has given 
y = 0-7744. For calcium chloride, McLeod and Gordon found 
y = 0.5769 at 0-05 M compared with 0.5835 (since recomputed as 
0.5826) from the Rockefeller Institute: the difference, however, 
arises from the transport numbers rather than the electromotive 
force measurements. We give in Appendix 8.9, the activity coeffi- 
cients of some electrolytes at concentrations below 0.1 My most of 
which have been determined in recent years by this method. 

THE OSMOTIC PRESSURE 

The osmotic pressure of a solution is determined by the condition 
that, for equilibrium across a semi-permeable membrane, the 
chemical potential of the pure solvent on one side of the membrane 
must be equal to the chemical potential of the solvent in the solution 
on the other side where it is subjected to a hydrostatic pressure equal 
to the osmotic pressure. Under this pressure the chemical potential 
of the solvent in the solution, aA = GI + R T  In a, becomes 0% + 
vAII + RTln uA, using equation (2.36) and neglecting the com- 
pressibility. Since this must equal the chemical potential of the 
pure solvent, we have V,lI = - RTln ad and as the osmotic 
coefficient is defined by : 

In uA = - VmWA+ - 
1000 

i t  follows that: 

. . , (2.16) 

A considerable amount of experimental skill was expended in the 
first fifteen years of this century in devising apparatus to measure 
osmotic pressures and to overcome the numerous experimental 
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difficulties which seem to beset this subject. The effect is large: for 
example, a one molar solution of sucrose has an osmotic pressure 
of about 27 atm. at 25" and therefore the pressure should be measur- 
able with accuracy at small concentrations of the solute; against 
this is to be put the difficulty of preparing truly semi-permeable 
membranes and the necessity, at least for data pertaining to con- 
centrated solutions, of making allowance for the variation of PA 
with concentration and with pressure. Very few accurate results 
have been obtained in spite of the spirited attack which was made 
on this problem early in the century. We can illustrate the accuracy 
by reference in Table 8.3 to the osmotic coefficient of sucrose derived 

1 -65 I 
2.373 
3.273 
4- 120 

Table 8.3 
Osmotic Coeb5cicnt of Sucrose Solutwns at 0" 

43.84 1.182 1-179 1.185 
67.68 I *259 I *262 1.273 

100.43 1.354 I -35 I 1.369 
134.71 1.437 1 *433 1 *459 

4(*) Derived from vapour pressure measurements. 
4") From O(un0tic pressure measurements, allowing for variation of rA with 

4(8) From osmotic pressure measurements, putting PA = 9: = 18.01 ml/mole. 
concentration and pressure. 

from direct vapour pressure measurements using the dynamic 
method and from osmotic pressure measurements allowing for the 
compressibility of the solution"*). Accurate measurements of solu- 
tions of simple electrolytes (as distinct from polyelectrolytes) are not 
extensive. For calcium ferrocyanide both osmotic pressure and the 
vapour pressure have been measured at 0" (the latter by the 
dynamic method) and give the following values of the osmotic 
coefficient : 
m 1.075 1.353 1.469 1.617 1.711 
I7 (atmospheres) 41.22 70-84 87.09 112.84 130.66 
4 (from osmotic pressure) 0.557 0-756 0.853 0.995 1.086 
4 (from vapour pressure) 0.562 0.759 0.854 1.004 1.100 

T H E  POROUS-DISC OSMOMETER 

The limitation of osmotic pressure measurements in the study of 
simple electrolytes arises from the difficulty of preparing membranes 
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permeable to solvent molecules but impermeable to ions which may 
be little different in size from the solvent molecules. An elegant 
solution to this problem is provided in principle by the ‘porous-disc 
osmometer’, in which the ‘membrane’ consists of a path of solvent 
vapour, and is therefore perfectly impermeable to ions. In this 
method, which has been highly developed by WILLIAMS ON(^^), the 
drop in the chemical potential of the solvent brought about by the 
presence of the solute is matched by applying a negutiue pressure to 

Fiewe 8.9. 777 borous-disc ostnotiielcr. 
FGm WILLIAMSON; A. T. Proc. Roy. Soc., 

195 A (1948) 98 

the pure solvent. This is achieved by having a column of the 
solvent under tension, the intermolecular cohesive forces preventing 
the column from breaking. The principle of the method is indicated 
in Figure 8.9. The solution in the vessel A is equilibrated via the 
vapour phase with the pure solvent in the inner vessel B, which is 
held by capillary forces in the porous glass diaphragm against the 
tension due to the hanging column of solvent. 

Owing to the enormous magnitude of osmotic pressures as com- 
pared with other colligative properties, and to the practical difficulty 
of establishing a column of liquid under a tension corresponding to 
more than a few decimetres in the height of the solvent column, the 
method is confined to solutions of very low molar concentration, 
and was in fact developed for the study of high polymers. It is, 
however, a method of great potential value for extremely dilute 
electrolyte solutions. A major experimental difficulty lies in the 
necssity for extreme uniformity of temperature in the equilibration 
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vessel, which can be illustrated by the following figures: a one- 
thousandth molar solution of an ideal non-electrolyte solute in 
water at 25' would have an osmotic pressure equivalent to approxi- 
mately 25cm height of water. The vapour pressure lowering of 
such a solution would be approximately 0.0004 mm Hg; since the 
vapour pressure of water changes by approximately 1 mmldegree 
at 25O, a temperature difference of O*OO04° between the solvent and 
solution would wipe out the free energy difference which results in 
the osmotic pressure mentioned. In order to obtain quantitatively 
useful data for solutions of this concentration, the temperature must 
be uniform within 5 x 10-6 of a degree. Williamson has described 
the elaborate precautions necessary to ensure such constancy. 

S 0 J- U B I LIT Y M E  AS U R EM E N TS 

'I'he condition for saturation of a solution is that the chemical 
potential of the solute is the same in the solid state and in the 
saturated solution: 

0m"d = 0% + vRTln (Qmy,) 
If there is another electrolyte present the solubility of the first 
electrolyte may be different but will still be determined by the 
condition : 

Omiid = 0% + vRTln (Qm'y;) 

where Q is the factor tabulated in Appendix 2.1. Thus the ratio 
of the solubilities in the absence and in the presence of another 
electrolyte measures the influence of the added electrolyte on the 
activity coefficient of the first: 

m '  

The method is a powerful one for studying the variation of the 
activity coefficient of a sparingly soluble salt in a mixed electrolyte 
solution; the accuracy of the method depends mainly on the 
analytical accuracy with which the solubility can be determined; 
hence the coordinated ammines of cobalt compounds have proved 
favourite electrolytes for such measurements because of the ease and 
accuracy with which the ammonia content can be measured. Tabla 
8.4 gives some results for the solubility of oxalotetramminecobaltic 
diamminodinitrooxalocobal tiate(74) 

C C O ( N H ~ > ~ W J +  [Co(NH,),(NO,)*C*OJ- 
in sodium chloride solutions at 15". The solubilities being expressed 
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SOLUBILITY MEASUREMENTS 

as molarities, it is convenient to express the activity coefficients on 
the molar scale. What results is a set of activity coefficients relative 

Tab& 8.4 

0 0.4900 0 
0.0003 0.4935 0.003 1 
0.00 1 0.50oO 0.0087 
0.005 0.5220 0.02 75 
0.0 I 0.5396 0.04 I9 
0.02 0.5646 0.06 I5 

0.01 I5 0-974 
0.0146 0-967 
0.0202 0.954 
0.0390 0.914 
0.0534 0.885 
0.0730 0,845 

to the value at a concentration corresponding to the solubility in 
the absence of sodium chloride, Le., at 4.9 x mole/l in this 
case. By plotting logy& against the square root of the total ionic 

t 

42 - 
Figure 8.10. Calculation of activib coeficknts from solubility meosurcmmts 

strength (Figure 8.10) a straight line can be drawn extrapolating to 
- 0.1 15 at I = 0. This is added to each value of logyb’ to give a 
set of activity coefficients relative to unity at infinite dilution. 

MEASUREMENTS OF SOLUTE VAPOUR PRESSURE 

Just as the solvent vapour pressure of a solution determined relative 
to its value for the pure solvent measures the solvent activity, so the 
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vapour pressure of a solute measures the activity of the solute. Very 
few electrolytes have vapour pressures large enough to make this 
method feasible-the halide acids are well-known examples(76’. 
Even with these it is only in comparatively concentrated solu- 
tions that the solute vapour pressure is appreciable enough to be 
measured and hence the results have to be expressed relative to an 
arbitrarily assigned activity coefficient at one concentration, unless 
the value at this concentration can be obtained by some other 
method. 

DETERMINATION O F  ACTIVITY COEFFICIENTS B Y  T H E  
‘SOLVENT-EXTRACTION’ PROCESS 

Although this method has not been much used, it holds promise for 
some special studies and can be described by reference to the work 
of GLUECKAUF, MCKAY and MAT HIE SON(^^). Through a series of 
six tubes, filled with aqueous solutions of uranyl nitrate and sodium 
nitrate in different proportions, a dibutyl-ether solution of uranyl 
nitrate was forced under slight pressure from a container. The 
ethereal solution entered at the bottom of the first tube, percolated 
through the first tube and passed through a side tube into the 
bottom of the second tube whence it percolated through the second 
solution and so on through all six solutions. Provided that sodium 
nitrate is insoluble in the ether and that water and ether are 
practically immiscible even in the presence of uranyl nitrate, the passage 
of the ethereal solution through the aqueous solutions will result in 
the addition to or removal from the aqueous solution of uranyl 
nitrate according as the chemical potential of this electrolyte is less 
than or greater than that of uranyl nitrate in the ether solution. 
No transfer of sodium nitrate or of water from one tube to another 
can occur if the solubility conditions already mentioned hold. If 
sufficient ethereal solution is percolated and equilibrium is reached, 
each of the six aqueous solutions is in a state where its uranyl nitrate 
activity is equal to the activity of this salt in the ether, that is to say, 
uranyl nitrate is present at the same activity in each of the six 
aqueous solutions; if mB is the molality of uranyl nitrate and mC 
that of sodium nitrate in any one tube, the activity of the uranyl 
nitrate is mB(2mB + mc)2y: and this must have the same value in 
each aqueous solution. Just as in the isopiestic method it is the 
water activity which becomes equal in all the solutions because it 
is water which is the transportable component, so in this method 
it is the uranyl nitrate activity which becomes equal in all solutions 
because this is the component which can be moved by means of the 
ether solution. 
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A C T I V I T Y  COEFFICIENTS B Y  SEDIMENTATION IN A N  
ULTRACENTRIFUGE 

In discussing the measurement of transport numben we noted that 
on subjecting a solution of uniform composition to a centrifugal 
field, an electromotive force is found between two electrodes at 
different points in the field. No concentration gradient is set up in 
these experiments (unless the centrifugal field acts for longer times 
than are usual in such transport number measurements). The 
system is, however, not one in equilibrium and if sufficient time is 
allowed, or better, if an ultracentrifuge is used, a concentration 
gradient is set up and the electromotive force falls to zero, i.c., the 
Centrifugal field is now compensated by a concentration gradient 
and not by an electrical potential gradient. The heavier particles 
are preferentially removed to the outer parts of the centrifuge tube 
but, in the case of an electrolyte solution, the oppositely charged 
ions cannot move independently, governed only by their individual 
masses, but must proceed as partners because no appreciable charge 
separation is permitted. 

If we replace the EF term in equation (5.4) by - A 0  we get: 
y'm' 
'ym 

vRT In - = ~T'W'(Y; - Y;)(  WB - pPB) 

where y', m' refer to the point at a distance Y, and y, m to a point Y,. 

The ultracentrifuge, however, introduces very high pressures in 
the tube and it is no longer permissible to take pVB as independent 
of the position in the centrifugal field. Instead, we write: 

If the point Y, corresponds to the open end of the tube, this equation 
gives the activity coefficient y' at atmospheric pressure and at a 
molality m' relative to y at m; p and pB are functions of Y but VB 
must be taken as the partial molal volume at the selected value of m'. 

Whilst the general theory has been known for several years and 
some experimental work has been done(77), the method has recently 
been advanced in a way which suggests that it is going to be of 
widespread use. JOHNSON, KRAUS and YOUNG('*) used an ultra- 
centrifuge at about 30,000 r.p.m. and measured the concentration 
gradient by following the change in the refractive index. The time 
required to attain equilibrium varied from three to ten days. For 
cadmium iodide they obtained results over the concentration range 
0.2 to 0.8 M in remarkably good agreement with those already 
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known from electromotive force measurements whilst, although the 
data for uranyl fluoride did not coincide with earlier freezing point 
measurements, the difference was reasonable in view of the 30" 
difference in the temperatures at which the two sets of measurements 
were made. 

T H E  EFFECT O F  T E M P E R A T U R E  O N  T H E  ACTIVITY 
COEFFICIENT 

Since . . . (2.30) 

and iB can be expressed as a function of temperature within the 
accuracy of experimental work by : 

where 7, is a selected reference temperature, then the activity 
coefficient should be represented as a function of temperature by 
an expression of the form: 

i B  = L&(T,) + j B (  - T#) 

logy = - A' - + A ;  - Aklog I l- 
where A;, A; and Aj are parameters characteristic of the electrolyte 
and its molality. There are few electrolytes for which measurements 

Table 8.5 
Activity Cw&cimt 4 Sodium Chloride at 1 M calculated from : 

1% y = 1 1.4326 - 535*45/7 - 3.9679 1% 7 

Temperature 
Freezing Point 

0" 
15" 
25" 
40" 
60" 
70" 
80" 
90" 

100" 

Yoba. 

0.639 
0-638 
0.654 
0.658 
0.655 
0.655 
0.648 
0.641 
0.632 
0.622 

yc.10. 

0.634 
0-638 
0.653 
0-658 
0.660 
0.654 
0.648 
0.640 
0.63 1 
0.62 I 

have been made over a sufficient temperature range to test this 
equation thoroughly; sodium chloride is one such electrolyte('9) 
and Table 8.5 illustrates the concordance between the observed 
activity coefficients at 1 M and those calculated by this equation, 
putting A; = 11.4326, A; = 53545 and A; = 3.9679 

The isopiestic vapour pressure method has the drawback of being 
only a comparative method; it measures the vapour pressure of a 
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solution relative to that of another solution or the vapour pressure 
may be expressed as an osmotic coefficient, still, however, based on 
a set of values for some selected standard or reference electrolyte 
and, of come, any activity coefficients calculated from the data are 
still relative. On the other hand, a comparative method has some 
advantage in that it enables two sets of osmotic coefficients to be 
compared directly and it can examine consistencies between various 
sets of values. Experience has shown that four electrolytes are useful 
as reference solutes in the isopiestic method: potassium chloride, 
sodium chloride, sulphuric acid and calcium chloride; in addition 
sucrose is useful for work with non-electrolytes. Potassium chloride 
is obtainable in good quality, is easily recrystallized and is not 
appreciably hygroscopic; it is, however, saturated at  about 4.8 M 
at 25" and hence its use as a standard is limited to solutions of a 
water activity of 0-85 or more. Sodium chloride is a somewhat more 
hygroscopic salt but, having a solubility in the region of 6 M, it 
can be used for water activities down to 0-76. The vapour pressures 
of the aqueous solutions of these salts are known with considerable 
accuracy. For solutions with a water activity below 0.76, the 
position is not so happy; sulphuric acid is one reference electrolyte 
with water activities as low as 0.07 at 20 M which can be made 
fkom pure material and analysed accurately by weight titration. 
Unfortunately, because of intermediate ion (HSOi) formation, its 
solutions show complex behaviour and the isopiestic ratio of 
sulphuric acid solutions with respect to other electrolyte solutions is 
seldom one which can be plotted with ease. If a reference electro- 
lyte can be found such that the isopiestic ratio can be plotted against 
the concentration to give a curve of simple form, measurements at 
an excessively large number of concentrations can be avoided. 
Calcium chloride can often be used to advantage in this way when 
other 2 : 1 salts are being measured. Although its solubility is 
7.4 M at 25" it easily supersaturates and can be used to equilibrate 
with solutions down to a water activity of 0.18. It is advisable 
to prepare the stock calcium chloride solution from good 
grade calcium carbonate and hydrochloric acid and then, as a 
precaution, check its isopiestic ratio against a sodium chloride 
solution. 

THE OSMOTIC A N D  A C T I V I T Y  COEFFICIENTS OF SODIUM 
A N D  POTASSIUM C H L O R I D E  

To derive mean values for these coefficients we shall use the results 
of three different techniques, direct vapour pressure measurements, 
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freezing point determinations and experiments on the potentials of 
concentration cells. The first of these is capable of precision but 
only at high concentrations, and it  is doubtful if any results at 
concentrations below 1 M can stand comparison with those obtained 
by indirect methods. On the other hand, pFecise freezing point 
measurements have seldom explored the region of concentration 
above 1 My whilst electromotive force measurements have to be 
treated with some caution in concentrated solutions because of 
troubles such as electrode solubility. 

We may first consider the activity coefficient of sodium chloride 
at 0.1 M because it is a good illustration of the agreement that can 
be reached by different workers. BROWN and MACINNES'~~) using 
a cell with transport and availing themselves of the transport 
number measurements of LONCSWORTH(~) found - log yNacI 
= 0.1088. ALLGOOD and GORDON'~~) made an independent deter- 
mination of the transport number, although by essentially the same 
method, whilst JANZ and GORDON(@) repeated the cell measure- 
ments; the combination of these results gave exactly the same 
value, - log yNaa = 0.1088. HARNED and  COOK'^^) studied cells 
without transport containing amalgam electrodes and by fitting 
their results to an extended Debye-Hiickel equation a figure of 
0.1085 ensued. A similar investigation(28* 67* 69) of potassium 
chloride at 0.1 M has given three values of - log y ~ a :  0.1 134, 
0.1137 and 0.1141. The isopiestic ratio of potassium chloride to 
sodium chloride is known even below 0.1 M and can be extrapolated 
back to zero concentration with some confidence, enabling us to 
calculate that at 0.1 M, log (yNa,-&Ka) should be 0.0048: the 
activity coefficients of potassium chloride can now be translated into 
values for sodium chloride to give - log 7N.a = 0.1086, 0.1089, 
0.1093. We have used the results of four different laboratories and 
four different techniques to give six determinations of the activity 
coefficient of sodium chloride in 0.1 M solution at 25': the average 
value of - log yN8cI is 0.1088 and the maximum deviation is only 
0.0005. 

At higher concentrations, up to 1 M, we rely more on amalgam 
cells; those containing sodium chloride give the activity coefficient 
directly; others containing potassium chloride(28), sodium bro- 
mide(29) or potassium br0mide'~4), require a knowledge of the iso- 
piestic ratios between sodium chloride and these salts. Such ratios 
have been measured. In addition, we have accurate freezing point 
measurements on sodium chloride solutions and sufficient heat 
content and capacity data to calculate the temperature correction. 
As a result of this work, five separate determinations on sodium 
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chloride are available and the agreement between them is satis- 
factory: the average deviation from the mean values is 0.0014 in y. 

Above 1 M it is better to assess the data in terms of the osmotic 
coefficient. Both NEGUS(~),  using the technique of LOVELACE, 
FRAZER and SEASE(~~),  and OLYNYK and have made 
direct vapour pressure measurements up to high concentrations: 
furthermore, GIBSON and ADAMS(~) have measured the vapour 
pressure of the saturated solution at 20.28" and the correction to 
25" is small. Similar determinations using potassium chloride("), 
barium chloride's) and sulphuric acid solutions(% 86) have been 

7 d 3 * 5 6 

F i p e  8.11. Dcviation~ion for the o m t u  coe$cicnt of sodium chloride at 25". 
From ROB~SON, R. A., Proc. Roy. Soc., N.Z., 75 (1945) 203 

m- 

0 Negus-sodiurn chloride 
Olynyk and Gordon-sodiurn chloride 

x Lovelace, Frazer and Sease-potassium chloride 
Ham4 and Cook-potassium chloride 

0 Bechtold and Newton-barium chloride 
A Gibson and Ad- 'urn &!oride 
+ Grollman and Frazer-sulphuric acid 
A Shankman and Cordon--sulphuric acid 

made and the isopiestic ratio of each with respect to sodium chloride 
has been measured carefully(6s87) so that the vapour pressure 
measurements on these electrolytes can be used to give three sets of 
data for the vapour pressure (or osmotic coefficient) of sodium 
chloride. Actually two series of results are available for sulphuric 
acid, originating in different schools of chemistry, whilst the 
potassium chloride measurements were made at 20' and needed a 
special determination of the isopiestic ratio of sodium to potassium 
chloride at this temperature and a small correction of the calculated 
vapour pressures of sodium chloride solutions over a 5' interval. 
The amalgam cell work of Harned and Cook on potassium chloride 
gives the activity coefficient but from the potentials the solvent 
activity can be calculated by the method outlined on pp. 196-197. 
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Combining this with isopiestic data a new vapour pressure curve for 
sodium chloride solutions results. The collection of all these calcula- 
tions is presented in Figure 8.11 as a graph of (4 - 0.07m) against 
molality, from which the osmotic coefficient at round concentrations 
can be read. The activity coefficient follows as a matter of computa- 
tion and further, since the isopiestic ratio of potassium chloride and 
sodium chloride has been the subject of much research, the osmotic 
and activity coefficients of potassium chloride are obtained, again 
as the result of fairly simple computation. In Appendix 8.3, we 
present a set of values of the water activity, osmotic coefficient, 
activity coefficient and relative molal vapour pressure lowering for 
these two salts which, we think, represent the best values. The data 
are supported by some recent measurements(@) by the dynamic 
method at 30° for 0.7 - 4 M potassium chloride and 3.7 - 5 M 
sodium chloride which, after a small correction is made to convert 
the data to 25O, show an average deviation from the values recorded 
in Appendix 8.3 of only 0.0008 in 4. The water activity of potassium 
chloride has also been by a method in which the pure 
solvent vapour is isolated from the solution at 25" by a sensitive 
bellows pressure gauge and the temperature of the solvent lowered 
until the vapour pressures of solvent and solution are equal. The 
results for more concentrated solutions are particularly important; 
they agree with those in Appendix 8.3 within 04010 in 4. 

T H E  W A T E R  ACTIVITY O F  S U L P H U R I C  A C I D  SOLUTIONS 

As we have already mentioned, sulphuric acid could be a most 
useful reference electrolyte for the isopiestic method because of its 
purity, ease of analysis and the wide range of water activity covered 
by its solutions with, however, the expensive disadvantage of 
needing platinum dishes. Unfortunately, the question of the vapour 
pressure of its solutions has not yet been finally settled. HARNED 
and HAMER(~~) contrived two cells each of which gives the activity 
coefficient of the acid and each can be used to give the water 
activity by using some form of the Gibbs-Duhem equation. One 
cell, containing hydrogen and lead dioxide-lead sulphate elec- 
trodes, could be used to 7 M whilst the other cell, with hydrogen 
and mercury-mercurous sulphate electrodes, gave good results up 
to 17 M. Over the concentration range common to both there was 
excellent agreement between the water activities calculated from 
each cell; for example, a t  7 M the figures of a? = 0.5453 and 
0.5458 show the widest difference in the two smes and at  other 
concentrations the agreement is even better. The direct vapour 
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pressure measurements of SHANKMAN and GORDON‘~) give values 
somewhat different; thus, for example, uw was found to be 0-5497 
at 7 M. The vapour pressure results agree with the electromotive 
force method at 2 M and 3 M, they are higher at concentrations up 
to about 8M, but at higher concentrations still it is the vapour 
pressure figures which are the lower. Expressed in terms of aw the 
differences may appear large but the differences should not be 
over-emphasized; put in terms of a cell potential, and this is what 
Harned and Hamer measured, a difference of one or two millivolts 
accounts for most of the discrepancy. Since there seemed little use 
in merely repeating what was clearly very careful work, STOKES(@) 
devised the method with the lengthy title of ‘bithermal equilibration 
through the vapour phase’ which has already been discussed. As 
sulphuric acid was too corrosive to be used in his apparatus, he 
measured the vapour pressure of sodium hydroxide solutions 
between 5 M and 14 M and also made a few measurements on 
sodium chloride and on calcium chloride solutions. The last were 
valuable in showing that the method was working properly, his 
value of aw = 0.7464 for 3.033 M calcium chloride comparing well 
with ow = 0.7458 by BECHTOLD and  NEWTON(^) who used the 
dynamic method. Stokes’ values for the vapour pressure of sodium 
hydroxide solutions must, therefore, be treated with considerable 
confidence and, the isopiestic ratios of this base to sulphuric acid 
having been measured with care, we arrive at a new determination 
for sulphuric acid. The concentration range 5-14M for sodium 
hydroxide is equivalent, in the isopiestic sense, to the range 
4-1 1.5 M for sulphuric acid and it is over this range that comparison 
with the work of Shankman and Gordon can be made. Whilst 
Stokes’ results seem to be about 0.0008 in uw above those of Shank- 
man and Gordon, this difference is only about twice the repro- 
ducibility of either set of measurements and gives strong support to 
their data. Stokes concluded that the ‘best’ values for sulphuric acid 
were probably to be calculated from the sodium chloridosulphuric 
acid isopiestic ratios up to 3 M acid; between 3 and 11.5 M the 
choice between his own results and those of Shankman and Gordon 
was difficult (though the difference was not significant in view of 
the likely experimental error of either method) but he preferred his 
own data because they gave a somewhat smoother vapour pressure 
curve. Above 1 1-5 M, of course, we rely entirely on the work of 
Shankman and Gordon with, however, the confidence inspired by 
the good agreement in the range where comparison is possible. 
Further measurements have been made(@@) in solutions 24 M and 
over by a method similar to that of STOKES(@) except that the pure 
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solvent at the lower temperature was replaced by a solution of sul- 
phuric acid more dilute than the one at 25" with which it was equili- 
brated. The data for sulphuric acid are collected in Appendix 8.4; 
they have been substantiated recently@l) by direct vapour pressure 
measurements at 13.88, 18.51 and 27.74 M giving a, = 0.2016 
(0.2016), 0.0993 (0.0996) and 0.0260 (0.0258) respectively, the 
figures in parentheses being interpolated from Appendix 8.4. 

T H E  OSMOTIC A N D  ACTIVITY COEFFICIENTS OF CALCIUM 
C H L O R I D E  

These depend on isopiestic measurements against sodium chloride 
and sulphuric acid solutions(m). They are anchored at 0.1 M by 
the osmotic and activity coefficients of MCLEOD and GORDON('~) 
and one check at 3.033 M referred to above. Appendix 8.5 contains 
data for this salt. 

T H E  OSMOTIC A N D  ACTIVITY COEFFICIENTS OF SUCROSE 

The isopiestic ratio of this solute to either sodium chloride or 
potassium chloride has been measured a number of time& 03) SQ 

that its osmotic and activity coefficients can be calculated with 
confidence (see Appendix 8.6). 

G E N E R A L  CONSIDERATION OF T H E  ACTIVITY 
COEFFICIENTS OF ELECTROLYTES 

Appendix 8.10 contains extensive data for the osmotic and activity 
coefficients of electrolytes at 25' from 0.1 M upwards. Figure 8.12 
illustrates the variation with concentration of the activity coefficients 
of a few electrolytes. 

We may now make a few remarks about the behaviour of the 
activity Coefficients with changing concentration. 

1. In dilute solutions, the activity coefficient decreases with 
increasing concentration; for many but not all electrolytes, the 
curve of the activity coefficient plotted against concentration shows 
a minimum and at high concentrations the activity coefficient may 
reach a very high value. An extreme example is found in uranyl 
perchlorate with y = 1457 at 5.5 M. An extreme example in the 
opposite Sense is found in cadmium iodide with y = 0.0168 at 
2.5 M. In general we can recognize three kinds of behaviour; 
activity coefficients rising to very high values, which will be inter- 
preted in the next chapter as evidence for extensive hydration of the 
ions; moderately low activity coefficients which are explained by 
Bjerrum ion-pair formation; very low activity coefficients resulting 
from complex ion formation. 
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2. Electrolytes with polyvalent cations usually have much higher 
activity coefficients than electrolytes of analogous valency type con- 
taining a polyvalent anion. Lanthanum chloride and potassium 
ferricyanide are a contrast in this respect. The explanation is 
thought to be found in the extensive hydration of the cations and 
the absence of hydration in large polyvalent anions. 

3. The order of the activity coefficient curves is Li > Na > K 
> Rb > Cs for the chlorides, bromides, iodides, nitrates, chlorates 

4m - 

and perchlorates. The order is reversed with the hydroxides, 
formates and acetates. 

4. The order of curves is I > Br > C1 for lithium, sodium 
and potassium halides but is reversed for rubidium and caesium 
halides. 

5. The potassium salts of the oxy-acids, like the nitrate, chlorate 
and perchlorate, have low activity coefficients and probably form 
ion-pairs. By contrast the perchlorates of bivalent metals have very 
high activity coefficients. 

The last appendix of this chapter (8.11) contains values of the 
sulphuric acid, calcium chloride or sodium hydroxide concentra- 
tions (expressed as molalities and weight percentages) of solutions 
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with round values of the water activity‘”. The appendix also gives 
the water activity of a number of saturated solutions which are 
useful in setting up controlled humidity chambers. 
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9 

THE THEORETICAL INTERPRETATION 
OF CHEMICAL POTENTIALS 

THE problem of accounting for the thermodynamic properties of a 
solution is best regarded as that of finding a theoretical expression 
for the non-ideal part of the chemical potential (of either com- 
ponent) as a function of composition, temperature, dielectric 
constant and any other relevant variables. Once this is obtained, 
all the co!ligative and thermal properties of the solution are readily 
calculable. In practice, the activity coefficient of the solute is 
usually more convenient to handle than the chemical potential, and 
the problem accordingly becomes one of finding a theoretical 
expression for the activity coefficient. 

The features peculiar to the activity coefficients of electrolytes are 
most readily grasped by comparison with those of non-electrolytes. 
In Figure 9.1 the logarithm of the rational activity coefficient is 
plotted against the mole fraction for three simple non-electrolytes 
in aqueous solution. It will be seen that the activity coefficient may 
increase or decrease with rising concentration, but in both cases 
log fB approaches zero in a linear manner, i.e., 

a logf~ --f constant as N ,  -+ o 
aNB 

From the Gibbs-Duhem equation for a non-electrolyte: 

. . . . (9.1) 

or, introducing the activity coefficients and remembering that 
(&A + NB) = 1: 

a l n f A  lnfR - .h'b. K I T -  1 - N ,  

it follows that as NB -+ 0 either: 
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9 THEORETICAL INTERPRETATION OF CHEMICAL POTENTIALS 

As GUGGENHEIM(~) points out, statistical theory requires that long- 
range forces between the solute particles must operate if the second 
alternative is found to occur. But non-electrolytes are characterized 
by short-range forces between the solute particles, and consequently 

BE%- 
Figure 9.1. A comparison of the activity coe&knls of ektrobks and non-ckctrolytes 

as a f w t w n  of concentration 

the first alternative applies so that, if In fA is expressed as a power 
series in .NB 

In fA = AJVj + AJVJ + . . . 
there can be no term lower than the second power of .NB. In this 
case the logarithm of the activity coefficient fB of the solute must, 
by equation (9.1), be represented by a power series commencing 
with the first power of .N, and consequently, in very dilute solution, 
a plot of log fB against JVB will approximate closely to a straight 
line as is, indeed, the case for the three non-electrolytes, sucrose, 
glycine and glycolamide, illustrated in Figure 9.2. But should there 
be long-range forces acting, the behaviour must be different. In an 
electrolyte solution it would be expected that long-range electro- 
static attractions and repulsions obeying the inverse square law 
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ACTIVITY COEFFICIENT CURVES 

would be found, in addition to short range Van der Waals forces, 
ion-dipole interactions, efc. But if lnfB is represented by a series: 

In fB = djj+ 6NB + cNj + . . . 
where n is any fraction between zero and unity, (a ln fB/aNB) must 
approach infinity as NB + 0. This is exactly what is found. 

Figure 9.2 includes the curves of the activity coefficients of three 
electrolytes of different valency types (in this graph the abscissa is 

Figure 9.2. The activity coz&ient of sodium chbridc plotted against dz$erenl paws 
of rha moldily 

the ‘mole fraction’ of the electrolyte calculated on the basis of the 

total number of solute ions, e.g., N - for calcium 
chloride of molality m; this is a departure from our definition 2.21 , 
but it seems the fairest basis for comparison with the non-electro- 
lytes). The curves for the electrolytes show the infinite negative 
gradient as zero concentration is approached, which is a consequence 
of the long-range forces. At higher concentrations, the curves may 
flatten out and then rise more or less linearly, or may continue to 
fall. In this region the effects of short-range interactions become 
important and finally dominate the behaviour. 

If the leading term of a power series expansion of logfB involves 
a fractional power of the concentration, one would expect log fB 
to approach linearity in that fractional power at low concentrations. 
In Figure 9.2 log y* for sodium chloride is plotted against m, m1/* 
and m1I3 respectively. I t  is evident that the slope approaches 
constancy in a very satisfactory manner when m1I2 forms the 
abscissa, though in the experimental region the slope is also nearly 
constant when mils is used. It is easy to see why a linearity in the 
cube root might be expected: imagine the solute to form a regular 
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9 THEORETICAL INTERPRETATION OF CHEMlCAL POTENTIALS 

ionic lattice in the solution. Its electrical potential energy can then 
be calculated by the methods used in the case of crystals, with the 
introduction of a dielectric constant (in the limit, that of the pure 
solvent) into the denominator of the expression for the coulomb 
energy of the crystal. This electrical energy will vary inversely 
with the distance between an ion and its nearest neighburs, and 
hence directly with ~113, or for dilute solutions with m1f8 (where c is 
moles per litre and m is molality). In point of fact, if one identifies 
this electrical potential energy with 2 R l l n  yi and uses the 
Madelung constant of the sodium chloride lattice, one obtains the 
expression for water as solvent: 

log y* = - 0.29~”~ 

The slope of the uppermost curve in Figure 9.2 is - 0.26 in the 
region 0.001-0*03 M. Similar calculations for calcium chloride 
likewise lead to a slope of log yi versus c1l8 which is in fair agreement 
with that observed at moderate dilutions. 

Such a lattice-model is obviously inadequate, since it takes no 
account of thermal disturbance of the lattice; it assumes, in fact, 
that the forces are sufficiently large to maintain a regular structure. 
If this were the case, it would be difficult to explain why the solute 
ions do not pull themselves together again to form a crystal. 
Clearly, at high enough dilutions, the interionic energy must 
become smaller than kl, and in these circumstances the famous 
treatment by DEBYE and HUCKEL(*) of the combined effects of 
Brownian motion and interionic forces becomes applicable. Further- 
more, it leads, as will shortly be shown, to the result that the slope 
of log f* against the square root of the concentration becomes constant 
at extreme dilution, and accounts quantitatively for the observed 
limiting slopes. 

A complete theoretical account of the thermodynamic properties 
of electrolyte solutions must deal with both the long-range interionic 
forces and the short-range interactions between ions and solvent 
molecules, and this appears to be a formidable task. One can see 
intuitively, in a qualitative way, that the net effect of interionic 
attractions and repulsions will be to decrease the free energy of the 
solute as compared with uncharged particles and hence to decrease 
the activity coefficient, while the forces between ions and solvent 
dipoles will tend to hold the solvent in the solution, with a con- 
sequent decrease in the solvent vapour presswe from the ideal value, 
and a corresponding increase in the activity coefficient of the solute. 
The form of the curves in Figure 9.2 suggests that these opposite 
effects are often of comparable magnitude at  concentrations of the 
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order of one molal. The short-range effects, however, depend 
approximately linearly on concentration, while the interionic effects 
approach linearity in the square root of concentration. There must, 
therefore, be a region where only the latter make any significant 
contribution to the non-ideality of the solution; we might tenta- 
tively expect that at one-thousandth molal, say, the long-range 
effects would exceed the short-range ones by a factor of the order of 
2/1OOO, which would mean in practice that the short-range effects 
could be ignored, within the limits of experimental error, below this 
concentration. Theories dealing with the long-range interionic 
forces on& can therefore be adequately tested by comparison with 
experiment for very dilute solutions. Though accurate themo- 
dynamic data in this region are not easily obtained, there are some 
electrolytes for which reliable experimental studies have been made. 
We shall now consider the contribution which ion-ion interaction 
theory has to make to the thermodynamics of dilute electrolyte 
solutions. 

T H E  CONTRIBUTION O F  IONIC INTERACTIONS T O  T H E  
FREE ENERGY 

The potential, ya at a distance r from a selected j-ion is: 

. . .(4.13) 

But an isolakd ion of valency .zj in a medium of dielectric constant 
E gives rise to a field of which the potential at distance Y is given by: 

. . . (9.2) 

By the principle of the linear superposition of fields the total 
potential at Y, given by (4.13) may be treated as the sum of the 
potential, tpi, due to the central ion and another potential, tpj, due 
to all the remaining ions: 

tpj = yj + tpj" 
Therefore by (9.2) and (4.13) : 

. . . . (9.3) 

This equation holds for all r down to I = a, i.e., for the region in 
which equation (4.13) applies. Within the distance I < a, no other 
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ions can penetrate and the potential due to the spherically sym- 
metrical distribution of these other ions is therefore constant for all 
r < u and equal to its value at Y = u, which from (9.3) is given by: 

. . . (9.4) 

Thus the effect on the potential of the central ion of the resultant 
field of all other ions is the same as if the latter were distributed 
over a spherical surface at a distance (a + 1 / ~ )  from the centre. 
The net charge on this surface would ofcourse be equal and opposite 
to the charge of the central ion. The quantity K is sometimes des- 
cribed as the ‘reciprocal thickness of the ionic atmosphere,’ but it 
should be noted that this description is only accurate ifthe ‘thickness’ 
is measured from the distance Y = a. In very dilute solutions 1 / ~  
is large compared to u and the discrepancy is unimportant but if we 
consider a 1 M aqueous solution of a 1 : 1 electrolyte, 1 / ~  is approxi- 
mately 3 A, which is less than the normal distance of closest approach 
of two ions. The application of the Debye-Huckel treatment to 
concentrated solutions is sometimes criticized on the grounds that 
1 / ~  becomes less than the ionic radius and therefore the model is 
inapplicable since the ‘ionic atmosphere’ is inside the ‘ion.’ Equa- 
tion (9.4) shows that this is not the case, since the ‘ionic atmosphere’ 
is always outside the sphere Y = a. 

The electrical energy of the central ion itself is therefore reduced 
by the product of its charge z,e and this potential (9.4) due to its 
interactions with its neighbours. However, if we applied this argu- 
ment to every ion in the solution, we should in effect be counting 
each ion twice: once as the central ion, and once as part of the 
surroundings of other ions. The change AG, in the electrical energy 
of a j-ion due to ionic interactions is therefore: 

. . . . (9.5) 

The same result is obtained by an imaginary charging process in 
which the distribution of ions is kept fixed and their charges are all 
simultaneously built up gradually from zero to their actual values; 
or from the theorem of electrostatics that the mutual energy of a 
system of charges is one-half the s u m  of the products of the charges 
of each and the potentials due to the others. 

If the linearized equation (4.8) is taken forp,, as is done in deriving 
(4.1 3), the different hypothetical charging processes proposed by 
DEBYE and GUNTELBER~’)  give the same result for AG,, but t h i s  is 
no longer the case if the non-linear expression (4.6) is retained for pP 
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FORMULA FOR THE ACTIVITY COEFFICIENT 

T H E  D E R Y E - H U C K E L  F O R M U L A  FOR T H E  ACTIVITY 

The contribution of the electrical interactions with other ions to the 
free energy of a single j-ion beiig given by equation (9.5), it follows 
that the corresponding quantity for one mole of j-ions is: 

COEFFICIENT 

. . . (9.6) 

In obtaining this result the j-ion has been treated as a sphere of 
diameter 4. If we now make the assumption that a solution of these 
entities would exhibit ideal behaviour in the absence of interionic 
forces, we may write the partial free energy of a mole ofj-ions as: 

OI = 24, (ideal) + AQ, (el) 

or G j + R T l n f  + R T l n N j = 6 j + R T l n N + A U j ( e l )  

Nj being the mole fraction andfr the rational activity coefficient of 
the j-ions and Qy referring to the hypothetical standard state. 
Hence 

This gives the individual ionic activity coefficient of the j-ions, a 
quantity not separately determinable by experiment. The mean 
rational activity coefficient f* of an electrolyte dissociating into r1 
cations of valency zl and Y* anions of valency c2 is given by: (see 
P. 28) 

which, upon eliminating the Y'S by means of the relation 
vlcl = - Y~Z, ,  becomes: 

1 ~ 1 Z e l e 2  K lnf, = --- 2 ~ k T  I + KO 

Upon replacing K by its definition K = ( zyT) "'dl this result 

takes the form : 
A I ZlZZI dl logf, = - 1 + B u d I  . . . (9.7) 
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9 THEORETICAL INTERPRETATION OF CHEMICAL POTENTIALS 

where the constants .4 and B involve the absolute temperature and 
the dielectric constant of the solvent, as follows: 

mole-1’2 1”2(deg K)”2 . . . . (9.8) 

(y7; )1‘2  1 - 50.29 x lo* B =  - - 
(&T)1/2 (&T)1/2 

cm-1 mole-1/2 11/2 (deg K)l12 . . . . (9.9) 
Values of A and B for water at various temperatures’ are given in 
Appendix 7.1. 

It is important to note that ( B d I )  is the fundamental quantity 
K of the interionic attraction theory; Appendix 7.1 and equation 
(9.9) therefore also have applications in the theory of transport 
processes. 

THE LIMITING L A W  OF DEBYE A N D  HUCKEL 

Equation (9.7) contains, in addition to functions of temperature and 
concentration, the parameter a defined as the ‘distance of closest 
approach’ of the ions. Inasmuch as this is not known uprimi (except 
as to order of magnitude), the formula for the activity coefficient 
is not expressible solely in terms of measurable quantities. However, 
it is clear that at very low values of dI, i.c., in very dilute solutions, 
the term ( B u d I )  will ultimately become negligible compared to 
unity, and (9.7) will approach the form: 

kf* = - AlZlZ2l dl . . . . (9.10) 
This is the Debye-Huckel limiting law according to which logf, 
approaches linearity in the square root of the concentration at high 
dilutions. It is not to be expected that it will be obeyed accurately 
at any usual ucperimental concentration, since the product (Bu) is 
in practice always of the order of unity. This means that even in a 
one-thousandth molar solution of a 1 : 1 electrolyte, the factor 
(1 + KU) or (1 + B a d I )  is about 1.03, and the value of - logf, 
according to (9.7) is therefore 3 per cent different from the limiting 
law value. Nevertheless, the form (9.10) is an extremely useful 
guide to the behaviour of activity coefficients at high dilutions. 
For many aqueous solutions the expression (9.7) is capable of 

representing the observed activity coefficients with very good 
accuracy by simply choosing a value of the parameter a, independent 
of concentration, and of a physically reasonable magnitude. This 
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often holds up to an ionic strength of' about Z = 0.1, when the ions 
are separated on the average by no more than about 20A. Here 
their mutual energy would be expected to be of the same order as 
kT, it appears, therefore, that the simple distribution-function used 
in deriving the equation (9.7) is fairly adequate. 

The derivation of equation (9.7) is such that the numerator of 
the right-hand side, - Alzlz21 d I ,  gives the effect of the long-range 
coulomb forces, while the denominator (1  + B u d I )  shows how 
these are modified by the short-range interactions between ions, 
which are represented by the crudest possible model, taking the ions 
to be non-deformable spheres of equal radii. In any actual solution, 
there will also be the short-range interactions between ions and 
solvent molecules to consider, as well as other types of short-range 
interactions between ions, which cannot be adequately represented 
by the rigid-spheres model. As was mentioned earlier, these are all 
likely to be of a type giving an approximately linear variation of 
logf, with concentration. Consequently they can be included, in 
a highly empirical fashion, by adding to (9.7) a term linear in the 
concentration, thus: 

. . . . (9.1 1) 

where now b as well as u is a constant adjustable to suit the experi- 
mental curve. Equations like (9.1 1) are widely used for the analyti- 
cal representation of activity coefficients, especially for the non- 
associated 1 : 1 electrolytes, where they are usually capable of 
fitting the data within the experimental accuracy up to at least one 
molal. 

A simpler form of equation (9.7) is due to GUNTELBERG(~) who 
writes for aqueous solutions: 

. . . . (9.12) 

that is to say he puts u = 3-04 A for all electrolytes at 25". Although 
this equation has no adjustable parameters, it gives a fair repre- 
sentation of the behaviour of a number of electrolytes up to I = 0.1 ; 
it is certainly superior to the limiting law as represented by equation 
(9.10). I t  can be greatly improved, however, by adding a term 
linear in the concentration: 

. . . (9.13) 

a form which is due to GUDGENHEIbt(6), b being an adjustable 

23 1 



9 THEORETICAL INTERPRETATION OF CHEMICAL POTENTIALS 

parameter. Tubfe 9. I illustrates how equations (9.12) and (9.13) 
can be used to represent the data for sodium chloride. 

- Iogf 
Eq. (9.10) 

- logf 
(obs.) 

0.001 0.0 1 55 0.0162 
0905 0.0327 0-0362 
0.0 1 0.0446 0.051 1 
0.05 0.0859 01162 
0.1 0.1072 0-1614 

m - logf - log/ 
Eq. (9.12) Eq. (9.13) 

0.0 157 0.0 155 
0.0338 0.0330 
0.0465 0.0449 
0.0933 0.0853 
0.1227 0.1067 

t /m 

f (oh.) 
f (Eq. 9.13) 

T H E  DEBYE-HUCKEL EQUATIONS FOR SOLUTIONS 

Equations (9.7) and (9.10) have been deduced for the special case 
of a single electrolyte in solution, i.e., for a solute one mole of which 
dissociates into y1 moles of cations of valency zl and v8 moles of 
anions of valency zp The consideration of the case of an electrolyte 
solution containing more than one species of electrolyte (for 
example, a mixture of hydrochloric acid and calcium chloride) 
introduces only one difficulty. By following through the derivation 
of the limiting law (9.10) it is easy to show that this is equally valid 
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0.04 0.12 0.20 I 0.28 

0.864 0.694 0.596 0.535 
0862 0.682 0.579 0-519 



MORE EXACT TREATMENT OF FREE ENERGY 

for one electrolyte in a mixed electrolyte solution provided that K 

is defined correctly in terms of nizf, i.e., Z is taken as 4Z(cr.$). 
i 

Thus, in a solution of hydrochloric acid and sodium chloride, each 
0.005 N at 2 5 O ,  the mean activity coefficients of hydrochloric acid 
and sodium chloride as given by the limiting law are 0.889. 

But in a solution of hydrochloric acid and calcium chloride, the 
former at a concentration of 0404mole/l and the latter 0.002 
mole/l, we still have Z = 0.01, but the activity coefficients of the 
two electrolytes are no longer equal because f ~ a  = 0.889 and 

fbCh = 0.790. Moreover, it should be noted that if, as in the above 
example, the two electrolytes have an ion in common, the common 
ion is allowed for in both activity coefficients; thus f H a  is an average 
activity coefficient for the hydrogen ions and all the chloride ions, 
those derived from the calcium chloride as well as those derived 
from hydrochloric acid. 

Similarly, equation (9.7) is also appropriate for a mixed electro- 
lyte solution provided attention is paid to the proper meaning of 
g, zL. and Z, although we may have some difficulty in giving a 
meaning to the quantity u. 

A MORE EXACT TREATMENT O F  T H E  F R E E  ENERGY DUE TO 
ELECTRICAL INTERACTIONS 

The treatment of the previous sections, leading to equation (9.7) 
for the mean activity coefficient, regards the electrical free energy 
of the system of charged ions in the solvent as belonging exclusively 
to the partial molal free energy of the electrolyte. In reality, a small 
part of the electrical free energy belongs to the solvent; we may 
think of this part as being the free energy of the solvent in the elec- 
trical field of the ions. This originates in ion-dipole interactions, 
which appear in the Debye-Hiickel treatment in the form of the 
dielectric constant of the solvent. 

In a more detailed consideration of 'the thermodynamics of an 
imaginary charging process in which the ionic charges are simul- 
taneously built up from zero to their actual values, FOWLER and 
GUGGENHEIM(~) show that the total electrical energy of the whole 
system is given by: 

&zlgeL 

3E 
Get = - KT (KU)  . . . .(9.13a) 

where sl is the number of i-ions in the system of total volume V, 
he' Xs& 
EkT V 
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and the function T ( K U )  is defined by: 

3 
~ ( x )  = - [In (1 + x) - x + x2/2] 

x3 

It is also convenient to introduce the function u (x) defined by: 

which is tabulated in Appendix 2.2. 
From (9.13a) one obtains by differentiating partially with respect 
to sr, remembering that variations in sf affect V, the result: 

where Vf is the molar volume of thej-ions. This differs from the 
previous value (9.6) by the temn in Vj and leads to: 

" (KU)' U(KU)  . . . . (9.13~) z$%e* K 

2ekT 1 + KU 4- 2 m S  
ln f r=  --- 

whence for a single electrolyte: 

The second term is insignificant at values of KU small compared to 
unity, for then U(KU) approximates to unity and ( K U ) ~  is very small. 
At high concentrations, it is doubtful whether the theory is valid, 
but if we grant that it is, we may note that even at KU = 2 (as in a 4 N 
solution of a 1 : 1 electrolyte) ( K U ) ~ U ( K U )  m 1.2. Ignoring electro- 
striction, by putting V B  - d v N / 6 ,  we find that the factor VB/ 
(247rNA) 1/144, so that the second term of (9.13~) altersf, by 
less than 1 per cent. It is therefore justifiably ignored in nearly all 
applications of the theory. 
The solvent activity, uA, may be obtained either by integration 

of the Gibbs-Duhem equation using equation (9.7) or directly from 
(9.13a) by partial differentiation of Cat with respect to the number 
of solvent molecules in the system. Here the differentiation leads 
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to a term containing the partial molal volume, PA, of the oolvent, 
and one finds: 

= InNa + - ” 0 (KU)  24?rNu3 
. . . (9.13d) 

where NA is the mole fraction of the solvent. Here the second term 
on the right is evidently of comparable magnitude to the corres- 
ponding term in (9.13c), but it can no longer be neglected since it 
represents the whole of the deviation of the solvent activity from 
ideality. The solvent activity is rather insensitive to non-ideality, 
since it is present in large excess relative to the solute. For this 
reason, the more sensitive osmotic coefficient, 4, is usually used to 
represent the solvent behaviour. We have for aqueous solutions of 
single electrolytes, using (9.13d) : 

4 = - (55-51/vm) In a, 
55.51 PA --- (KO.? U (KO) 

55.5 1 55.51 =--In 
vm 55.51 + vm vm 2 k N a 3  

- 1  -- ‘22l‘ KU (KU) ,  

the last step requiring several approximations valid only for dilute 
solutions. 

THE ION SIZE PARAMETER U 

If the limiting law (9.10) is compared with experimental data, it is 
found that for fully dissociated strong electrolytes such as the alkali 
and alkaline-earth metal halides the observed values of logf lie 
above the straight line of slope - Alzlzrl when plotted against q I ,  
the deviations increasing with concentration. The more complete 
form (9.7) shows the reason for this; the ion size parameter u must 
be positive, and this leads to values of logfgreater than those given 
by the limiting law. Up to ionic strengths of about 0.1, it is often 
possible to fit the data very accurately using u values of the order 
Of 4 A in equation (9.7). The B value giving the best fit is, however, 
apt to vary somewhat with the concentration-range fitted, which 
suggests that at the higher concentrations equation (9.7) is inade- 
quate, and the parameter u is being forced to take care of other 
short-range effects than those it was intended for. A change in u 
does produce, in dilute solutions, changes in logf which are a p  
proximately linear in concentration, and could thus compensate for 
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small short-range effects. This can be seen by differentiating (9.7) 
partially with respect to a, giving 

. . . . (9.14) 

As long as the solution is dilute enough for the denominator of (9.14) 
to be constant within 10 per cent or 20 per cent, the effect is roughly 
linear in I.  

- 

m 

- 
(1) 
0*001 
0.002 
0.005 
0.0 1 
0.02 
0.05 
0.1 
0-2 
0.5 
1 -0 
2.0 
4-0 
6.0 

Table 9.3 
Activity Coe@imts of Sodium Chloridr at 25" 

(3) 
0.0 I55 
0.02 14 
0.0328 
0.0447 
0.0602 
0.0866 
0.1088 
0.1339 
0.1668 
0-1825 
0- 1 755 
0.1061 
0~0060 

(4) (5) (6) 
0-0155 0.0162 0.0154 
0-0214 0.0229 0.0214 
0.0327 0.0361 0.0325 
0.0446 0.0510 0.0441 
0.0599 0.0722 0.0590 
0.0859 0.1 142 0.0844 
0.1072 0.1614 0.1077 
0.1308 0.2280 0.1338 
0.1593 0.3595 0. I 703 
0.1671 0.5060 0.1974 
0-1453 0.7089 0.2222 
0.0477 0.983 I 0.2435 - 0.0789 1.1780 0.2539 

(7) (8) 
0.0155 0.0154 
0.02 I 6 0.02 14 
0.0330 0.0327 
0.0451 0.0445 
0.0609 0.0598 
0.0882 0.0855 
0.1140 0.1085 
0.1437 0.1328 
0.1868 0.1596 
0.2198 0.1660 
0.25 I0 0.1453 
0-2786 0.0753 
0.2922 O-OOO4 

- 
(9) 
0.1 
0 
0 

0. I 
0. I 
0.4 
1 *3 
2.0 
0-3 
1.1 
0 
276 
793 

In calculating the values in column (8) equation (9.11) was used with the 
parameter a = 4.0 A, 6 5: 0.055 I.moIe-*, i.e., 

0.51 i s d i  + o.0551 log f* = - 
1 + 1.316df 

Consequently it is not necessary to interpret changes in the a 
value giving the best fit as real changes in effective size of the ions 
with concentration. It is probably better in determining u to use 
equation (9.1 1) over a somewhat greater concentration range; this 
ensures that the u parameter will not have forced upon it some of 
the responsibility for a term linear in concentration. At the same 
time, it does demand accurate experimental data and careful curve- 
fitting. The concentration range should still not be unduly extended, 
for there are good reasons for supposing that the linearity in con- 
centration of the short-range effects is itself limited to moderately 
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dilute solutions. To illustrate these points, and to give some idea of 
the effectiveness of these formulae for the activity coefficient, the 
case of sodium chloride at 25' in water will be considered in some 
detail. The experimental activity coefficients are given in Tuble 9.3 
in the form of logf,; the data below 0.1 M are derived from very 
precise measurements of transport numbers and of the potentials of 
cells with transport by Brown and MacInnes recalculated with 
modern values of the constants by SIIEDLOVSKY(~). At and above 
0.1 My they are those computed by ROBIN SON(^) as best values from 
a number of reliable sources. Columns (1) and (2) give the molality 
and the corresponding ionic strength in mole per live units; col- 
umns (3) and (4) give the molal and rational mean activity coeffi- 
cients (it will be noted that these are considerably different at the 
higher concentrations). Column (5) is the value predicted for 
- logf, by the Debye-Hiickel limiting expression 9.10. 
As has been said, this expression is not accurate within the experi- 

mental error even at 0401 M, and is some 300 per cent out at 1 M. 
Columns (6) and (7) are calculated from equation (9.7) using 
respectively u = 4.8 A and u = 4.0 A. The value 4.8 A results in 
a moderately good reproduction of the experimental values up to 
0.1 M, but the deviations then change sign, and are not propor- 
tional to the concentration at higher concentrations. The value 
4.0 A gives an almost perfect fit up to about 0.02 M, and thereafter 
the deviations are fairly well proportional to the concentration. As 
a result, equation (9.11) with a = 4-0A and b = 0.055, fits the 
data quite well up to 2 M, as shown in columns (8) and (9). There- 
after, the experimental activity coefficients lie increasingly above 
the calculated ones. It is clear that by altering the parameters a 
and b in equation (9.1 1) expressions could be obtained which would 
give a slightly better fit over a smaller range, or a slightly worse one 
over a greater range. In the absence of perfect experimental values, 
it is therefore not possible to decide the exact value of u, but it is 
clear that a value in the range 4.0-4.8 A is appropriate. 

Even better reproduction of the data can be obtained by adding 
to the expression for logffurther arbitrary terms in higher powers 
of the concentration, or its logarithm, etc.; the parameters in these 
more complex equations are-even more elastic, but they usually 
give u values close to those required for equation (9.11) over 
moderate ranges. 

In the derivation of equation (9.7), u was defined as the distance 
from the centre of an ion, within which the centre of no other can 
penetrate. When two ions meet (especially if they are of opposite 
sign) one can well imagine that this distance will be somewhat 

237 



9 THEORETICAL INTERPRETATION OF CHEMICAL POTENTIALS 

variable, depending on the Brownian velocity of the ions along their 
line of centres. Sometimes this may be sufficient to cause penetra- 
tion some distance into the hydration sheath. In general, therefore, 
one would expect that the average distance of closest approach 
would be greater than the sum of the crystallographic radii of the 
bare ions, though not necessarily by the thickness of a whole number 
of layers of water molecules. This is usually so: with sodium 
chloride, for instance, the radius-sum is 0.95 + 1.81 = 2.8 A, as 
against 4-0 to 4.8 A for a ;  with calcium chloride, 2.8 A as against 
5 A; and with lanthanum chloride, 3.0 A as against 6-7 A. As 
might also be expected, the difference between the radius sum and 
a is greater for strongly hydrated than for weakly hydrated ions. 
This suggests the possibility of computing a from estimates of ionic 
hydration. 

When the quantity a was introduced, it was with the assumption 
that it was the same for all ions. If the cation, say, were larger than 
the anion, there would be a region round each ion into which anions 
but not cations could penetrate; this would somewhat modify the 
formulae for the separate ionic activity coefficients and for the mean 
activity coefficients. Actually it is doubtful whether these calcula- 
tions are justifiable; it is not easy to see whether they satisfy the 
requirements of the linear superposition of the ionic fields. In 
general it seems reasonable to say that since encounters between ions 
of opposite sign will be more frequent than those between ions of 
the same sign, the parameter a is likely to be nearly the same for 
anions and cations. 

T H E  I N F L U E N C E  OF ION-SOLVENT INTERACTIONS ON T H E  
ACTIVITY CO E F F 1 CI E N T 

We have seen in Chapters 3 and 6 that there are good grounds for be- 
lieving that the kinetic unit of the solute in many electrolyte solutions 
is an ion with several relatively firmly attached water molecules; 
further evidence for this state of affairs is provided by a comparison 
of the ionic size parameters, a, necessary in the Debye-Huckel 
equation (9.7), with the dimensions of the bare ions. This suggests 
that the activity coefficient predicted by the Debye-Huckel treat- 
ment is actually the mean rational ionic activity coefficient of the 
hydrakd ions. I t  is, however, the invariable practice in computing 
activity coefficients, from whatever experimental data, to calculate 
the composition of the solution in terms of the number of moles of 
anhydrous solute in a fixed mass of solvent (molality), or in a given 
total number of moles of solute and solvent (mole fraction) or in a 
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given volume of solution (molarity). I t  will be noted that if the 
molarity scale is used, the figure expressing the concentration of the 
solution is the same whether the solute is treated as solvated or not; 
thii is an advantage of using the molarity scale, but one which is 
outweighed by the disadvantage that the molarity of a solution of 
given composition changes with temperature. 

In the case of the molality and mole fraction scales, the figure 
expressing the composition will be different if the solute is con- 
sidered as a solvated species. Furthermore, the chemical potential 
of the solute considered as a solvated species will be different from 
its value when considered as unsolvated. However, the total Gibbs 
free energy, C, of a fixed amount of solution is fixed, regardless of 
the method used for expressing its composition; and the chemical 

potential of the solvent, GA, being defined by GA = 
np T, P 

is therefore likewise unaffected by the method of expressing rzB- 
it is the free energy gain on adding one mole of solvent to an infinite 
amount of solution, regardless of whether part of the added solvent 
actually combines with the solute or not. These considerations 
provide a simple method of finding the relation between the 
rational activity coefficient of the solvated solute and the conventional 
activity coefficients computed with disregard of solvation. This 
method of deriving the required relation is more straightforward 
than that given by the authors in their original paper on the 
subject(lO) and more fundamental than earlier treatments of the 
same subject by BJERRUM(~~) and by HARNED('~). Consider a quan- 
tity of solution containing one mole of anhydrous solute, B, dis- 
sociated into v1 moles of cations and v2 moles of anions, dissolved in 
S moles of solvent A. We now calculate the fixed total free energy 
of the system, C, in two ways: (Q) considering the solute as un- 
solvated; (6) considering that a total of h moles of solvent are 
combined with the v moles of ions (divided, if we wish, into h, moles 
of water combined with the v1 moles of cations, and h, moles of 
water combined with the v2 moles of anions). We denote the solvent 
by a subscript A, and distinguish chemical potentials and activity 
coefficients calculated on the basis of the solvated ions by primes: 

We have, in view of the arguments in the preceding paragraphs: 

("1 

G',f', 

C = SGA + VIG, + VaGS 

and G = (S - /t)OA + + VaOi 

whence, introducing for each chemical potential its expression in 
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terms of the appropriate mole fraction and activity coefficient, and 
rearranging, 

v1(@ - Gio)/RT + v*(Q - B;O)/RT + hG%/RI + h In aA 

S + v - - h  
S + V  

+ v1 lnfi + ~2 lnfi = v1 Inf; + v8 lnfi + v I n  

. . . . (9.15) 

Now as S + 00 (i.e., at infinite dilution) all the activity coefficients 
become unity and uA becomes unity, so that all the logarithmic 
terms are zero and hence the s u m  of the first three terms on the left 
of (9.15), involving the chemical potentials in the standard states, 
is also zero. We therefore have, introducing the mean ionic activity 
coefficients instead of the sums of the separate ionic ones: 

S + v - h  
s + v  

. . . . (9.16) 
h 

Inf; = lnf, + ; In ad + In 

(In arriving at this result we have implicitly assumed that the value 
of h in the actual solution is the same as at infinite dilution.) This 
result is in practice more useful in terms of the conventional mean 
molal activity coefficient y* and the molality m; using the relations 
S = lOOO/(W,m), where W, is the molecular weight of the 
solvent, and f* = yi(l + 0 4 0 1 ~  WAm), (eq. 2.22) we obtain: 

h 
lnf; = In y* + -In + ln[l + 0401 W,(V - h)m] . . . .(9.17) 

V 

Or, putting In uA in terms of the osmotic coefficient 

lo00 +=- -  
v wAm In 

1nJ; = In y* - 0.001 wAhm+ -1- In [ I  -1- 0.001 W,(V - h)m] 
....( 9.18) 

Since + or aA can be calculated if yi is known over the range of 
composition up to that considered, or alternatively yt calculated if + or uA is similarly known (see Chapter 2) we have in equations 
(9.17) and (9.18) a method of expressing the rational mean ionic 
activity coefficient of the solute, assumed solvated with h moles of 
solvent per mole of salt, in terms of the conventional activity 
coefficients . 

The only extra-thermodynamic assumption used in deriving 
equations (9.17) and (9.18) has been that the value of h is unchanged 
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on proceeding to infinite dilution; this means that in applying the 
equations to actual solutions, we are limited to cases where there 
are plenty of solvent molecules to go round among the solute 
particles, and where the forces between solute and solvent are at 
least approximately of a saturable nature. For example, if the 
aqueous copper ion consisted of a definite complex Cu4HSO++ of 
high stability, we would be able to use the equation with confidence 
up to molalities approaching 55.514, provided no other solvating 
ion were present. While the forces between ions and water molecules 
are at least mainly electrostatic, and therefore are not strictly 
saturable in the same way as ‘chemical’ binding forces, there is, as 
we have seen, strong reason to believe that water molecules in 
direct contact with the ion are subject to much greater forces of 
attraction than subsequent layers, and there is a geometrical limit 
to the number of such closest molecules. Consequently, we may 
reasonably expect the assumption of an h value independent of 
concentration to apply up to moderately high concentrations. In 
practice, as we shall see, the limit is often reached when about a 
quarter of the solvent molecules are combined with ions. 

We propose to use equation (9.16) in combination with the 
Debye-Huckel equation (9.7), taking the latter to refer to the 
solvated ions. In effect we shall use equation (9.7) to deal with 
interionic forces, and equation (9.16) to deal with the ion-solvent 
forces; instead of assuming that the solution of the unsolvated ions 
would be ideal but for the interionic forces, we assume that the 
solution of the solvated ions would be ideal but for the interionic 
forces. Apart from the obvious advantage of using a model which 
certainly comes closer to the physical reality, this procedure will go 
a long way towards justifying another assumption implicit in the 
derivation of equation (9.7), viz., that the dielectric constant E is 
that of the pure solvent. The work of HASTED, RITSON and 
 COLLIE(^^) has shown that nearly all the observed lowering of the 
bulk dielectric constant by ionic solutes arises from effects in the 
first layer of water molecules round the ion. If this layer is reckoned 
as part of the solute particle and ifother ions do not penetrate into 
it, the dielectric constant of the liquid outside may fairly be taken 
as that of the pure solvent. 

The same conclusion is reached in a recent theoretical study by 
BUCKINGHAM(14), from a detailed calculation of the energies of the 
ion-dipole and quadrupole interactions of water molecules in the 
first layer with one another and with the ion; beyond this first shell, 
the effect of dielectric saturation is found to be negligible. 

The question whether the ion-solvent forces are adequately dealt 
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with by this model is hard to answer, the chief difficulty arising over 
the value to be given to the parameter h, the number of moles of 
‘bound’ water per mole of solute. If this could be determined 
unequivocally by other means, without reference to the activity 
data, the position would be better; but we have seen that the 
determination of accurate hydration numbers is a very recalcitrant 
problem. 

Some guidance can be obtained from the study of non-electrolyte 
solutions. For a detailed account of the theory of these we refer to 
the texts of HILDEBRAND and  SCOTT(^^) and of GUGGENHEI~’~);  
here we merely summarize the main types of behaviour: 

(u) Ideul solutions, in which log fA = log f B  = 1, axe rare; 
approximation to this behaviour occurs with chemically similar 
molecules such as benzene and cyclohexane. There is no volume 
or heat change on mixing the components and the entropy of mixing 
per mole of mixture is: 

UM(ideal) = - R(N, In N, + NB In NB) . . . . (9.19) 

(b)  Athenna1 solutions resemble ideal solutions in having zero 
heat of mixing, but the entropy of mixing is not that given by equa- 
tion (9.19). Their departure from ideality is ascribed to the differ- 
ences of size and shape between the solvent and solute molecules. 
The entropy of mixing may be calculated on the assumption of a 
lattice-like structure for the solution, a solute molecule occupying 
several lattice-points whilst a solvent molecule occupies only one. 
In the simplest case the entropy of mixing is: 

where Y is the ratio of the molal volume of the solute to that of the 
solvent. Another interpretation regards Y as the ratio of ‘free volumes’ 
rather than molar volumes. Equation (9.20), along with AHM = 0, 
leads to the following equation for the molal activity coefficient: 

0.001 w, Y(Y - 1)nz 
1 + 0.001 w, n InyB=----- - l n ( l  -!-0.001W,~m) ....( 9.21) 

which, for small m, approximates to: 

h YB w 0.001 w, r(r - 2)m 
or In f, w 0.001 w, (Y  - 1)2m. 

(c )  In regular solutions the entropy of mixing is given by the 
ideal expression (9.19) but there is a non-zero heat of mixing. The 
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mold and rational activity coefficients (with standard states chosen 
so that yB and fB -t 1 at infinite dilution) are: 

. . . . (9.22) 

Approximation for small m leads to: 
lnfB m - 0.001 W, (2 bm)/(RT) . . . . (9.23) 

In a mixture of two liquids, the quantity b (if independent of tem- 
perature) is the heat of mixing one mole of either component with 
a large amount of the other; heat evolved in the process corresponds 
to negative values of 6, and in this case the activity coefficient will 
increase with concentration. 

If the interaction between the components is fairly strong, it may 
be possible to treat it in terms of the formation of a definite complex. 

with 
B + h A + BAb 

x = aBA,/(aB a 3  
If the concentration of B is small, the solvent activity, aA, differs 

little from unity and the ratio ofcomplex to free B is nearly constant. 
A good approximation to the actual behaviour may then be obtained 
by using equation (9.18) taking h as an average for the free and 
complexed solute and assuming the mixture of solute, solvent and 
complex to be ideal. Equation (9.18), with f; = 1, becomes: 

In y = - h In (1 - 0.001 WA hm) 

+ (h  - 1 )  In [l + 0.001 W,(1 - h)m] . . . .(9.24) 
0401 W, (2h - 1)m for small m. 

Comparing (9.23) and (9.24) we see that in dilute solutions a 
regular-solution behaviour with a heat of mixing (ART) affects the 
activity coefficient to the same extent as would the solvation of 
each molecule of solute with 4 molecules of solvent. 

There are thus a variety of causes-solvation, heat of mixing and 
molecular size and shape-which have the effect of causing InfB to 
increase approximately linearly with concentration. Any or all of 
these may be present in electrolyte solutions and we need to consider 
their relevance to aqueous solutions. Table 9.4 gives the activity 
coefficients of aqueous sucrose and glycerol solutions at 25", along 
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with the results calculated for (0) ideal solutions, (b) regular solu- 
tions with the 6 parameter indicated, (c) solutions in which the 
solute is present as a hydrated form carrying h water molecules, the 
mixture of hydrated solute and 'free' water behaving ideally and 
(d)  athermal solutions, using either an arbitrary value of Y in equa- 
tion (9.21) selected to give agreement at l M or the ratio of the 
molal volumes of solute and water. 

In the case of glycerol, which departs only slightly from ideality, 
all the theoretical expressions give a fair reproduction of y, except 
equation (9.21) with r as the ratio of molar volumes of solute and 

Tabk  9.f 
Reficsentatwn of Activity Cocqficients of Aqucmrr Non-ckctro&tcs 

at 25" by cquatwm 9.2 I to 9.24 

1.017 
1.018 
1.017 
1.019 

Y-2' 
y ( q .  9.22, b = - 5.4 RT) 
y ( q .  9.24, h = 5) 
y(eq. 9.21, r = 4.38) _ _  

1.085 1.188 
1492 (1.188) 
1.087 (1.188) 
1494 (1.186) 

y(eq. 9.21, r = 5 = 12) 
V A  

1.235 I 2.638 

Y-tc" 
y q. 9.22, b = - 1.2 RT) 
y [ q .  9.24, h = 1-2) 
y ( q .  9.21, r = 2.6) 

.r 

5.800 

~ ( q .  9.21, r = 2 = 4) 
V A  - 

1.003 
1-003 
1.003 
1.003 

1.015 

I o.I I 0.5 j I.o 2.0 I 3.0 
0.998 0.991 0.982 0.965 0.949 

1.014 1.027 
1.013 (1.025) 
1.013 (1.026) 
1.014 (1.026) 

1-072 1-14) 

1 442 
1.397 
1 4 9  
1 -368 

19.26 

I *om 
I -048 
1 -053 
I .048 

1.276 

1.751 
I -628 
1 ~822 
1.545 

45.82 

1.07 I 
1 *069 
1.081 
1-079 

1.403 

solvent. For sucrose, the simple interpretation as an ideal solution 
of a pentahydrated solute by equation (9.24) gives representation 
considerably better than the other equations; equation (9.21) using 
the 'volume fraction statistics' is poor even when Y is interpreted as 
a 'free volume ratio' chosen for best fit, and its failure when r is put 
equal to the ratio of molar volumes of solute and solvent is spectacular. 

The statistical mechanical methods used in the derivation of 
equation (9.20) for the entropy of athermal mixing are applicable 
when the molecules are long chains. The equation does not, how- 
ever, correctly describe the entropy of mixing of approximately 
spherical molecules and Hildebrand has recently presented increas- 
ingly strong experimental evidence that the ideal entropy of mixing 
given by equation (9.19) is more correct in this case. In particular, 
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his studies('8) of solutions involving the very large non-polar and 
nearly spherical molecule octamethyl-cyclotetrasiloxane, (CH,), 
Si,O,, (pB = 312 ml/mole) are of great interest. 

It would thus seem likely that the best course for dealing with 
moderately concentrated electrolyte solutions would be to use the 
Debye-Hilckel expression (9.7) to give the electrical contribution to 
the free energy of the solvated ions, equations (9.21) and (9.22) to 
give the effects which would &t if the solvated ions were in the 
solution but uncharged, and equation (9.17) to relate the activity 
d c i e n t  of the solvated ions to the conventional activity coefficient. 
This would involve the use of no less than four arbitrary parameters, 
dz., a, the ion size parameter; h, the solvation number; r, the 
free-volume ratio; and b, the heat of mixing of the solvated ions 
with the solvent in the imagined absence of interionic effects. With 
four parameters at our disposal, it would be possible to fit almost 
any experimental data, and some attempt must clearly be made to 
d e t d n e  some of them in terms of others, or in terms of other 
measurable properties of the solution, before the adequacy of such 
a treatment can be gauged. 

SCAT CHARD(^^) in 1932 gave a theory for the activity coefficient 
of concentrated electrolytes, having some of the features just 
indicated. The non-electrolyte type of interactions, for instance, 
were dealt with by an expression similar to equation (9.22) above, 
and the treatment of ion-ion interactions was given by the Debye- 
Hiickel expression, though with allowance for the variation of 
dielectric constant with composition. The ion-solvent interactions 
were, however, treated in a very different manner, in terms of an 
electrostatic salting-out effect. The solvated-ion model which we 
are proposing to use has some advantages in simplicity, for, as has 
been remarked, the dielectric constant may more reasonably be 
taken as constant, and the ion-solvent interactions are represented 
in a manner easier to grasp. 

The simplest treatment of the effect of ionic solvation on the 
activity coefficient would, as suggested above, be simply to combine 
equation (9.17) with the Debye-Hiickel expression, taking the 
latter to give the activity coefficient of the solvated ions, log& 
This coum is consistent with the fact that the a values of the 
Debye-HQckel expression correspond to the dimensions of solvated 
ions. The resulting expression is: 

- log [I + 0.001 W,(V - h)m] . . . . (9.25) 
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This expression contains only two parameters, h and a, the ‘non- 
electrolyte’ contributions involving the parameters I and 6 (equa- 
tions 9.21 and 9.22) being ignored. 

Equation (9.25) has been extensively tested(lO) for aqueous solu- 
tions and is remarkably successful with the non-associated electro- 
lytes. The values of the parameters, u and h for thirty-six 1 : 1 
and 2 : 1 electrolytes at 25’ are given in Table 9.5. 

Table 9.5 

Constmts of the Two-paramc&r Equation (9.25) Giving Best Firs to rlu Expaimcntor 
Activity Cw&ids 

salt 

HCI 
HBr 
HI 
HCIO, 
LiCl 
LiBr 
LiI 
NaCl 
NaBr 
NaI 
NaCIO, 
KCI 
KBr 
KI 
NHICl 
RbCl 
RbBr 

LiCIO, 

h 

8.0 
8.6 

10.6 
7.4 
7.1 
7-6 
9.0 
8.7 
3.5 
4.2 
5-5 
2.1 
1 *9 
2- 1 
2-5 
I -6 
I -2 
0.9 

a 
[Angstroms) 

I I I 
4.47 
5-18 
5.69 
5.09 
4.32 
4.56 
5.60 
5-63 
3.97 
4.24 
4.47 
4.04 
3.63 
3.85 
4-16 
3-75 
3.49 
3-48 

0.6 
13.7 
17.0 
19.0 
12.0 
196 
17.0 
10.7 
12.7 
15.5 
7.7 

10.7 
15.0 
11.0 
12.0 
13.0 
13.0 
20.0 

3.56 
5.02 
5.46 
6.18 
4.73 
5.02 
5-69 
4.6 I 
4.89 
5.58 
4.45 
4.68 
5.44 
974 
4.80 
4.8 I 
4.86 
6.18 

From STOKES, R. H. and ROBINSON, R. A., J .  A w .  c h .  SOE., 70 (1948) 1870. 

Examination of this table reveals the following points: (a) The 
values of u lie in the range 3.5-62 A, i.e., they are much the same as 
those determined from simpler forms of equations such as equations 
(9.7) and (9.11). ( b )  The values of h for 1 : 1 chlorides lie in the 
order H > Li > Na > K > Rb which is just the reverse of the 
order of the radii of the bare ions. The same cationsrder holds 
for the 1 : 1 bromides and iodides. The alkaline earth metal cations 
show a similar decrease in hydration number with increasing 
crystallographic radius. This behaviour is consistent with what is 
known of the hydration of these cations from other sources (except 
possibly in the case of hydrogen ion which will be taken up later). 
(c) For a given cation, the h values decrease in the order 
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I- > Br- > C1-. This implies that the largest anion is the most 
solvated, a conclusion at variance with both reasonable expectation 
and other experimental indications, and it is a serious weakness of 
the simple equation (9.25). (d) The solvation numbers h are not 
additive for the separate ions, e.g., hNac, - h ~ C l  = 1.6, but 
hlaI - hEI = 3.0. I t  is thus not possible to ascribe a single value 
of h to each ion, but different values must be allowed depending on 
the nature of the companion ion. (e) The low h values for potassium, 
ammonium and rubidium salts indicate that the chloride, bromide 
and iodide ions can be little hydrated so that where high values of 
h are found most of the hydration must be attributed to the cation. 
This is quite reasonable since the anions considered are all large 
(- 2 A radius) and therefore have low surface charge. The 
resulting cation hydration numbers do, however, seem rather large. 
In particular, if one estimates the radius of spherical cations con- 
taining such amounts of bound water, one finds that the sum of this 
radius and the crystallographic radius of the anion exceeds the 
required a value by about 0.7 A for the 1 : 1 salts and 1.3 A for 
the 2 : 1 salts. This rather unsatisfactory situation was dealt with 
in our original by assuming that when the anion and 
cation met, the anion could penetrate into the hydration sheath of 
the cation by these distances; the greater penetration when the 
cation is divalent (1.3 A against 0.7 A) arising from the greater 
attraction it has for the anion. 

Using the concept of a limited penetration of the anion into the 
hydration sheath of the cation, it proved possible to obtain a relation 
between the parameters A and a, of sufficient accuracy to permit 
the calculation of the activity coefficients of the chlorides, bromides 
and iodides of the alkali and alkaline earth metals and hydrogen 
with quite good accuracy (better than 1 per cent) up to ionic 
strength often as high as I = 4. The relation between A and u is 
obtained as follows: The volume occupied by a water molecule in 
liquid water at 25' is 30AS. The volume of the hydrated cation 
(taking the anion as unhydrated) is therefore (30h + VJ, where 
V, is the apparent molal volume of the ion in As. It was shown 
that V, could be estimated from the apparent molal volume of the 
salt, Vapp, in solution by means of the formula: 

. . . . (9.26) 

where rz is the crystal radius of the anion (in A). Since V, is usually 
only a small fraction of 30h, it need not be calculated with great 
accuracy, and in practice it is sufficient to estimate the apparent 
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molal volume at about 1 M and use this value at  all concentrations. 
The radius of the hydrated cation, ri, is then given by: 

h i s / 3  = 30h + V, . . . . (9.27) 
and the value of the mean distance of closest approach of the ions 
is given by: 

where A is the 'penetration distance.' Since r; is a known function 
of h, a can be calculated from h and the known crystal radius of the 
anion. The resulting one-parameter equation for the activity 
coefficient (for an aqueous solution at  25") is: 

u = 1; + r, - A 

0.5 1 1 5 I t l t g l 4 Z  
logy* = - 3 118 

1 + 0.3291 4 Z  ( [G (30h + V,)] + r, - A) 

h - - log Q,  - log [ I  - 0*018(h - ~ ) m ]  . . . . (9.28) 
Y 

I t  is of course not strictly a one-parameter equation, for it 
involves A as well as h. However, A is constant for each class of 
salt (0.7A for I : 1 salts, 1.3 A for 2 : 1 salts) so that only the 
parameter h has to be specified to give the activity coefficient of a 
salt of one of these valency types. The effectiveness of equation 
(9.28) is illustrated by the graphs in Figure 9.3. The limit of validity 
of this equation is generally reached when the product hrn - 12, 
i.e., when about one-fifth to onequarter of the total water molecules 
are bound to ions as water of hydration. Above this limit, equation 
(9.28) usually predicts values which are higher than those observed, 
which suggests that the hydration number is beginning to fall 
owing to the effects of competition between neighbouring cations. 

This treatment of solvation has been extended by GILLESPIE and 
OUBRIDOE(~~) to solutions of metal sulphates in sulphuric acid as 
solvent. 

Whilst there is no doubt of the success of both the two-parameter 
equation (9.25) and the one-parameter form (9.28), their theoretical 
basis is somewhat inadequate owing to the neglect of 'non-electro- 
lyte' effects and there are, as shown above, some difficulties in 
accepting the h values as giving precise representations of the 
formulae of the hydrated ions. 

Glueckauf's Treatment of Ionic Hydration 
GLUECKAUF(~~), recognizing the difficulty of interpreting the h 

values of equations (9.25) and (9.28) as actual sums of hydration 
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4m- 

z/m - 
Figure 9.3. Comparhon of expmimantal acw m- with those predkted 61, the o m  
parameter equation (9.28). The full amw are CalculCJcd from equation (9.28), usiag Ute 
value fm the drcrlion pmMuln’ h following the fOnnur0 qf each sait. From STOICUS, 

R. %and ROBINSON, R. A., 3. A m .  &em. Soc., 70 (1948) 1870 
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numbers for the ions of the electrolyte, proposed the following 
modification of the theory: If h, is the actual hydration number of 
an ion iy the partial molal volume of the hydrated ion Pi is (hipA + 
Pi) where Pi is the partial molal volume of the unhydrated ion as 
ordinarily defined. He then assumes that the entropy of mixing of 
the hydrated ions and the ‘free’ solvent is given by an equation 
analogous to (9.20), with rf = ?‘!/PA, i.e., he employs ‘volume frac- 
tion statistics’ instead of the ‘mole fraction statistics’ which we used 
in deriving equation 9.25. He also takes the total electrical free 
energy of the system as given by equation 9.13a. Upon differentiat- 
ing the total free energy partially with respect to the number of 
moles of anhydrous solute in the system, and neglecting the second 
term on the right of equation 9 . 1 3 ~ ~  he obtains for the molal activity 
coefficient yf (as ordinarily expressed on the basis of anhydrous 
solute) ; 

I..* 

0.018 mr (Y + h - v)  
In Y* = + v( 1 + 0.018mr) . (9.29) 

h - v  + - In (1 + 0.018mr) - 1 In (1 - 0-018mh) 
V V 

This equation fits the experimental data as well as does equation 
(9.25), using as parameters h and a;  the quantity r, now referring 
to the electrolyte as a whole, is Y = (P, + hPA)/PA. We have 
shown‘s*’ that a simple relation between actual volumes and effec- 
tive volumes in solution enables one to dispense with a as an arbit- 
rary parameter. The values of the hydration numbers required by 
equation 9.29 are considerably smaller than those of Table 9.5, e.g. 

/ lac1 = 4.7, hNaC1 = 2.7, hKC1 = 1.7, hNH,Cl = 1.1, 

hcaar, = 6.2, hmI, = 5.5, hbcl, = 10.2. 

Furthermore, the most serious anomaly of our earlier treatment now 
disappears: the new hydration numbers become nearly additive for 
the separate ions, and the hydration numbers of the ions C1-, Br- 
and I- are all about the same (h * 0.9). 

Equation 9.29 appears to differ from equation 9.25 not merely in 
the presence of terms in the molar volume ratio Y, but also in the 
absence of a term in In a,. This latter discrepancy is only apparent; 
we have shown(S1) that it arises from the neglect of the very small 
second term of equation 9.13(b) in both treatments. If this is not 
neglected the two treatments differ only in being based on an entropy 
of mixing given by equation 9.19 in our case and on 9.20 in Gluec- 
kauf‘s. (In both cases the appropriate modification for an ionized 
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solute is of course made.) In view of the convdence and effective- 
ness of equation 9.29, it is most unfortunate that the use of ‘volume- 
fraction statistics’ receives so little justification from tests on aqueous 
non-electrolytes (Table 9.4). 

Summary of Thoretical Treatments of Chnnical Potmtiul in Electrolyte 
Solutions 

The importance of ion-solvent interactions in modifting the 
activity coefficients of concentrated solutions was first recognized by 
BJERRUM(~~), who used an equation similar to (9.25) except that the 
electrical term was represented less accurately by a term propor- 
tional to c1I3. The appearance in 1923 of the DEBYE-H~CKEL(*) 
treatment of electrical interactions shortly afterwards focussed 
attention on dilute solutions, and the ion-solvent interactions were 
usually treated quite empirically by adding terms linear in c to the 
expression for log$ HOCKEL(-), and later SCAT CHARD(^$), treated 
the ion-solvent interactions in terms of an electrostatic saltingsut 
effect arising from the fact that the electrolyte lowers the dielectric 
constant; Scatchard also introduced a term corresponding to the 
thermal effect described by equation (9.22). The wxiten(10) com- 
bined Bjerrum’s thermodynamic treatment ofion-solvent interactions 
with the Debye-Hiickel treatment of ion-ion interactions, obtaining 
equation 9.25; and GLUECKAUF(*~) modified this treatment by sub- 
stituting ‘volume-fraction statistics’ for the conventional ‘mole- 
fraction statistics.’ EICEN and WICKE(~~~)  developed a treatment 
similar to that of Debye and Hiickel, but employing a distribution 
function modified to allow for the co-volume of the ions (Chapter 
4). MAYER(*~) showed that the limiting Debye-Hiickel square-root 
law could be established from a general statistical-mechanical treat- 
ment of the ion-ion interactions, which avoids the self-consistency 
difficulties inherent in the Poisson-Boltzmann equations, and 
developed the theory for finite ion sizes; POIRIER(~) applied the 
theory to actual solutions, obtaining fair agreement with experi- 
mental results. The calculations are laborious and have as yet been 
applied to very few salts. 

There are many salts, normally regarded as strong electrolytes, 
for which the Debye-Hiickel formula requires absurdly small or 
even negative values of the ion size parameter a. GRONWALL, LA 
MER and SANDVED‘~’) dealt with these cases by accepting the non- 
linear Poisson-Boltzmann equation (equation 4.2 with p given by 
equation 4.6) and solving for 1p by numerical integration. This 
treatment, though moderately successful, has been criticized on 
logical grounds‘’). BJERRUM’S(~) theory of ion-association provides 
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a more satisfying explanation of this type of behaviour; it is 
developed in detail, along with elaborations by Fuoss and KRAUS(~~),  
in Chapter 14. 

1 GUCGENHEILI, E. A., ‘Thermodynamics: An advanced treatment for 
chemists and physicists’, p. 201, North Holland Publishing Co., 
Amsterdam (1949) 

a MANOV, C.  G., B A ? ~ ,  R. G., HAMER, W. J. and ACREE, S. F., 3. A m .  
chmt. Soc., 65 (1943) 1765; their values for A and B have been 
recalculated to conform with the dielectric constants recorded 
in Appendix 1.1 
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THE MEASUREMENT OF DIFFUSION 
COEFFICIENTS 

THE fundamental equations defining the diffusion coefficient have 
been introduced in Chapter 2. Before considering the theoretical 
interpretation of diffusion data, we shall discuss the various experi- 
mental methods which are available for obtaining them. 

E X P E R I M E N T A L  METHODS FOR T H E  S T U D Y  OF DIFFUSION 

The available methods may be grouped in several ways: perhaps 
the most obvious division is into steady-state methods based on thc 
equation : 

(2.53) 

and other methods, based on the equation: 

. . . (2.54) 

Skadj-~tak Methods 
In true steady-state diffusion, a constant concentration is main- 

tained at both ends of a column of liquid through which diffusion 
takes place; the flux of solute ultimately becomes independent both 
of time and of position in the column. When this steady state has 

been reached, the flux J and the concentration-gradient - are 

measured, giving D by equation (2.53). Almost the only results 
obtained by this method are those of  CLACK(^), who devoted many 
years to the development of suitable apparatus. The concentration 
at the lower end of his column was maintained at saturation by 
means of a reservoir of solid salt, while that at the upper end was 
maintained effectively at zero by means of a slow flow of water; 
the flux was determined analytically and the concentration gradient 
was measured at any desired level by an optical determination of 
the refractive index gradient. By integration of the concentration 
gradient, the concentration to which each value of D referred 
could be calculated; the method thus had the advantage that a 
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single successfir1 run provided values of D at all concentrations up 
to saturation. The experimental difficulties of establishing and 
maintaining the steady state were, however, too great to encourage 
widespread use of this method; chief among these were thermally 
and mechanically induced convection currents. Curiously enough, 
however, Clack’s results for sodium and potassium chlorides appear 
to be several per cent lower than undoubtedly more reliable recent 
data obtained by the methods described below. 

A much more important method based on equation (2.53) is the 
porous diaphragm technique introduced by NORTHROP and AN SON'^) 
and developed by McBAw($), HARTLEY(~) and STOKES(~). The 
hndamental idea of this method is to eliminate the disturbing 
effects of vibration and of small temperature fluctuations by con- 
fining the diffusion process to the capillary pores of a sintered glass 
diaphragm; an idea excellent in itself, but one which introduces a 
number of new problems: 

(a) Cdibrdion ofthe diu#hrugm-Since it is not possible to measure 
the true length and cross-section of the diaphragm pores, the 
effective average values must be determined. This is done by 
performing diffusion experiments with a solute which has been 
studied by one of the absolute methods to be described later. At 
the time when the porous diaphragm technique was introduced, 
however, no absolute values reliable within less than about 2 per 
cent were available; this may have delayed the full development 
of the method. 

(b) Stagnant luym on the di4phrugm-I t is essential that the diffusion 
process be conlined entirely to the pores of the diaphragm. This 
means that the reservoirs of solution on either side must be main- 
tained at  a uniform concentration right up to the surface of the 
diaphragm. The originators of this method(2) approximated to this 
condition by placing the diaphragm horizontally with the denser 
solution in a closed reservoir above it, so that diffusion would lower 
the density on the upper side, and raise it on the lower side. This 
results in a gravity-induced streaming, which is easily seen by using 
a coloured salt solution; but later work has shown conclusively that 
a thin stagnant layer persists at the surface of the diaphragm. For 
a given solute and concentration this layer behaves very repro- 
ducibly, so that a precision of 0.1 per cent can readily be obtained, 
but the thickness of the layer varies with the solute and the concen- 
tration-gradient across the diaphragm so that systematic errors of 
several per cent can occur when different solutes are compared(5’. 
Mechanical stirring is therefore adopted to remove this layer; 
HARTLEY and RUNNICLES~~) used glass balls which rolled on the 
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diaphragm as it rotated in a slanting position, while MOUQUIN and 
CATHCART(~) used balls which fell through the solutions as the cell 
was inverted end over end. Both these methods seem inadequate 
inasmuch as they do not ensure complete removal of the stagnant 
layers; furthermore, the departure of the diaphragm from the 
horizontal position encourages streaming of solution through the 
diaphragm when large density-differences are used, leading to high 

Figure 10.1. Mag~ticalh stiwcd dia- 
phragn-cell. From STOKES, R. H., 
3. A m .  c h .  Soc., 72 (1950) 763 

results. The method finally adopted by Stokes is a logical develop- 
ment of that of Hartley and Runnicles. The cell is shown in Figure 
10.1. The stirrers in this cell are sealed glass tubes slightly shorter 
than the diameter of the diaphragm; they enclose an iron wire and 
are caused to sweep over the diaphragm by a rotating permanent 
magnet mounted co-axially with the cell. The weights of the 
stirrers are so adjusted that the upper one sinks and the lower 
floats, both pressing lightly on the diaphragm. The stagnant layers 
are thus completely swept off. 

(c) Avoidume ofstreuming-If the pores are too coarse, transport 
can occur by bulk streaming through the diaphragm as well as by 
diffusion; this is more likely to occur if the denser liquid is above 
the diaphragm. It  can be reduced to negligible proportions by 
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using a diaphragm of No. 4 porosity (average pore size N 15 p) 
and by placing the denser solution below the diaphragm; this is 
permissible with the magnetic stirring system described above, as it 
is easily shown(6) that above a moderate threshold rate ( N 20 r.p.m.) 
the cell calibration is independent of the stirring-rate, i.e., that the 
stimng is sufficient to ensure uniformity within each reservoir. 

(d)  Surf.cc transport e&is-A serious limitation on the use of 
diaphragmtells for the study of diffusion in electrolyte solutions 
arises from adsorption effects on the large internal surface of the 
diaphragm, which may be of the order of a square metre in area. 
By comparing the results of diaphragm-cell measurements on dilute 
electrolyte solutions with absolute measurements it has been 
proved(6) that below about 0.05 M the former give substantially 
higher results, the error increasing as the solutions are made more 
dilute; it is of the order of 2 per cent at 0.01 M. The effect appears 
to arise through an enhancement of mobility in the electrical 
double layer on the pore walls; this has been confirmed by MYSELS 
and M&AIN(') by conductivity measurements in a cell in which a 
porous diaphragm is interposed between the electrodes. The double 
layer is most compact at high concentrations, and then makes a 
negligible contribution to the total transport. In more dilute solu- 
tions it occupies a larger proportion of the capillary cross-section, 
and its contribution to the transport is more marked. The result is 
that the diaphragm-cell method cannot safely be used at concen- 
trations below 0.05 M; it is possible that with electrolytes of higher 
valency types than the 1 : 1 electrolytes this limit may be at even 
higher concentrations. The method is, however, quite reliable at 
higher concentrations, and with care an accuracy of 0.2 per cent 
in the diffusion coefficient may be expected. 

In use, the cell is filled with an air-freed solution of appzoximatdy 
known concentration and one end is connected to a vacuum pump 
in order to remove air from the diaphragm. After eliminating any 
bubbles formed, the cell is thermostated, and the solution in the 
upper end is replaced by water or by a solution of lower concentra- 
tion. The cell is then run for a few hours, in order to produce a 
steady state in the diaphragm; the upper solution is then replaced 
by water, or by a solution of accurately known concentration less 
than that in the lower end. The run is timed from this point, and 
proceeds for a matter of one to three days. The compartments are 
then sampled at a known time and the final solutions analyzed. 
The diffusion coefficient is calculated as follows: denote the concen- 
trations at the beginning and end of the run by cl, c,, c,, c, as shown 
in Figure 20.2, and the volumes of the compartments and diaphragm 
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pores by V,, V,, V, respectively. Let the total effective cross-section 
of the diaphragm pores be A, and their effective average length 
along the diffusion path be 1. I t  is now necessary to assume that 
the diaphragm is in a steady state during the experiment, to the 
extent that there is no tendency for solute to accumulate in or to be 
lost from the diaphragm. Thus, at any given time, the flux of 
solute across any plane in the diaphragm parallel to its surfaces is 

C"=C, 

C' = C, 

Figure 10.2 

everywhere the same. This flux will, however, vary slowly with 
time, decreasing as the process of diffusion reduces the concentra- 
tion-difference. To emphasize this we shall write it as J(t). 

Denoting the concentrations of the upper and lower compart- 
ments by c" and c' respectively, the rates of change of these 
concentrations are related to the flux J ( t )  by: 

Hence 
d(c' - c") . . . .(lO.l) dt 

We now introduce the average value of the diffusion coefficient 
D with respect to concentration over the concentration range c' to 
C~ prevailing at the time considered; this quantity is also a function 
of time, which we denote &t): 
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Then 
1 1 B(r) = - 

c, - cx 
dc = - - 

. . . .(10.2) 

k 
ax 

since J ( t )  = - D - is constant for all points within the diaphragm 

at time t, x being the distance of the plane considered from the 

Figure 10.3 

lower surface of the diaphragm (Figure 20.3). Combining (10.1) 
and (10.2) gives: 

d In (c' - c") A 
=t - 

dt 

Hence integrating between the initial and final conditions shown in 
Figure 10.2 we obtain: 

4-t - 
D(t )  dt 

We now denote by b the time-average of b(t) (which is itself 

already a concentration-average), i.e., let b = 

1 1  
write j3 for the cell constant ( A / f )  (- 4- -). 

Then b = -  In - 
VI vz 

1 c1 - 62 

Bt 68 - 64 
. . . (10.3) 

The value b calculated from the initial and final concentrations and 
the time by means of (10.3) is therefore a rather complicated double 
average known as the diaphragm-cell integral coefficient, which it 
is not easy to convert immediately into the more fundamental 
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differential diffusion coefficient D. Fortunately it has been demon- 
strated(8) that a negligible error is introduced in all ordinary cases 
if instead of using the exact relation: 

L> = f p(t) dr 
0 

we treat the integrand as having a constant value equal to its value 
when the concentrations c' and GI are half-way between their initial 
and final values; this constant value is then clearly equal to as 
defined above and given by equation (10.3), and is related to the 
differential diffusion coefficient by: 

where 

. . . (10.4) 

The problem of computing D at various values of c from a set of 
b values obtained in experiments using various concentrations can 
be dealt with by a simple method of graphical approximation, 
provided that the Nernst limiting value is known t ie . ,  that accurate 
limiting ionic conductivities are available) ; otherwise, some suitable 
analytical expression with arbitrary coefficients must be assumed 
for D as a function of c, and the coefficients determined so that 
equation (10.4) will fit the observed b values@). 

may be carried out using 
potassium chloride solutions, for which D is known as a function of 
c from absolute measurements. 

The integral diffusion coefficient b corresponding to the initial 
and final concentrations is most readily computed as follows: a 
quantity D(c) is defined as the average D with respect to concen- 
tration over the range 0 to c, 

The cell calibration to determine 

@(c) = s" dc 
c o  

This quantity has been computed(10) for potassium chloride at 25" 
from the D values of HARNED and NUT TALL(^^) and of GOSTING('*) 
and is given in Tuble 10.1. Then from equation (10.4) it is easily 
shown that: 
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Tabk 10.1 
Integral D$uhn G+ht.s qf PotrusiUrn G ' M  &&&nu at 25' 

C D C b' 

0 1 *996 0.05 1.893 
0.00 I 1-974 0.07 1 483 
0.002 1 -966 0- 1 1.873 
0.003 1 *960 0.2 1.857 
0.005 1 -95 1 0.3 1 *850 
0.007 1 445 0.5 1 -848 
0.0 I 1 *938 0.7 1.851 
0.02 1 -920 I *o 1 *859 
0.03 1 *908 1 -2 1 466 

C I)r 

1 -4 1 -874 
1 *6 1 482 
1 *8 1 ~892 
2-0 1.901 
2.5 1.927 
3.0 1 -953 
3.5 1 a979 
3.9 2.000 

It is usually simplest to start the experiment with pure solvent on 
the upper side of the diaphragm, Le., with c, = 0. The initial 
concentration c, on the lower side is not conveniently measurable 
in the usual design of cell, since it changes during the preliminary 
period of diffusion while the diaphragm is being brought into the 
steady-state. I t  can, however, readily be calculated from the 
final concentrations c, and c,, and the volumes of the cell compart- 
ments and the diaphragm pores, using the fact that the total amount 
of solute in the system must be the same throughout. The volumes 
are measured by weighing the cell with the various parts filled in 
turn with water; the volume of the diaphragm being small com- 
pared to the reservoirs, the accuracy of about f 0.02 ml. with 
which its volume can be determined in this way is sufficient. The 
small amount of solute in the diaphragm is assumed, for the purpose 
of calculating cl, to be half at the concentration of the upper com- 
partment and half at that of the lower. Thus c, is given by: 

It is not, as a general rule, practicable to attempt to obtain a 
differential coefficient directly by working with only a small con- 
centrationdifference between the two sides of the cell, as in this 
case analytical errors are greatly magnified. However, if' the 
measurements of concentration can be made by a method which 
permits the determination of concentration differences with high 
accuracy (c.g., the Rayleigh interferometer) this course may be 
feasible and should be seriously considered where D is expected to 
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vary rapidly with c; for in such cases the accurate evaluation of D 
fiom values of b referring to a wide concentration range is not easy. 

It will be noted fiom equation (10.4) that the units in which c is 
expressad do not affect the value of 6; thus, for example, in self- 
diffusion work with radioactive tracers counting-rates may be 
substituted for the corresponding c’s; or titration volumes may be 
similarly used where volumetric analyses are made. 

METHODS INVOLVING SOLUTIONS OF T H E  EQUATION: 

In the more important absolute methods of measuring diffusion 
coefficients, the experimental methods are such as to require 
solution of the partial differential equation (2.54) for the appro- 
priate boundary conditions. Though there are certain special cases 
in which equation (2.54) can be reduced by appropriate substitu- 
tions to an ordinary differential equation in a single independent 
variable, a general solution cannot always be found in this way; 
further, a general solution is possible only in the case where D is a 
constant. This means that the experimental conditions must usually 
be arranged so that the range of concentration in any one experi- 
ment is small enough to justify treating D as a constant. 

MEASUREMENT OF SELP-DIFPUSION USING TRACER 
T E C H  N IQU E 

Perhaps the most obvious example of a method in which this 
condition is fulfilled h? the ANDERSON(~~)  capillary tube method for 
the study of self-diffusion. A uniform capillary tube of known 
length is filled with an isotopically ‘tagged’ solution, and immersed 
in a much larger vessel containing an isotopically normal solution 
of the same concentration, which may be gently stirred. At the 
mouth of the capillary, the concentration, c, of the tagged form is 
thus held at zero throughout the experiment. After a measured 
time the total amount of tagged material in the capillary is measured 
and compared with the initial amount. 

The equation 
ac asc - = D - (D = constant) 
at 3x2 

. . . (10.5) 

may be solved for this case as follows : assume that c can be expressed 
as a product of separate functions of x and t only, 

c = F(x) . f i t )  
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Then 

and 

Hence (10.5) becomes: 

( 10.6) 

Since the left and right sides of equation (10.6) are respectively 
functions oft  only and of x only, the equation can be satisfied only 
if each side is separately equal to the same constant. Writing - k* 
for this constant we have the two equations: 

. . . .(10.7) and 

The negative sign is necessary since if the constant were positive the 
solutions would lead to infinite values of the concentration as 
t + a. Thus physically permissible solutions of the one-dimensional 
diffusion problem must be of the form: 

c = b exp (- k2Dt) . F(x)  . . . . (10.8) 

where F(x)  is a solution of (10.7) and b and k are constants. The 
most general solution is a linear combination of terms like the 
right-hand side of (10.8), with coefficients to be determined from 
the boundary-conditions. In the capillary-tube method, the 
boundary conditions for a tube closed at x = 0 and open at x = a 
are : 

A t t = 0 ,  c = c ,  for O < x < a ,  c = O  for x > a  

A t t > 0 ,  c = O  at x = a  and - = 0  at x = O  

These conditions can be satisfied only if k = - r where 

n = 0, 1, 2, ctc., since F(x) by equation (10.7) must clearly be a 
sine or cosine function. The solution is therefore: 

d2 
dxa - F(x)  = - W ( X )  

ac 
ax 

2n + 1 
2a 

n- w r (2n  + 1). 
2a 

c = 2 B,, exp [ - r0(2n + 1)2Dt/(4a*)] cos 
n-0 
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By Fourier analysis, it is found that the coefficients B,, are given by- 

4 c n = a  - = 2 (-- ')"& + 1) exp [- n2(2n +- l)2Dt/(4a2))3 
CO n-0 

a(2n + 1)x 
20 cos 

The average concentration in the tube at time t is: 

c,, = s". dx 
0 0  

whence 

- ay2n + 1)2 - . . . . (10.9) 
n- co 8 

A graph of the right-hand side of (10.9) against Dt/a2 can be 
prepared; interpolation on it at the experimentally determined 

value gives Dt/a2 and hence D. It  will be noted that provided 

the tube is uniform, its cross-section is not required, but only its 
length 4. In computing the function (10.9) for the graph, very few 
terms need in practice be taken as the series converges very rapidly 
for reasonably large times. The ratio of the first term (n = 0) to 
the second (n = 1) is 9 exp (2dDt/a2). This ratio is greater than 
lo00 as soon as Dt/d exceeds 0.24, and higher terms fall off even 
more rapidly. In a tube 5cm in length, and with a diffusion 
coefficient of cm2 sec-1, the first term of (10.9) is therefore 
amply sufficient after a week, though for the shorter times which are 
more practically convenient a few more terms must be taken. To 
illustrate the rate of change, it may be remarked that when 
Dt/a2 = 0.24, the average concentration in the tube has fallen to 
45 per cent of its initial value. 

This method has been extensively used for determining self- and 
tracer-diffusion coefficients of electrolytes, but agreement between 
different workers has often been poor, discrepancies of 10 per cent 
or more having been reported. In a critical study of the method, 
 MILLS'^') has concluded that serious errors can arise from the mode 
of stirring of the large container into which the diffusion proceeds. 
Turbulent flow near the capillary mouth appears to lead to a 
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‘scoopingsut’ of solution from the tube. On the other hand, if the 
solution is not stirred at all, a ‘cloud’ of the diffusing species may 
tend to accumulate at the mouth of the tube so that the boundary 
condition c = 0 for x > u is not fulfilled. Mills has shown that 
correct results (i.e., results in agreement with similar measurements 
using diaphragm-cells) can be obtained by arranging for slow con- 
trolled streamline flow past the capillary mouth. Another difficulty 
concerns the complete removal of all the active material from the 
tube at the end of the run, for radioactive counting; he overcomes 
this by not removing it. Instead, he surrounds the tube by a scin- 
tillation-counter crystal, making it possible to measure the decrease 
in activity continuously throughout the run. These improvements 
lead to a precision of a few tenths of one per cent in the measure- 
ment of tracer-diffusion coefficients. 

MEASUREMENT OF DIFFUSION B Y  T H E  CONDUCTIYETRIC 
METHOD 

It is characteristic of the capillary-tube method that it is permissible 
and indeed desirable to let diffusion proceed until the concentration- 
change even at the dosed end of the tube is large: it may be termed 
a ‘restricted diffusion’ method in contrast to the fret diffusion 
methods, in which an essential feature is that part of the diffusion 
column should be so remote from the region of the initial dis- 
continuity that it undergoes no detectable concentration change. 
The optical methods to be described later are fret-diffusion methods. 
Another important restricted-diffusion technique is the conducti- 
metric method developed at Yale by HARNED and his collabora- 
tors(l1. l‘). The diffusion channel of their cell is rectangular in cross- 
section (A in Figure 10.4) and its height u (about 5 cm) is accurately 
measured. I t  is closed permanently at the top, and at the bottom 
fits against a sliding plate containing two small resuvoirs B and C 
which have the same cross-section as the channel A, so that by 
suitably sliding the plate either of them may be made to form a 
downward continuation of the channel. In an inverted position, 
the channel A is filled with conductivity water and the plate is 
placed in position with the reservoir B in line with A. On sliding 
the plate to the position shown, the excess water is carried off in By 
leaving A completely filled. Reservoir Cis filled with a salt solution 
of suitable concentration. The cell is then turned right way up and 
set up in an air-tight thermostated box with the most stringent 
precautions against mechanical vibration. After allowing a day for 
attainment of thermal equilibrium, the sliding plate is moved by a 
remote control so that the solution in reservoir C is in line with A, 
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and salt diffuses into A. When a suitable amount has entered, the 
plate is moved back to the position shown and the main run begins. 
The concentration changes are followed by measuring the con- 
ductivity at two positions in the cell by means of pairs of very small 

Figure 10.4. H d ' s  condwhinetric d i i n  cell 
(diugrammaeic dj) 

4 54 
6 electrodes set in opposite walls at heights 6 and - above the sliding 

date. 
1 

The boundary conditions are, since both ends of the cell are 
closed, 

JC 
- = 0  at x = O  andat  x = u  
dX 

and the appropriate Fourier-series solu tion(l5' of equation ( 10.5) 
for the concentration c at a height x is: 

n- ~1 t1mx 

n-1 4 
c = co + 2 B,, exp ( - n2m2Dt/u2) cos - 

where co and the B,,'s are constants. Hence the difference in concen- 

tration between the planes x = g and x = - is U 54 
6 

c a / ~ - c ~ / 6 =  n-00 2 B , , e x p ( - - n W ~ ) [ c o s ~  Dt nm -COST] 5 m  
,,=l 

. . . .(10.10) 
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5nw m 5nn 
6 6 For even values of n, cos - = cos 

- cos 

and for odd n, cos - = 

so that all the terms for even n vanish since the factor in 
m 

square brackets is zero; and for odd n the square bracket becomes 

2cos-whichequals~3forn= l , O f o r n = 3 ,  - - -3forn--5 

and 7, cfc. Equation (10.10) therefore becomes: 

c,,/6 - cw/,3 = B; exp (- w2 Dtla') + B; exp (- 25w2 Dt/u2) + . . . 
where B; = B,1/3, etc. Since the leading term of this expression 
exceeds the second term by the factor exp (247r2Dt/a2) the series 
converges very rapidly even for small values of Dtlaz, and after a 
few days only the first term need be considered at all. This rapid 

convergence is a result of the ingenious choice of the heights - and 
5a - for the electrode pairs, which makes the term for n = 3 vanish 6 
at all times. The coefficient B; need not be determined, for by 
logarithmic differentiation one obtains: 

n r  
6 

a 
6 

(10.11) 

so that by plotting In [c0/,3 - c,/,3] against the time t a straight line 

of slope - - results. T*D 
a2 

In the early stages of the experiment the assumption of constant 
D may not be justified, but as the diffusion proceeds the concentra- 
tion-differences become smaller, and D is more nearly constant 
throughout the solution. The remarkably constant values of D 
given by equation (10.11) after the first day are evidence for the 
validity of the theoretical treatment. The constant value attained 
can therefore be treated as the differential diffusion coefficient at 
the average concentration of the solution, which is found by 
allowing the cell solution to mix under the action of thermal con- 
vection after completing the run, and measuring its concentration 
conduc timetrically. 

This method demands great care and elaborate precautions to 
avoid trouble from vibration and thermal convection, owing to the 
long duration of the runs; but it is extremely important since it 
provides a means by which data accurate to 0.1 per cent can be 
obtained for electrolyte solutions more dilute than about 0.05 My a 
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concentration region of great theoretical interest. In this region the 
diaphragm-cell is untrustworthy owing to the surface transport 
effect mentioned above, and the optical methods discussed below 
(except that recently described by Bryngdahl-see p. 282) can- 
not give reliable results since the change of the refractive index 
between the ends of the diffusion column is too small. It is indeed 
remarkable that Harned and his collaborators have been successfd 
in making measurements at concentrations as low as 0.001 M, for 
at these concentrations only minute density gradients exist and the 
stabilizing effect of gravity is therefore very slight; to preserve a 
stable column of Musing liquid for a week or more under such 
conditions is a striking experimental achievement. Some idea of 
the precautions necessary to avoid thermal disturbances is given by 
the fact that, when it was desired to mix the cell solution thoroughly 
at the end of the run (in order to determine the average concentra- 
tion), it was only necessary to place a heating lamp outside the 
scaled box containing the cell; absorption of radiation by the black 
platinum electrodes started convection currents which produced 
complete uniformity within a few hours. 

O P T I C A L  METHODS 

The various optical methods for determining diffusion coefficients 
employ some form of cell in which a sharp boundary can be estab- 
lished between two initially uniform columns of liquid of different 
concentration. There is thus a sharp discontinuity in refractive 
index at the beginning of the experiment; as diffusion proceeds, the 
discontinuity is replaced by an increasingly broad region of gradual 
change of refractive index, which is studied by suitable optical 
arrangements. 

Whilst it is possible to obtain a Fourier series solution valid at any 
time for a cell of which the ends are closed at known distances from 
the initial boundary, this form of solution is not well adapted to 
the needs of the optical methods. A solution of much simpler form 
exists for the special case in which the two columns of liquid extend 
to a virtually infinite distance above and below the boundary, and 
is applicable to columns of finite length provided that the times 
considered are not long enough for detectable concentration changes 
to have reached the ends of the cell. This solution may be obtained 
h m  the general Fourier-series solution by a special method of 
summing the infinite series, but is more readily arrived at indepen- 
dently as follows: 

In the cell shown in Figure 10.5, let one-dimensional diffusion in 
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the x-direction proceed fiom an initially sharp boundary between 
two semi-infinite columns of liquid of initial concentrations cl and 
c,. The boundary conditions are given by: 

a t t = O  c = c ,  for O > x >  -a 

c = c o  for O < x < + o o  

a t t > O  c = c ,  at x =  -a 

c = c o  at x = + o o  

Define a new variable y = x / ( Z f i ) .  

... (10.12) 

Figure 10.5 

The boundary conditions (10.12) can then be stated more simply 
as : 

c = c I  for y = - a  

c = c p  for y = + c o  . . . .(10.13) 

since at t = 0,y + - co and + co for all finite x below and above 
the boundary respectively, and for positive t,y = f a0 corresponds 
to x = f co. This reduction of the two sets of boundary conditions 
(10.12) to a single set (10.13) is clearly only possible because the 
columns are considered to extend to infinity; the reader who is not 
convinced of this may attempt a similar reduction for the case of 
finite columns. 

In terms of the new independent variabley, equation (2.54) can 
be reduced from a partial to an ordinary differential equation. We 
have, assuming once more that D is constant, 
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therefore 

Hence equation (2.54), i.c., 

becomes: 
d 4  dc 
@ = -  2-Y iij . . . .(10.14) 

dc 
Equation (10.14) is readily solved by the substitution - dy = k )  to 
give : 

dc 

where A is a constant. Hence 

c = to + A e-y’ dy r 
where co is another constant. The constants c, and A can be 
evaluated from the boundary conditions (10.13), using the known 
definite integral: 

At a given time t, therefore, the concentration c and its gradient at 
distance x are: 

. . . . (10.15) 
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where erf (a), the error-function of a, is defined by the definite 
integral 

erf (a) = - dc 

Values of the error-function are given in tables and books on 
probability theory; important special values are erf(0) = 0, 
erf(00) = 1, erf(- 00) = - 1; and it has the property erf(- a) 
= - erf (a), i.e., it is an odd function. dn 

In most of the optical methods the refractive index gradient 

is of more direct interest than the concentration and its gradient. 

dn 0 

Figwe 10.6. Thc Goijt in~jcrencc effect 

S-horizontal illuminated slit 
&-collimating lens 
I,,-focusing lens, focal length = b 
Ddiffusion celli thickness = a 

OPQ-interference pattern 
Rap dmiorcd by the dtJkion-boundary arc shown as broken lines. 

The experimental conditions necessary to ensure a nearly constant 
value of D (viz., that c1 and c, should not be too far apart) are 

usually such that - is constant also. Then (10.15) becomes: 
dn 
dc 

....( 10.16) dn n1 - "2 --=-- 
d% 

T H E  G O U Y  INTERFERENCE METHOD 

In 1880 GoUy(16) reported a new interference phenomenon : when 
collimated light (Figure 10.6) from a horizontal slit was passed 
through a cell in which diffusion was occurring in a vertical direc- 
tion, and the beam was brought to a focus by means of a lens, an 
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interference pattern consisting of a finite number of horizontal bands 
was produced in the focal plane. The intensity of the bands is 
greatest near the optic axis  (on which the initial boundary between 
the diffusing solutions is preferably situated) ; here they are closely 
spaced. Proceeding downwards fkom the optic axis, the interference 
bands become more widely spaced and less intense, ending with an 
especially wide one with an ill-defined lower boundary. 

Qualitatively the origin of this interference pattern is easily seen: 
according to quation (10.16) the refractive index gradient in the 
cell is given by a Gaussian curve which is symmetrical about the 

Figure 10.7 

initial boundary at x = 0. At q u a l  distances x above and below 
the boundary there are, therefore, conjugate regions of q u a l  
refractive index gradient. Parallel light passing through these 
regions will be bent down to the same extent in each, since each 
element of the solution can be considered to act as a prism tapering 
upwards. The refractive index gradient at various points in the cell 
is shown in Figure 10.7. 

In Figure 10.6, the regions A and A' remote from the boundary 
have not yet experienced any concentration change; the refractive 
index at these p i t ions  is uniform, and light through A and A' is 
undeflected, coming to a focus on the optic axis 0. At the centre 
of the cell, C, the refractive index gradient has always a maximum 

dn 
given by - d# = - Light passing through C 

therefore experiences the greatest deflection, forming the lowest 
band Q of the pattern. At intermediate points B and B', the light 
is deflected downward to a focus at P. The light-path lengths SBP 
and SBP are, however, not equal: when they differ by an integral 
number p of wavelengths, the two rays reinforce and form a bright 
band, and when the path lengths differ by (p + 4) wavelengths 
they interfere and cancel giving a dark band. The path-length 
difference will obviously vary with the distance of B and B' &om 
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the optic axis C, giving rise to the aiternating system of light and 
dark bands. This band-system is shown in Figure 10.8, from a 
photograph by J. R. Hall. 
This qualitative explanation was all that was available until 1947, 

when a more complete theory of the phenomenon was given by 
KEGELES and GO STING(^'), and almost simultaneously by COWLSON 

1161 see 891 Kc 498rec: 
Figure 10.8. Go@ intcrfcrcncc pai&m. Proahced by the d i f f i n  of ca&m chlori& 
between concenkatwns of 3-48 and 3.58 molar at 25". flb times are measured from the 
establishment qf the sharp boundary. flb three-lina potlmrr at the fop of each picture are 

the rsfnmts mark 

et d. ( l8) .  An even more rigorous treatment has been given by 
GOSTING and ONSAGER(~~). These authors show that the reasoning 
based on geometric optics, in which pairs of rays through various 
parts of the cell are considered, is not quite adequate. Instead they 
use the methods of wave optics, according to which every portion 
of the wave front makes some contribution to the resultant amplitude 
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at each point in the focal plane. This leads to a slight change in the 
conditions for reinforcement and cancellation. Instead of complete 
cancellation occurring when the points B and B' are so placed that 
the light-paths SBP and SBP' differ by (p + 4) wavelengths, it is 
found to occur when they differ by very nearly (p + 3) wave- 
lengths. Similarly, maximum reinforcement occurs when the paths 
differ by very nearly (p + i) wavelengths instead ofp wavelengths. 

If the thickness of the cell along the optic axis is denoted by a, 
and the focal length of the second lens by 6, it can be shown that, 
according to geometric optics, the lowest bright band of the pattern 
has its maximum intensity at a distance C, below the centre of the 
undeviated image formed by the light passing through the unchanged 
solution (i.e., C, = OQ in Figure 20.6) and that C, is given by: 

C, = ab [(nl - nz)/(2dwT)] . . . .(10.17) 
Furthermore, the number of bands in the pattern bears a simple 
relation to the difference of refractive index, expressed as the 
number, j,, of wavelengths, A, retardation of the light passing 
through unchanged solution at A' compared with that passing 
through at A: 

. . . .(10.18) 

where a is a fraction, less than unity and m is an integer, one less 
than the number of bright bands in the pattern. Thus if the lowest 
bright band is numbered 0, the next lowest one 1, ctc., the mth band 
is the one next to the undeviated image. The main (integral) part 
of j ,  can therefore be determined by simply counting the number 
of bands in the pattern; the fractional part can be found by a 
minor modification to the apparatus as described below, so that j ,  
is known for each experiment. Photographs of the interference 
pattern are taken at known times t after the start of the diffusion, 
and the distances from the undeviated image of various minima in 
the light-intensity are measured. The wave-optical theory(17) 
shows that ifyj is the displacement of the j th minimum from the 
undeviated position, counting the lowest minimum, i.e., the one above 
the lowest bright band, as j = 0, theny, and C, are related by the 
following expression : 

where z is a dimensionless quantity given by the implicit expression: 

4% - n*> A = m + a = j ,  

ct =u#' . . . .(10.19) 

. . . . (10.20) 
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The rather clumsy-looking functionf(e) is, in fact, easily evaluated 
from tables of probability functions for a series of values of 2, and 
8’ can then be tabu!ated againstf(2) (Appendix 10.1). 

A further slight refinement(1Q) of the theory (involving the use of 
the zeros of the Airy integral) shows that the quantity (2) in the 

expression, - in (10.20) should be replaced by slightly different 

values, the difference being appreciable only for the lowest fringes 
up to about j = 5. Appendix 10.2 gives these slightly modified values. 
By the use of the tables in Appendixes 10.1 and 10.2, C, may be 

calculated fiom the measured value of the displacement yr of any 
chosen fringe (the jth) in the interference pattern. C, should be 
constant for all the fringes in the pattern and the constancy provides 
a check on the correctness of the value ofj,. It is, in fact, possible 
to find j, without using the Rayleigh interferometer modification 
of the apparatus, by counting fringes to find the integral pa3 of j,,, 
and then trying various fractional parts a [equation (10.18)] until 
a value is found which gives the best constancy for C, for fringes 
corresponding to well separated j, values. C, can also be evaluated 
by measuring the maxima instead of the minima in the light- 
intensity though these are not so readily located as minima with the 
usual design of travelling microscope. For maxima, the only 
difference in the calculation is that (j + 2) of equation (10.20) is 
replaced by (j + 4); again the Airy integral refinement gives 
slightly different values from 4 for the lowest fringes. From the 
constant value of C, for a pattern photographed at time t ,  D is 
calculated by combining ( 10.17) and ( 10.18) to give : 

j + i  
J m  

j2, b2P ... D =  -- tc: 4T . (10.21) 

The measurements are most conveniently made at the wavelength 
of the green mercury line, A = 5461 A. The distance b, the focal 
length of the second lens, must be very accurately known, and 
correct focus is critical. It is often more convenient to replace the 
two lenses of Figure 10.6 by a single lens of focal length of the order 
of 20 cm which focuses an image of the slit on to the photographic 
plate. This is placed at least a metre from the lens so that the light 
through the diffusion cell is only slightly convergent; under these 
conditions the same theory holds, but b in equation (10.21) must 
now be taken as an ‘optical distance’ from the centre of the cell to 

the photographic plate, given by b = 2 - where I is the distance 

through each medium (air, glass, thermostat-water, or solution) and 
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n is its refractive index. In  this method it is possible to fix the plate 
at a measured distance from the cell and then to focus by moving 
the lens or the source-slit through small known increments (e.g., 
0.001 in.) by means of a set of feeler gauges placed between the lens 
or slit mount and a fixed stop on the optical bench, taking a photo- 
graph at each setting; the setting which gives the sharpest image 
of the slit is correct. 

Various methods are employed for forming the sharp boundary 
in the cell. A conventional Tiselius electrophoresis cell may be 

Figure 10.9. From COSTING, L. J., 
HANSON, E. M., KEGELES, G. and 
MORRIS, M. S., Rev. Sci. Zwtrwn., 

20 (1949) 209 

used(20’; this gives a sheared boundary which has to be displaced 
so as to bring it into view, the initial position being obscured by the 
sliding faces (Figure 10.9). The boundary is disturbed by shifting 
and it is desirable to sharpen it again by drawing the disturbed 
solution out through a line capillary tube. In another system(l** 
the boundary is formed by allowing the two solutions to flow out 
through a horizontal slit in the wall of the cell a t  the level of the 
optic axis and then smoothly stopping the flow; th is  avoids the need 
for lubricated sliding surfaces with the consequent risks of leakage 
arid grease contamination. A cell employing this system is shown 
in Figure 10.10. 
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Freedom fiom vibration, and adequate thermostating, are im- 
portant requirements of the Goiiy interference method, as of all 
methods in which the diffusion column is stabilized only by gravity. 

Figure 10.10. Cell for Go@ da&ioine&r. (a) Assmblcd. (b)  &fi&&d. From HALL, 
J. R., WISHAW, B. F. ~ S T O K E S ,  R. H.,J. A m .  c h .  Soc., 75 (1953) 1556 

R,-reservoir for dilute solution 
&-reservoir for concentrated solution 
A-ditliuion channel 

7 4 t  tube for solution from slits 
D-reference-channel, filled with homogeneous concentrated solution for 

s--sharpening slit 

light fonning reference marks 
o-optical flats 
C-collccthg-channel for solution from S 
If-hole admitting concentrated solution to bottom of channel A 
P-hole admitting dilute solution to top of channel A 
V-gate-valve for doaing H during filling of cell. 

I n  use, a thennostated water * ket surrounds the whole tftha cell except the outer faw of 
thc kuo OpLica?&, to which it is Jtted b rubber gaskets 

For work within about 10" of room temperature it has been found 
sufficient(18*L1) to thermostat the cell by means of a jacket sur- 
rounding all of the cell except the outer faces of the optical flats, 
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to which it is fitted by rubber gaskets; for more extreme tempera- 
tures, the cell must be completely immersed, which requires a 
thermostat with optically flat windows, or one in which the windows 
are formed by the lenses of the optical system. 

In the interference pattern, the undeviated slit image is of very 
high intensity relative to the rest of the pattern, especially at short 
times when most of the light passes through d o r m  solution; it is 
consequently over-exposed as appears from Figure 10.8, and cannot 
be located accurately. Its intensity may be reduced by suitably 
placed filters at the plate or by specially shaped masks at the cell, 
but a more satisfactory way of locating it(l*) is to form on the plate 
a reference mark lying a few millimetres above the undeviated 
image. The distance between this mark and the undeviated image 
can be accurately measured, and the reference mark is then used 
as a base line for the measurements of fringe positions. This 
reference mark is most conveniently made by placing at the cell a 
double stop consisting of two rectangular holes about one to two 
millimetres square and the same distance vertically apart. Light 
from the source-slit passes through this double stop, and through 
the thermostat-water or a channel in the cell which always contains 
uniform solution, and is then displaced upwards by passing through 
a tilted fixed optical flat. A Rayleigh interference pattern is thus 
formed at the plate, as shown in Figure 10.8, at a distance above the 
undeviated slit image which is determined by the angle and thick- 
ness of the tilted flat. While the main diffusion channel is filled 
with uniform solution, a similar double stop is placed over it also, 
and a similar Rayleigh pattern is formed at the plate, with its 
central fringe exactly where the undeviated slit image will be in the 
diffusion photographs. These two interference patterns are very well 
defined and can be located with high accuracy. During the diffusion 
exposures, the double stop is removed from the main channel, but 
the other one forming the reference mark remains in place. 

The same system of double stops can be used"*) to determine the 
fractional part a of j, (equation 10.18). For this purpose the 
double stops are placed over the diffusion channel while a sharp 
boundary is maintained between them, q., by flowing the liquids 
out of the lateral sharpening-slit. Thus light from one of the rect- 
angular holes passes through solution of refractive index nl, and that 
from the other through solution of refractive index n,. If the light- 
paths through the solutions differ by an integral number of wave- 
lengths (i.e., ifj, is integral) the pattern is identical in appearance 
and position with that formed when uniform solution fills the whole 
diffusion-channel; but ifj, is not integral, the pattern changes in 
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appearance and psition. The relative intensities of the lines alter, 
but the spscings between nlinima in the light intensity remain the 
same. The intensity-diagrams for various fractional values of a are 

Oisfonce fmm optic oxis Disfance from optic axis 

Diafame fmm opfk oxia 

a a h b k  stop consisting dtuw slots dwidrlr d upororsd 

0isfm.v fm qfic axm 
Figure 10.11. Theoretical light--hibuth curves in the RayLeigh Werme 
patterm f m d  a dtstane d. 
The quantio a ir the/roctionnl part ofthe number o wavelengths da@mne in the light=bath 

for the two slots (equation 10.18). The symmetnu&pattern A ir f d  when this light+& 
d@rme is zero or an integral number wavelengths, as, fir instance, in the upper (r&me 

mark) pattam in Figure 10.8. 
The locallion dthe optic axis in each pattern i s  shown by the small arrow-head, and points lo 
the righl of this are below the optic axis in the actual patterm pbtogr@hed. 

( C m  computed from fonnurcU in T&~CW 18) 

shown in Figure 10.11; it will be seen that a = 0.5 gives a sym- 
metrical four-line pattern centred on the optic axis, while a < 0.5 
gives unsymmetrical patterns in which the nearest minimum to the 
optic axis is above it, and a > 0.5 gives similar patterns reflected in 
the optic axis. The theory shows(1*) that ifS be the spacing between 
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minima in the Rayleigh pattern and J the distance from the nearest 
minimum to the optic axis, then: 

S 
a = 0.5 if this minimum lies above the optic axis and 

a = 0.5 + if it lies below the optic axis. The counting of fringes 

- 3  

3 
S 

to obtain the integral part of j,,, can usually be done satisfactorily 
under a travelling microscope, but occasionally it is in doubt within 
one integer due to over-exposure near the optic axis: this doubt is 
easily settled by the requirement that C, should be constant for all 
fringes of the Goiiy pattern. 
No cell design can, in practice, give a mathematically sharp 

boundary at zero time; with the best designs, the degree of initial 
blurring of the boundary is equivalent to what would be reached 
in a time of five to fifteen seconds after the formation of an ideal 
boundary. This 'zero-time correction', At, depends on the density- 
gradient in the solution and on the diffusion coefficient, decreasing 
as these increase. It is allowed for by making a series of exposures 
at known times, e.g., 5, 10, 20, 30 min. after the start of the experi- 
ment. The times may be recorded by photographing the dial of a 
stopwatch which is started when the boundary is formed(21), the 
exposure being controlled by the movement of the same shutter 
which exposes the fringe patterns; or by moving the plate mechani- 
cally at a measured rate"*). The diffusion coefficient D given by 
equation (10.2 1) is then not constant for the several exposures, since 
the time t of equation (10.21) should be replaced by t + At. How- 

ever, by plotting the D values for different times against - a straight 

line of slope DAt is obtained, which extrapolates to the true value 

of D at - = 0. With a little experience it becomes possible to start 

the stop-watch approximately At seconds before the start of the 
diffusion, thus making the remaining correction very small and the 
extrapolation graph practically horizontal. 

The Goiiy method is probably the most exact of those at present 
available for measuring diffusion coefficients. It is, however, 
restricted to concentrations large enough to give a reasonable 
number of fringes in the interference pattern; at least 30 are desir- 
able for 0.1 per cent accuracy. With special cell designs it is possible 
to obtain results accurate to 1 per cent with as few as 10  bands'^^', 
but even this corresponds for electrolyte solutions to a concentration- 
difference between the upper and lower solutions of the order of 
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0-02 M in a cell of 2 cm length along the light-path. For the study 
of dilute electrolyte solutions the Goiiy method must therefore give 
way to Harned’s conductimetric method. Another limitation is that 
the solution must not absorb light of the wavelength used. 

While the Goiiy method has in recent years become preferred among 
the optical methods, some earlier methods are of great interest, and 
retain considerable importance in the study of colloids. 

In the Lamm scale method(2Y’, a transparent scale ruled with 
horizontal lines (spaced, say, 0.2 mm apart) is illuminated by 
monochromatic light, and an image of it is focused on to a photo- 
graphic plate by means of a long-focus lens. The diffusion cell is 
placed between the scale and the lens, the optical distance between 
the scale and the centre of the cell being b. The length of the cell 
along the light-path is denoted by a. When the cell is filled with 
uniform solution, the image of the scale formed on the plate is 
undistorted but magnified by a factor C depending on the relative 
positions of lens, scale and plate. When a diffusion-boundary is 
present in the cell, however, the light passing through regions of 
varying refractive index will be deflected downwards by amounts 
proportional to the refractive index gradient, and the image of the 
scale will be distorted, the scale-lines being displaced from their 
normal positions. Geometric optics show that the displacement of 
a scale-line is given by: 

OTHER OPTICAL METHODS 

dn 
dx 
dn 
dx 

< = G a b -  . . . . (10.22) 

and the refractive index gradient - at a distance x from the 
boundary by: . .  

dn n1 - n, 
dx 2 d ~ D t  
-=- -exp(-&) . . . . (10.23) 

In these expressions, nl, n,, x, D, t have the same meanings as in 
the theory of the Goiiy method. From the photographic measure- 

ments, values of - at various values of x can be computed. I t  is 

sufficient to know - in arbitrary units, since the constant of pro- 

portionality a between - and - is determined during the calcula- 
tion, as follows: 

Figure 10.12 represents the graph of a - versus x which can be 

dc 
dx 

dc 
d# 

dc dn 
dx dx 

dc 
dx 
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plotted from the measurements at a time 1 after the start of the 
diffusion process. If D is independent of c, this graph is the Gaussian 
curve (10.23) ; if D varies with c it is more or less skewed. In the 
latter case equation (10.23) no longer holds, but equation (10.22) 

is still valid, so that the form of the curve of - versus x can still be 

obtained. For this general case(-), equation (2.54) reduces by the 

dc 
dx 

Figzue 10. I2 

substitutiony = x P I *  (applicable under the boundary conditions for 
these experiments) to: 

y - =  dc -2&$) d 
dY 

. . . . (10.24) 

. . . . (10.25) 
c = c ,  at y = - a  

c = c I  at y = + a  

It follows that at a fixed time t ,  

r = t'l*y 

The nth moment p,, of the curve in Figurc 10.12 about the vertical 
axis through x = 0 is defined by: 

. . . . (10.26) 
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From equations (10.24), (10.25) and (10.26) it is easily shown that: 

Po = - - c*> ’I 
. . . (10.27) 

so that 

PelPo = - 2t $”. dc = 26t .... 
C l  - ce c, 

(10.28) 

where is the average value with respect to concentration of the 
diffusion coefficient over the concentration range of the experiment. 
In the ideal case where D is constant, the same results of course 
hold, but it may be more convenient to calculate D from the height 
and area of the curve, or from its points of inflection, because these 
characteristics are simply related to the moments for a true Gaussian 
curve. The calculation given implies that the position corresponding 
to x = 0, the initial boundary, is accurately known from the photo- 
graph; this is not so in practice, and the origin of x is actually 
located by means of the property p1 = 0 (equation 10.27), i.e., it 
is taken vertically below the centroid of the curve in Figure 10.12. 
The zero-th and second moments are then calculated with this 
origin. 

In addition to the Lamm scale method, there are several other 
ways of obtaining the refractive index-gradient curve, of which the 
chief are the L ~ N O S W O R T H ~ ~ ~ )  ‘schlieren scanning’ method and 
PHIL POT(^') ‘diagonal schlieren’ method. These methods are 
important in the study of colloids, but have found little application 
in the field of simple electrolytes; for this reason and because of the 
complexity of the optical systems, they will not be described here. 
Other recent developments include the ‘integral fringe’ method(*6), 
by which a photographic record of the concentration rather than its 
gradient is obtained; this is valuable in cases where the diffusion 
coefficient varies strongly with concentration, as with some high 
molecular weight solutes. 

An extremely promising new optical method is described by 
BRYNODAHL(~*), whose apparatus incorporates a Savart plate which 
produces birefringent interferences. This has the effect of ampliqing 
the refractive index differences in the diffusing solution, SO that 
extremely small concentration differences between the upper and 
lower parts of the diffusion-cell may be used. For example, he 
reports the result D = (5.229 f 0.01 1) x cm2 set" for sucrose 
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at 25”, for diffusion into water from a solution containing only 
0.01 12 per cent of sucrose by weight. This is in excellent agreement 
with the result obtained by GOSTING and MORRIS(’*) by extrapola- 
tion to zero concentration of their Gouy data, viz., 5.226 x 10-6 
cm2 sec-l; the Gouy method however would be quite impracticable 
for direct use at this low concentration. The method will obviously 
be of great value in the study of diffusion in dilute electrolytes. 
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THE THEORY OF DIFFUSION; 
CONDUCTANCE AND DIFFUSION 
IN RELATION TO VISCOSITY IN 

CONCENTRATED SOLUTIONS 

T A B L E S  OF DIFFUSION COEFFICIENTS OF E L E C T R O L Y T E  
SOLUTIONS 

APPENDICES 1 1.1 and 1 1.2 present values of the diffusion coefficients 
of a number of aqueous electrolytes as determined by the three 
most reliable of the modern methods, vie., the conductirnetric 
method of Harned, the Goiiy interference method and the magnetic- 
ally-stirred diaphragm-cell method. The first two of these are 
absolute methods; the conductimetric method has in most cases 
been restricted to solutions below 0.01 My but for potassium 
chloride has been used up to 0.5 M. The Goiiy method is at its 
best for solutions above 0.05 My and in the case of potassium 
chloride in the range 0.1-0.5 M there is remarkably good agree- 
ment with the conductimetric method. The diaphragm-cell method 
is a relative one, and its calibration has been based on the absolute 
data for potassium chloride; results from it for potassium chloride 
agree with those from the absolute methods within about 0.2 per 
cent at other concentrations than the one used for calibration. 
However, since the diaphragm-cell gives an integral diffusion 
coefficient, there is some loss of accuracy in converting this to a 
differential diffusion coefficient : the differential diffusion coeffici- 
ents derived from the original magnetically-stirred diaphragm-cell 
data for potassium chloride in the range 0.1 N-4N showed an 
average deviation of approximately 0.5 per cent from later results 
by the Goiiy method, most of the discrepancy arising from errors 
in two points near the minimum of the integral diffusion coefficient 
curve, which had affected the differential results over an appreciable 
range. In general, the accuracy of the differential diffusion coeffi- 
cients listed may be taken as 0.2 per cent or better for the Goiiy 
and conductimetric methods, and 0.3 per cent for the diaphragm- 
cell method. 

284 



1HEORETICAL DISCUSSION OF DIFFUSION 

THEORETICAL DISCUSSION OF DIFFUSION 

Both diffusion and electrical conductance in electrolyte solutions 
involve the motion of ions and it is therefore to be expected that a 
relation will wrist between the diffusion coefficient of an electrolyte 
and its equivalent conductivity. The most important differences 
between the two processes are (4) in conduction positive and nega- 
tive ions move in opposite directions, whilst in diffusion they move 
in the same direction, and (6)  in conduction, at the limit of extreme 
dilution, the various ions of an electrolyte move independently of 
one another, whereas in diffusion they are obliged to move at equal 
speeds, since otherwise a separation of electrical charge in the 
solution would result. Both processes can be regarded as deriving 
from small perturbations of the ordinary molecular motions; in 
conduction, the perturbing influence is the external electric field, 
and in diffusion, the concentration gradient. In Nernst's original 
derivation(l) of the relation between the two effects, the osmotic 
pressure was given the status of a driving force for diffusion, analog- 
ous to the electrical field in conduction. Though this approach 
leads to the correct result in the limiting case of inlinite dilution, 
modern views on osmotic pressure do not favour regarding it as an 
actual pressure in the solution. Instead, the gradient of chemical 
potential in the solution, which has the dimensions of a force per 
unit quantity of solute, is treated as the virtual force producing 
diffusion; th is  course was first suggested by GXBBS~~) and later by 
GUGGENHEIM(~), HARTLEY(*) and by ONSAGER and FUOSS(~). It is by 
no means easy to justify the use of the free energy, a quantity usually 
relevant to systems in equilibrium, in dealing with an irreversible 
process such as diffusion; thus it is well known that in general the 
rate of a chemical reaction is not directly related to the free energy 
change during the reaction. The step of equating the free energy 
change, occurring when the solution mixes by diffusion, with the 
work done by the diffusing particles against the resistance of the 
medium therefore requires careful scrutiny; this it has received at 
the hands of ONSAGER(~), DE GROOT") and others. Here we propose 
to accept its validity without further discussion, merely noting that 
diffusion is a slow process in which departures from equilibrium are 
small compared with chemical processes, and that in these circum- 
stances the whole of the free energy change can be taken as energy 
dissipated by the viscous forces. 

Each ion of the Musing electrolyte can be regarded as moving 
under the influence of two forces, (u) the gradient of chemical 
potential for that ionic species, and (b) an electrical field produced 
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11 THE THEORY OF DIFFUSION OF ELECTROLYTES 

by the motion of oppositely charged ions. The more mobile ions 
will tend to diffuse faster than the leu mobile ones, but by doing 
so they will create on a microscopic scale a charge separation or 
gradient of electric potential in the solution. This will have the 
effect of increasing the speed of the slower ion and decreasing that 
of the faster; the resultant speeds of both must finally be equal, 
since it is an experimental fact that a macroscopic charge separation 
does not occur. 

DIFFUSION O F  A SINGLE ELECTROLYTE: T H E  
NERNST-HARTLEY RELATION 

The diffusion of a single electrolyte is especially amenable to exact 
theoretical treatment, since the condition of electrical neutrality 
requires that anions and cations must move at the same speed. 
Where more than two ionic species are present the situation becomes 
more complex, since there is an infinite number of ways of satisfying 
the electrical neutrality condition; general equations can be 
derived, but not necessarily solved for such cases. 

For a single electrolyte, one ‘molecule’ of which gives y1 cations 
of algebraic valency zl and Y,  anions of algebraic valency z2, the 
following argument is used. The chemical potentials 0, and Q, of 
the cations and anions may be considered separately (although they 
are not separately measurable) provided that the final equations 
contain only the chemical potential of the solute as a whole, 

. . . (2.7) 

The forces on single ions due to the gradient of chemical potential 
are therefore : 

I ao, I a q  
N ax N ax and --- --- 

respectively where N is the Avogadro number. The negative sign 
is used since the ionic motion is down the free energy gradient. 
The effect arising from the unequal mobilities of the ions may be 
represented as an electrical field of intensity E, which exerts on each 
ion an additional force given by zleE and z2eE respectively. The 
total forces are therefore: 

286 



DIFFUSION OF A SINGLE ELECTROLYTE 

These forces, acting respectively on ions of absolute mobilities u1 
and u,, are required to produce equal velocities v given by: 

1 ac, 1 ao, 
V = % (- x + zleE) = u, (- + r,eE) 

From these equations e E  can be eliminated giving: 

whence, using the condition of electrical neutrality : 

one obtains: 
v121 + v,er = 0 

1 UlU2 

NVlU2 + V#l 
v =  -- 

Now let t be the concentration of solute in moles per unit volume 
at the point considered. Then the flux of solute is: 

c aoB& J = c v =  - -  u1u2 . - . - - 
vlt12 + v p ,  N ac ax 

But the flux also defines the diffusion coefficient D in terms of the 
concentration gradient: 

ac 
ax J =  -D- 

Therefore D is given by: 
u1u2 aoB D =  vlu2 + v#l N a In c . . . .(11.1) 

Also, from the definition of the mean molar activity coefficient, 
the differential in equation (1 1.1) is: 

and finally the absolute ionic mobilities u may be expressed in terms 
of the limiting equivalent conductivities, 10, by equation (2.46), 
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These formulae may be called the Nernst-Hartley relation. The 

limiting value of D at infinite dilution, where - In'* --+ 0, is given 
bv : d l n c  

an expression due to Nernst. Equivalent forms of equation (1 1.3) 
obtained by using the condition of electrical neutrality vllzll = 
v 2 1 4  and the definition of the transport numbers tf = At/(At + 4) 
= Af/A@ are: 

1.5) 

1.6) 

Of D = Do( 1 + d 1nyJd In c) . . . . ( I  1.7) 

T H E  INTERPRETATION OF DIFFUSION COEFFICIENTS 

DiIutG Solutions 
At high concentrations consideration must be given to the motion 
of the solvent molecules as well as those of the solute: even for non- 
electrolytes this involves some difficult concepts, and the situation 
for concentrated electrolytes is a very complex one. In very dilute 
solutions, however, the motion of the solvent can be disregarded, 
and the experimental diffusion coefficients can be regarded as 
describing the motion of the solute particles through a stationary 
solvent. 

da) is a separately The activity factor, f = (1 + c 

available experimental quantity; interest therefore centres, for 
dilute solutions, on whether the mobility factor in equation (1 1.3) : 

d In a 
d In c dc 

is applicable a t  finite concentrations, and if not, what corrections 
should be applied to it. This question can be examined experi- 
mentally by dividing the observed D values by the quantity 

(1 + cd+), giving a quantity proportional to the actual 
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mobility of the diffusing solute, which can be compared with the 
limiting value. In Tubk 11.1 this comparison is made for several 
typical electrolytes in dilute solution at 25". 

Tabk 11.1 

1.335 
1.249 
1.225 
1.201 
1.179 - - 

I D  
1.335 
1.320 
1-319 
1.310 
1.310 - - 

O* 
0.001 
0.002 
0-003 
0.005 
0.007 
0.010 

1.993 
1.964 
1.954 
1.945 
1.934 
1.925 
1.917 

1993 
1.998 
2.001 
2.001 

LaCI, 

1.366 1.366 
1.342 1.366 
1.335 1.366 
1.330 1.367 

D 

1.293 
1.175 
1.145 
1.126 
1.105 
1 .w - 

-- 
W Y )  

1.293 
1.307 
1.316 
1-325 
1 *33 1 
1.327 - 

The D valuer 81 c - 0 arc Nuns1 limiting values calculated by equalion ( I  1.4), which 81 25. 

The table shows that the variation of the diffusion coefficient D 
with concentration is in each case many times greater than that of 

the quantity D /( 1 + G?), so that the greater part of the 

change in D may be attributed to the non-ideality in thermodynamic 

behaviour which is allowed for by the factor ( I  + G 7 . It 

remains to consider ,whether the residual variation shown in the 
third column for each solute is experimentally significant. The 
accuracy of the diffusion coefficients themselves is about 0.2 per 

cent; and the factor 1 + c - can, for the four electrolytes 

listed, be computed with similar accuracy from the activity coeffi- 
cient data; we must conclude, therefore, that in general the actual 
mobility of the Mising ions does vary slightly with concentration. 
In the case of potassium chloride, it increases by approximately 
0.8% per cent between 0 and 0.01 molar; for lithium chloride it is 
constant within experimental error; for calcium chloride it de- 
creases by approximately 2 per cent between 0 and 0.005 molar, 
and for lanthanum chloride it increases by approximately 2.5 per 
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11 THE THEORY OF DIPPUSTON OF ELECTROLYTES 

cent in the Same concentration range. These small but real varia- 
tions, occurring as they do at very low concentrations, suggest the 
possibility that they are due to interionic effects; and the manner 
in which they differ from salt to salt indicates that the theory which 
will adequately explain them will be of a complicated nature. 

The form of the Nernst-Hartley expression (1 1.3) suggests the 
course of substituting, for finite concentrations, the actual ionic 
mobilities A1 and 1, for the limiting values 19 and 1:. The Nernst 
factor may be rewritten as: 

where t t  and t t  are the limiting transport numbers of the anion and 
cation and AQ is the limiting equivalent conductivity of the salt. 

The corresponding expression for finite concentrations is =- 
the transport number product f , t ,  varies little with concentration, 
but A decreases by amounts of the order of 5 per cent to 20 per cent 
in the concentration range 0 to 0.01 molar for the salts of Tubk 22.1. 
It is clear, therefore, that the use of the actual ionic equivalent 
conductivities instead of the limiting values would severely over- 
correct, as was pointed out by HARTLEY'~); indeed, for potassium 
and lanthanum chlorides the effect would be in the wrong direction. 
The position is, then, that the mobility of the ions in diffusion varies 
much less with concentration than does their mobility in electrolytic 
conduction; and while the latter always decreases with increasing 
concentration, the former may increase, decrease or remain con- 
stant, depending on the salt considered. This difference between 
the two types of transport process is due to the fact that in diffusion 
the ions move in the same direction, while in conduction oppositely 
charged ions move in opposite directions. The mutual attraction 
of the ions in the latter case will clearly have the effect of retarding 
the motion of both species, whereas in diffusion the slower ions are 
accelerated and the faster ones retarded. The effects of the ionic 
interactions on conductance have been dealt with (Chapter 7) in 
term of a relaxation process and an electrophoretic effect, the 
former arisiig from the disturbance of the symmetrical arrangement 
of the ions in the solution, and the latter from a transfer of force 
between the moving ions UM the solvent. In the diffusion of a single 
electrolyte, it can be shown that the symmetry of the ionic distribu- 
tion is not disturbed so that the relaxation-effect is absent; the 
primary result of ionic interactions in this case is the harmonic 
averaging of the ionic speeds as given by the Nernst expression, but 
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THE ELECTROPHORETIC EFFECT IN DIFFUSION 

there is also a small electrophoretic effect, which will now be 
discussed along the lines laid down by ONSAGER and FuosdS), but 
with some generalization(*). 

T H E  E L E C T R O P H O R E T I C  EFFECT IN DIFFUSION 

Our discussion, as in the case of the conductivity problem, will be 
restricted to the case of a single electrolyte, the cation and anion 
being denoted by subscripts 1 and 2 respectively. In Chapter 7 a 
general equation (7.7) was derived for the electrophoretic contribu- 
tion to the motion of an ion in such a solution, in terms of the 
unspecified forces k, and ka causing the motion. 

In the case of diffusion, these forces can conveniently be evaluated 
in terms of the velocity of the ions and their absolute mobilities. 
Because the solution must remain electrically neutral a t  all points, 
both ions must diffuse with the same final velocity v. Therefore by 
the definition of the absolute mobility, we may write: 

kl = ( F 2 / N )  IZ1 lV/ (4A0>  .... (11.8) 
k2 = (F2/N)I~21v/(t tAol . . . .(11.9) 

Equation (7.7) then gives: 
zl” z$& 

@(t l  - 23 
z?z! . ZP 

= 6, . . . .(11.10) 
t -  + t q v  -= ( F2/N)ZAn 

V 

;-+--. 
ttAo ttAo 

V @(el - 22) 
= d2 . . . .(11.11) - =  (F2 /N)XA,  

(6 ,  and 62 are merely convenient abbreviations). 
Now this means that a force which would produce a velocity v 

in the absence of the electrophoretic effect will actually produce 
velocities v + Av, and v + Av,. Provided Avl and Atla are small 
compared to v, i.e., that 81 and 83 are small compared to unity, we 
can therefore treat the electrophoretic effect in diffusion by in- 
creasing the mobilities of the ions by factors (1 + 8,) and (1 + 63 
respectively. 

In the simple Nernst-Hartley treatment which leads to the 

formula D = DO the mobilities appear in the form 

of the factor - ‘I’ We thidore replace this factor by: y + 4. 
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1 1  THE THEORY OF DIFFUSION OF ELECTROLYTES 

which, on putting A! = ttA0, A! = ttA0 and expanding in series in 
6, and as as far as the first powers, becomes: 

On inserting the values of a1 and 4 according to equation (1 1.1 1) 
and simplitjring, this becomes: 

We now replace the Nernst-Hartley expression (1 1.5) by: 

from which we obtain, since z1 - 2s = 1211 + 1221: 

D = (1 + c?) (Do + CA,) . . . .(11.16) 

where g0 is the Nernst limiting value of the diffusion coefficient 

and the electrophoretic terms An are given by: 

. . .(11.17) 

The coefficients A, are functions of the dielectric constant and 
viscosity of the solvent, the temperature and the dimensionless 
concentration-dependent quantity KU and are defined in equation 
(7.8). 

I t  will be recalled from Chapter 7 that this expression for the 
electrophoretic effect has been derived on the basis of a Boltzmann 
distribution function for the ions, but has employed the Debye- 
Hilckel expression for the potential (Eq. 4.13). The latter, however, 
is actually based on the distribution function obtained by taking 
only the first power term of the expansion of the exponential 
Boltzmann function, except for symmetrical electrolytes where the 

square term, in (s)2, can also justifiably be included. This 
means that to be consistent we should accept in applying equations 
(11.16) and (11.17) onlythefirst-order electrophoretic term (n = l), 
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THE ELECTROPHORETIC EFFECT IN DIFFUSION 

except in the case of symmetrical electrolytes where the second 
order term (n = 2) is acceptable. It is therefore convenient to 
consider the cases of symmetrical and unsymmetrical valency types 
separately. Here we depart from the treatment given by ONSAGER 
and Fuoss(~), who proposed that in all cases equation ( 1 1.16) should 
be taken as far as the second-order term A* 

Symmctricar Tvpcs 
Here we put Izll = leal = c. The factor (eft: + eztt)* appearing 

in & then reduces to Izl"(tt - t!)* for odd n, md Ic12* for even n. 
Thus, in contrast to the case of conduction, no terms vanish identi- 
cally; but in the special case where the ions have nearly equal 
mobilities (to" w c), all the oddsrder terms will be negligible. The 
condition is realized for aqueous potassium chloride, bromide or 
iodide solutions. The second-order term can never vanish, and is 
always positive since A, is positive for even n. Upon substituting 
n = 1 and n = 2 in the general formula for A,, we have, 

A*=- -  1 2 q  kT EkT e2 (KU) * ( eU) *Ei( 2 K U )  ( !$) * 
The function of (KU) appearing in A*: 

is given in Tabk 7.1 where highersrder functions of the same type are 
also tabulated. In practice we shall be interested in the application 
of these formulae to 1 : 1 electrolytes at 25' in water, when they 
reduce to : 

. . . .(11.18) K')l A1 = - 8.07 x lO-e(t: - t!)Wc/(l + 
A* = + 8.77 x l O - * V s ( ~ ~ ) / ~ 2  

where c is expressed in mole/l and u in cm. 

Unrymmctrical Tj$es 

the firstsrder electrophoretic term (n = 1) which gives: 
Here the requirements of self-consistency limit us to taking only 
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reducing for aqueous solutions at 25O to: 

. . . .(11.20) 
the ionic strength I being computed on the molell scale and a being 
measured in cm. The higher-order terms may of course be evalu- 
ated; STOKES(~) and AD AM SON'^) found that, in contrast to the case 
of I : 1 electrolytes, they do not converge satisfactorily, terms as 
high as the Mth order being comparable to the first-order term. 
DYE and SPEDDING(~~) have in effect evaluated the series CA,, to 
infinity by numerical integration; though this overcomes the diffi- 
culty of the slow convergence, it is doubtful if the results are applic- 
able since the theory is self-consistent only as far as the first-order 
terms for unsymmetrical electrolytes. We therefore proceed to 
examine the experimental data on the basis of the equations: 

D = (00 + A~ + A,) ( I  +cdG In?) . . . . (1 1.21) 

for symmetrical electrolytes, and 

. . . .(11.22) D = ( o O + A l ) ( l + C T )  d h Y  

for unsymmetrical ones. ONSAGER and Fuoss(5)  pro@ the use 
of equation (11.21) for all cases, and (11.21) is known as the 
Onsager-Fuoss expression. 

TESTS OF T H E  T H E O R Y  OF T H E  ELECTROPHORETIC 
EFFECT IN DIFFUSION 

It  has been shown earlier that one test of the theory of the electro- 
phoretic effect is provided. by the variation of transport numbers 
with concentration; in that case the relaxation effect does not 
enter the final equations because it affects the velocity of both ions 
in the same proportion. In the diffusion of a single electrolyte, the 
relaxation effect is also absent, for the more physical reason that 
there is no mean motion of ions relative to one another, owing to 
the necessity of preserving electrical neutrality at all points. The 
testing of the theoretical equations for the electrophoretic dfect in 
diffusion is, however, less straighdbrward, since the diffusion 
coefficient depends also on the concentration gradient of the free 
energy. I t  would be possible to compute this gradient separately 
from the theory, combine this with the equation for the electro- 
phoretic effect and test the resulting expression for D directly 
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However, one would then not know whether deviations from the 
theory were attributable to failure of the electrophoretic or of the 
free energy portion of the calculation. It is therefore more con- 
venient to use experimentally determined values of the free energy 
gradient, obtainable from activity coefficient data; but unless these 
are of high precision, the small electrophoretic effect may be 
masked. Furthermore, the tests should be confined to fairly dilute 
solutions, since diffusion in more concentrated solutions involves 
further considerations of viscosity, hydration and volume-effects. 
The most suitable diffusion data are thus those obtained by Harned's 
conductimetric method, and given in Appendix 11 . I  ; but un- 
fortunately accurate activity coefficient data are not available for 
all of the salts at the concentrations in question (< 0.01 M). 

DILUTE 1 : 1 ELECTROLYTES 

For potassium and sodium chlorides, reliable activity coefficients 
below 0.01 M have been obtained from cells with transport and 
moving-boundary transport numbers, with good agreement between 
independent workers. For lithium chloride, the activity coefficients 
at 0' obtained by the freezing-point method(11) may be used, since 
the corrections to 25" at these low concentrations are certain to be 

small; the resulting values of the factor (1 + c 'A) dc differ by 
less than 0.1 per cent from those obtained by extrapolating the 25" 
data available from vapour pressures above 0.1 My by means of a 
Debye-Hilckel equation of the type given in equation (9.1 1). For 
these three electrolytes, therefore, the data are adequate to test the 

theory at low concentrations. The values of D / ( I  + C + )  

which contain the expnimental quantities, have been given in Table 
11.1. We now require to compute the electrophoretic corrections 
A1 and Ag of equations ( I  1.21) and (1 1.18). These are functions of 
both concentration and ion size, and the firstsrder term A1 also 
involves the factor (tf - tb2. Figure 11.1 shows the form of the terms 
for 1 : 1 electrolytes at 25' in water, for ion sizes of 3.6 and 5 A, 
which are about the upper and lower limits of ionic diameters 
encountered with simple non-associated electrolytes. It will be seen 
that At is much more sensitive to ion size than A1 and that hth 
change only slowly with concentration above one molar. The 
factor (t! - tt)* has the following values at 25': HCl, 0.4115; 
HBr, 0.4032; LiCl, 0.1072; LiBr, 0.1141; NaCI, 04430; NaBr. 
0.0479; NaI, 0.0441; KCI, KBr, KI < 0.001. 
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Since the diffusion coefficients are of the order of 2 x 10-5 cm2 
sec-l, this means that Al is negligible for the potassium halides but 
affects the third or fourth significant figure in the other cases. 
Below 0.01 molar, the value of u used will not be very critical, but 
at higher concentrations it will make a substantial difference 

vc - 
Figure 11.1. De@ndena of the firJL- rmd second-or& elcclrophmcric conations A, 

and A, on conantration and wn-Size. (Aqueous I : 1 elctrroryIcz at 25') 

especially in At. We use here the u values which have been found 
to give a satisfactory account of the activity coefficient data (see 
Tubk 9.5). The quantity (DO + Al + A,) is given at a few con- 
centrations below 0.01 molar in Table 11.2, together with the u 
value used in its computation; the value found experimentally, 

D / (  I + c y) from Tubk 11.1 is included for comparison. 

Though the electrophoretic effects in this concentration range are 
small, the theory gives fair agreement with observation. The virtual 
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comtancy of the calculated mobility for lithium chloride arises from 
the cancellation of A, and A,; for potassium chloride the small 
increase with concentration arises from A,alone, A, being negligible; 
in sodium chloride A, is somewhat larger numerically than Al. 
G U G G E N H E I ~ ~ ~ )  has pointed out in a more detailed analysis of the 
data for sodium chloride that the electrophoretic effects are not as 
great as the random experimental errors, a fact which is masked in 
Tuble 11.2 by the presentation of smoothed values in the columns 
headed 'obs.' Nevertheless the extent of agreement provides some 

Table 11.2 

Values qf 106(DO + A1 + Ar)/(cm* sec-l) at 25" 

LiCI (4.32A) ~ I NaCl(3WA) I KCI (3.63A) 

0 1.366 (1.366) 1.610 (1.610) 1.993 (1.993) 
0.001 I 1-366 I 1.366 I 1.611 I 1.611 I 1-995 1 1.998 

l.!?Mi 1 .s 1.612 1613 1.996 2*001 

evidence in favour of the theory of the electrophoretic effect. Better 
support is found in the theory of conductance, where the electro- 
phoretic effect is much larger since the ions move in opposite direc- 
tions. In the particular case of potassium chloride, the Onsager- 
Fuoss expression 11.21 holds even at half-molar concentration, but 
this is a fortunate coincidence, attributable mainly to the fact that 
the ions are little hydrated and the viscosity little different from 
that of water. In other cases the calculated mobilities fall increas- 
ingly above the observed values as the concentration is increased. 
This cannot be attributed to the failure of the theory of the electro- 
phoretic effect; it is due rather to the neglect of other effects, which 
are discussed later in this chapter. 

HIGHER SYMMETRICAL VALENCY T Y P E S  

With salts of higher valency type than uni-univalent the theory 
encounters a number of difficulties which are at present only partly 
solved. With symmetrical valency types of double or higher charge, 
an appreciable fraction of the ions are present as closely associated 
pairs. Zinc and magnesium sulphates have been studied up to 
0-005 molar by HARNED'S sch001(1~), who find that the observed 
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values in this region are up to I0 per cent higher than the predictions 
of the equation : 

D =  (Do + A1 + A,) . . . .(11.21) 

when a value of u = 3.64A is used in the computation of the 
electrophoretic terms. They have also shown that if the degree of 
ion-pair formation computed from the conductivity data is taken 
into account, and the ion-pair is assumed to have a constant 
mobility equal to that of an ion for which 20 = 44 (for ZnSO,) or 
46 (for MgSO,), the observed and calculated values can be brought 
into satisfactory agreement. The ratio D obs./D calc. (where D calc. 
is the value obtained by equation (1 1.21) for a fully ionized 2 : 2 
electrolyte) is shown to be given by: 

D obs./D calc. = 1 + (1 - a) (:026 ”) - I] . . . .(11.23) 
l a  

where a is the fraction of non-paired ions, and A!, is the mobility of 
the ion-pair in equivalent conductance units. The result indicates 
that the ion-pair has a higher mobility than the dissociated part of 
the electrolyte, which is explained on the ground that its formation 
results in the loss of water of hydration by the zinc ion. The success 
of this treatment is, however, somewhat reduced by the fact that it 
employs an ion size (I = 3-64A for bi-bivalent electrolytes; other 
evidence about the size of the zinc and magnesium ions indicates a 
minimum acceptable value of 6 A for the unpaired ions. However, 
the value 3.64 is consistent with that needed to interpret the trans- 
port numbers of cadmium sulphate (see Tubb 7.8). 

UNSYMMETRICAL VALENCY TYPES 

A few salts of unsymmetrical valency type have been studied, c.g., 
the alkaline earth chlorides(l*), lanthanum chloride(14), some alkali 
sulphates(l6), and potassium ferrocyanide(l6). Of these, calcium 
and strontium chlorides are the only ones in which we are reason- 
ably certain that ion-pair formation is negligible, though it may 
well be only slight in the alkali sulphates at the concentrations in 
question (below 0.005 M) . 
For calcium chloride, the original Onsager-Fuoss equation (1 1.2 1) 

definitely breaks down, the observed diffusion coefficient at 0.005 M 
being some 5 per cent lower than that predicted by equation (1 1.21). 
However, the ‘self-consistent’ equation : 

( 1 1.22) 
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gives a satisfactory account of the datat8). The term Ag is rejected 
on the grounds that its inclusion implies a distribution function 
inconsistent with the Poisson equation; this term is, however, twice 
as large as Al and the higher terms (A8, A, . . .) do not converge 
satisfactorily so that the theory cannot be regarded as adequate in 

1*Ooo 
0.947 
0-924 
0.900 

Table 11.3 
DiJbion Co&ents of Dilute Aqueous 2 : 1 and 1 : 2 E&cfrolyks at 25" 

1.336 - 1.Ooo 1941 - 1*Ooo 1.230 - 
1-257 1.249 0.950 0.989 0.990 0.945 1.162 1.175 
1.223 1.225 0-939 0.978 0.974 0.927 1.141 1.160 
1.185 1.179 0,917 0.955 0.950 0.892 1.097 1.123 

c mole/l. 

0 
0.001 
0.002 
0.005 

Li,SO, 

I I l l  I l l  I 

~~ ~ ~ ~~~~~ 

No&: (a) Dobe. by conductimetric method of Harned (we A pendix 11.1). Later 
valuesofDforCaC1,are 1*263,1*243and I.21fatc = 0-001,0~002, 
0.005 respectively. 

(6 )  Dc.lo. from the 'self-consistent' equation: 

(c) yi from king-point data for Li$04 and Na,S04, and from e.m.f. 
measurements for CaCl*. For the sulphates, A, is negligible, hence 
no ion-size parameter is needed. 

(d) D in cm* IKC-I x loJ. 

( f  ) Values at c = 0 from equation ( 1 1.4). 

its present form. For the strontium chloride results(l*) on the other 
hand, the Onsager-Fuoss equation (1 1.21) seems to be more satis- 
factory than the 'self-consistent' equation (1 1.22). This anomaly 
has not been resolved. In the case of sodium and lithium sulphates, 
calculation shows that A1 is very small, since the factor ( zltt + .&) * 
is only 0.0247 for the former and 0.00042 for the latter, in contrast 
to 0.4706 for calcium chloride. Therefore, if only the first-order 
electrophoretic term is relevant for these electrolytes, there should 
be no detectable electrophoretic effect at all. The experimental 
results do not settle the matter definitely, owing to uncertainties 
about the activity coefficients at these low concentrations, which 
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(1 + c ‘3) with sufficient make it difficult to compute the factor dc 
accuracy; one must choose between using freezing-point data which 
refer to 0’ and extrapolation from the region above 0.1 M at 25O 
where vapour pressure and e.m.f. measurements are available. The 
freezing-point activity data are probably to be preferred, as the 
corrections from 0’ to 25O will be very small at the concentrations 
below 0.005 M to which the diffusion coefficients refer. 

Table 11.3 shows moderately good agreement between the 
observed values and those calculated by equation (1 1.22) for calcium 
chloride and lithium sulphate, but for sodium sulphate the diffusion 
coefficients are definitely higher than theory predicts. This may 
possibly be due to ion-pair formation, which would be more pro- 
nounced in sodium sulphate than in lithium sulphate; but even in 
the other cases the theory is by no means as succdul as for 1 : 1 
electrolytes. Lanthanum chloride conforms only poorly with the 
theoretical equation(*); it has been shown that the series XA,, of 
equation (1 1.16) is initially divergent with alternating signs for this 
case, so that agreement with the present form of the theory cannot 
be expected. 

DIFFUSION OF A N  INCOMPLETELY DISSOCIATED 
ELECTROLYTE 

In associated electrolytes it is necessary to recognize that an appreci- 
able fkaction of the transport of solute may occur as a result of the 
motion of ion-pairs (or larger aggregates) ; in the extreme case of 
a weak electrolyte, the covalent molecular form is the predominating 
diffusing entity. Ion-association affects the diffusion coefficient in 
two ways: first, it reduces the activity of the solute as compared 
with a fully dissociated electrolyte, and hence leads to lower values 
of the gradient of free energy with concentration; and secondly, 
when two particles merge into one they offer less resistance to 
motion through the liquid; this has the effect of increasing the 
diffusion coefficient. The effect on the free energy gradient need 
not be considered, since we use experimental values of the factor 

(1 + m d z )  in comparing observed and calculated diffusion 

c-oefficients. The chemical potentials of the associated and dis- 
sociated forms of the solute are the same, since they exist in equili- 
brium, and the free energy gradient of the solute is therefore the 
same for both forms. 

Denoting the absolute mobilities of the ions by u1 and ua and that 

300 



AN INCOMPLETELY DISSOCIATED ELECTROLYTE 

of the ion-pair or molecule by ul,, and with a degree of dissociation 
a, we thus obtain for dilute solutions of associated symmetrical 
electrolytes : 

+ (1 - a)u,,] . . . .(11.24) 

In actual solutions the mobility terms (in the square brackets) will 
mutually influence each other. The electrophoretic effect already 
discussed for non-associated electrolytes will of course be operative 
though at an ionic concentration of ac rather than c. An essentially 
similar effect will operate between the neutral diffusing particles 
and their neighbours, whether molecules or ions; this is not easy 
to evaluate without arbitrary assumptions about the distribution of 
the associated particles. Neglecting it, one would obtain the 
relation : 

. . . .(11.25) 
where Di2 represents the (hypothetical) diffusion Coefficient of an 
isolated ion-pair or molecule at infinite dilution and is defined by 
D!, = kTu,,. HARNED and HLIDSON(~') first derived and tested an 
equation equivalent to (11.25) for zinc sulphate at 25'. Their 
values for a were obtained from conductivity estimates, and their 
diffusion-coefficients measured in the range 0.001-0.005 M indi- 
cated a reasonably constant value for the diffusion coefficient Dt, 
of the ion-pairs. 
For 1 : 1 electrolytes, the proportion of the associated form is 

small at low concentrations, so that it is more difEcult to estimate 
Dp, with any accuracy. However, some recent measurements on 
concentrated ammonium nitrate solutions(18) have been interpreted 
with fair quantitative success on this basis. In this case an equation 
similar to equation (1 1.66) was used in order to allow for the effect 
of volume restraints and of the diffusion of the solvent; hydration 
of the ions of ammonium nitrate was assumed to be negligible. The 
final equation was: 

Dot,,. = [ a ( p  + A1 + A 3  + 2(1 - a)Dls1 

(1 +mdiny*)(l dm +0*036m%)$ ....( 11.26) 

As in the work of Harned and Hudson, the degree of dissociation, a, 
was estimated from the conductivities, though at the high concen- 
trations (0.1 to8M) of these measurements the theory used in 
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calculating the degree of dissociation is necessarily very approxi- 
mate. Nevertheless, the diffusion coefficients of ammonium nitrate 
calculated from equation (11.26) with D!2 = 1.5 x agreed 
within 2 per cent with the experimental values up to 6 mole/litre. 
The value Q, = 1.5 x 10-5 for the ion-pair was not arbitrarily 
assumed, but was calculated from the mobilities of the separate ions 
by considering them to merge into an ellipsoidal body. 

DzYm'oon Ofa weak electrolyte. This is essentially the same problem 
as the diffusion of an incompletely dissociated electrolyte. Gouy 
measurements have been made on citric acid(19) and acetic acid'm) in 
water. The degree of ionization of these substances being known 
from conductance data, equation (1 1.25) can be rearranged to yield 
a convenient extrapolation for D:! if the activity data are available. 
An alternative method which was used in the case of citric acid, 
leads to the conclusion that the function: 

. . . .(11.27) 

when plotted against concentration extrapolates linearly to D!3 at 
zero concentration. Here D is the measured diffusion coefficient 
and Df is the limiting Nernst value for the completely dissociated 
ionic form. The limiting diffusion coefficients Df! of molecular citric 
acid and acetic acid are found to be 0.657 x 10-6 and 1.201 x 10-5 
cmz sec-l respectively. It is interesting to compare these with the 
limiting Nernst values (RlAO/F2)  for the monocitrate ion (0.81 x 
loq5 cm2 sec-1) and the acetate ion (1.088 x cme sec-l). The 
citric acid molecule has a considerably lower mobility than its 
anion, whilst the acetic acid molecule has a higher one. This, taken 
in conjunction with the facts that the acetate ion has a low mobility 
for its size and that the activity coefficients of metal acetates are 
high, suggests that the acetate ion interacts fairly strongly with water 
molecules. The effect of the charge of the monocitrate ion, on the 
other hand, appears to be predominantly a structure-breaking one. 

D;z = [(l - a/2) Dq/qO - (a/2) D!]/(1 - a) 

VISCOSITY A N D  I O N I C  MOTION IN 
C O N C E N T R A T E D  S O L U T I O N S  

In Chapter 7 and in pp. 286-302 we have discussed the way in 
which the motion of ions is affected by electrical interactions with 
other ions. The mathematical treatment of these effects is at present 
strictly valid only for low concentrations, owing to approximations 
which must be made in order to give manageable results. In regard 
to concentrated solutions, many workers adopt a counsel of despair, 
confining their interest to concentrations below about 0-02 M, 
while others maintain that an adequate theory of the behaviour of 
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pure fused salts is an essential pre-requisite to the understanding of 
transport processes in concentrated electrolytes. Nevertheless we 
believe that useful information can be gained from the study of 
transport processes in concentrated solutions, and their practical 
importance justifies the attempt. 

The treatment of interionic effects on both chemical potential 
and ion mobility leads (apart from minor corrections) to results 
which may be summarized as 

r - % K / (  1 + KQ) . . . .(11.28) 

where T denotes diffusion coefficient, conductance, or the logarithm 
of an activity coefficient and the subscript zero refers to infinite 
dilution. Now the quantity K / (  1 + KQ), though varying as 6 at 
low concentrations, changes only slowly at high concentrations, and 
variations in the ion size parameter Q are insufficient to cause large 
variations in behaviour between one salt and another of the same 
valency type. Yet such large variations do occur, and become very 
marked at  concentrations of a few molar. In the case of thermo- 
dynamic properties, they can be explained by the effects of ion- 
solvent interactions, which have an important influence at high con- 
centrations. In the case of the transport properties, another effect, 
negligible in dilute solutions, becomes important at high concentra- 
tions. This effect is connected with the changed viscosity of the 
solution; we shall not say it is caused by the changed viscosity, but 
for brevity we shall refer to it as the viscosity-effect. 

The Viscosity of Electrolyte Solutions 
Viscosity, the force required to produce unit rate of shear between 

two layers separated by unit distance, is an important property of 
liquids. For methods of measurement, the reader is referred to 
standard text-books on practical physical chernistryc2lJ ; the papers 
of G. JONES and c01laborators~~~J and recent publications from the 
U.S. Bureau of should then be studied to dispel any 
idea that really accurate measurements are easily made. I t  is usual 
to calibrate viscometers by means of pure water, for which careful 
absolute viscosity measurements have been made. The most recent 
of these has resulted in an appreciable change from the value~'2~J 
which had been accepted since 1919, and a close approach to those 
obtained in the classical work of THORPE and RODCER(~~)  in 1894. 
Calibration at two or more points is highly desirable, and is most 
conveniently obtained by using water at several temperatures (set 
Appendix 1.1). 
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For solutions the relative viscosity, qrel = q/qO is often used, q 0  
denoting the viscosity of the pure solvent at the same temperature. 
The 'specific viscosity' q*, defined by 

. . . .(11.29) 
is also useful, particularly since it often changes only slowly with 
concentration and temperature. 

It is clear that the electrical forces between ions in adjacent layers 
of an electrolyte solution will increase the viscosity. The mathe- 
matical treatment of this effect was given by FALKENHACEN and 
collaborators(26) who showed that the limiting law is of the form 

qrel= 1 + A i d 6  . . . .(11.30) 
the constant A, being as usual a function of solvent properties, ionic 
charges and mobilities, and temperature. Numerically, A, is fairly 
small, e.g., for KI and Li,SO, at 25" in water, the calculated values(27) 
are A, = 0.0050 and 0.0167 mole-4 14 respectively. The corres- 
ponding experimental values are 0.0047 and 0-0167. This agree- 
ment, however, does not mean that the theory is of practical use for 
calculating viscosities, since the small square-root term is quickly 
swamped by a much larger linear term, as expressed by the equation 
ofJoNEs and  DOLE(,^): 

. . . .(11.31) 
(The coefficient A, is usually referred to in the literature as the 
'viscosity B-coefficient,' a terminology we are obliged to depart from 
here to avoid confusion with our other B symbols.) This coefficient 
is highly specific for the electrolyte and temperature, e.g., - 0.014 
mole-' 1 for KCl and + 0.567 mole-' I for Lacla, at 25". Equation 
(1 1.31) is usually valid up to a few tenths molar. The A, coefficients 
are found to be fairly accurately additive properties of the constit- 
uent ions, and several independent workers(28, aO) have agreed that 
individual ionic A, values can be based on A,(K+, 25') = - 0.007 
mole-' 1. The A,-values are strongly correlated with the entropy of 
solution of the ions (see p. 16). Negative values are found with those 
ions which exert a 'structure-breaking' effect on water, c.g., Rb+, 
Cs+, I-, CIO;, NO;, and such values become less negative or even 
change to positive as the temperature is raised. The reason is 
clearly that at the higher temperatures the water structure is already 
so broken by thermal agitation that the ion can scarcely make 
matters worse. These negative values of A, appear to be confined 
to aqueous solutions, and even here they seldom cause a decrease 
of more than 10 per cent in the viscosity. More typical are fairly 
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large positive values of A,, found with ions which are strongly 
hydrated, e.g., at 25' the A, values for Na+, Li+, Mg++, La+++ are 
0.0863, 0.1495, 0.3852 and 0-5888 mole-' I, respectively. A recent 
tabulation by KAMINSKY(~) is reproduced in Appendix 11.3. 
Similar behaviour is found with large non-electrolyte molecules 
such as glycerol and sucrose. 

The viscosity increase found with large solute particles was 
explained by EINSTEIN(~~) as due to interference of the particles with 
the stream-lines in the liquid; by classical hydrodynamic methods, 
treating the liquid as a viscous continuum with rigid spherical 
obstructions at the surface of which the liquid is at rest, he obtained 
the result 

qrel = 1 + 2 . q  . . . .(11.32) 
valid at low concentrations, with + denoting the volume-fraction 
occupied by the obstructions. Later work(3*) has extended this 
limiting theory to higher concentrations, giving 

I ( 1  1.33) 

where Q is an interaction parameter dealing with mutual inter- 
ference between the spheres, and with their Brownian motion; 
various authors agree only that it does not differ greatly from unity. 
Since + is a volume fraction, we can replace it by cv where c is the 
molar concentration, and 7 is an 'effective rigid molar volume' 
expressed in litres per mole. This gives: 

. .(11.34) 

where A, = 2.57/2.303, and Q = QV is an arbitrary constant. 
Equation (1 1.34) gives an excellent representation of the viscosities 
of strongly hydrated electrolyte solutions and of solutions of large 
non-electrolyte molecules, often up to the point where the viscosity 
is five or ten times that of water, though it is necessarily less exact 
than equation (1 1.31) in dilute electrolyte solutions owing to the 
omission of the small term in The connection between equa- 
tions (11.31) and (11.34) is apparent on expanding the logarithm 
in (1 1.34) when we obtain for small c: 

. . . . (1 1.35) vrel - 1 = 2.303A3~ 

* A g  (ignoring A , 6  in ( I  1.31) ) 

i.e., A, = 2.3034,. Table 11.4 gives the values of A, and Q' required 
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by equation (1 1.34) at 25” for a few substances, along with the 
value of A2/2.303 from KAMINSKY’S(~~) table (Appendix 11.3). 

If the theory underlying equation (1 1.34) is taken literally, the 
‘rigid volumes’ P of this table should represent the molar volumes 
of the solutes including any water of hydration which is held too 
firmly to participate in the viscous shearing process. The molar 
volume of sucrose in solution, on the unhydrated basis, is 0.212 1 
mole-’, and that of glycerol is 0.071 1 mole-’. The P values there- 
fore indicate that the sucrose molecule acts, on Einstein’s model, as 
if it includes (0.350 - 0.212)/0.018 = 7.7 molecules of water, and 

Table 11.4 
Constank of Equation ( I  I .34) fm Viscosities of Concoitrakd Aqueous Solutions 

at 25”’ and the ‘Rigid Volume’ L‘ 

0.231 
0.0363 
0.0589 
0.0079 
0-078 

I 

0.350 
04883 
0.0349 
0.0540 
0.135 

sucrose 
Glycerol 
NaCl 
Lict 
MgCI, 

0.380 
04959 
0.0379 
0.0586 
0- 147 

(a)-from measurements on dilute solutions ( < 0.02 M) : JONES G. and TALLEY, 
S. K. ,J .  AM. C h .  SIC. 55 (1933) 624. 
(b)--liom Appendix I I .3. 

the glycerol molecule, one molecule of water. In Chapter 9 we 
showed that the activity coefficients are consistent with ideal-solu- 
tion behaviour with 5 molecules of water of hydration for sucrose 
and 1.2 for glycerol. Another estimate of the ‘solvation’ of sucrose 
may be made from its limiting diffusion coefficient(33) (0.5226 x 
10-6 cm sec-1 at 25’ which gives, using equation (2.51), a Stokes’- 

indicated by Table 6.2, we calculate a ‘hydrodynamic volume’ 
of 0.301 f/mole, corresponding to 4.7 molecules of attached water. 
This agrees remarkably well with the ‘thermodynamic’ value of 5,  
but is less than is indicated by the viscosity result. Bearing in mind 
the possible effects of departure from spherical shape, there is no 
ground for dissatisfaction, however; rather, one may be astonished 
that the theory gives such reasonable results. Since the chloried 
ion causes a small decrease in viscosity, the ‘rigid volumes’ of T‘61e 
f1.4 must be regarded as essentially those of the cations; after sub- 
tracting the estimated molar volume of the cation (which is actually 
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negative) they suggest ‘hydrodynamic’ hydration numbers of 2-3 
for Na+, 3-4 for Li+, and 9-10 for Mg++. These viscosity calcula- 
tions thus provide yet another set of hydration numbers, of reason- 
able magnitude, but differing materially from estimates by other 
means (cf. Tables 6.3, 9.5, and p. 331). Table 11.4 encourages the 
view that where large increases in viscosity occur in electrolyte solu- 
tions, they are mainly a direct hydrodynamic result of the distortion 
of stream-lines by particles considerably larger than water molecules. 
It should be emphasized that the above considerations refer only 
to approximately spherical particles; long-chain ions and molecules, 
in particular, need special treatment which will be found in text- 
books of colloid chemistry. 

‘Microscopic Viscosity’ and the Mobility of Dissolved Partules 
In order to understand the motion of ions in concentrated electro- 

lytes, we need an answer to the question : how is the mobility of 
ions related to the change in viscosity of the solution, bearing in 
mind that this changed viscosity is itself produced by the ions of 
interest? 

A direct answer could be given if we had an exact treatment of 
the interionic effects which also alter the mobilities. In concentrated 
solutions, however, we can do no more than estimate the magnitude 
of interionic effects; it is therefore more profitable to seek other 
information which may bear on the viscosity relationship. 

In Chapter 6 we have seen that comparison of the temperature- 
dependence of viscosity and ionic mobility is of some value. A visco- 
sity change produced in this way is, however, of a different nature 
from the isothermal change produced by the presence of dissolved 
particles; the latter is concerned with the distortion of stream-lines, 
while the former is due to changes in the relative magnitudes of 
thermal agitation and intermolecular forces. The relation between 
ionic mobility and viscosity can scarcely be expected to be the same 
in these two cases. We shall now summarize some relevant experi- 
mental results. 

The Influence of Large Neutral Molecules on the Limiting Mobilities of 
Ions 

Limiting  conductance^^^^) and transport numbers(36) for a number 
of simple electrolytes have been measured at 25’ in aqueous 10 per 
cent mannitol, 10 per cent and 20 per cent glycerol, and 10 per cent 
and 20 per cent sucrose. Limiting ion mobilities in the non-electro- 
lyte solutions and in water, are summarized in Table 11.5. 
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- 
0.648 
0.647 - 
0.632 - 

The ratio of the viscosity of water to that of the mixed solvent is 
also shown in l u b b  11.5. The following generalizations can be made 
about the results: 

(1) All the ions studied suffer some reduction in mobility through 
the presence of the added non-electrolyte. 

(2) Different ions are affected differently by a given non-electro- 
lyte, though for simple small ions the R values cluster about an 

Table 11.5 
Relative Ion Mobilities R in Aqueous Non-ehtrolyte S01ulion.s at 25” 

I Sucrose I Glycerol I Mannitol 

0-837 
0.797 
0.790 
0-778 
0.780 - 

H+ 
K+ 
Na+ 
Li+ 
Ag+ 
ca++ 
Mg++ La+++ 
N(n Am),+ 
Cl- 
NO,- 
Br- 

- 
0.644 
0.644 
0.632 

0.617 
- CI0,- 

I- 

- 
0.800 
0.803 
0.797 

0-792 
- 

0.841 
0.812 
0.8 I0 
0.802 
0.800 
0.787 
0.788 
0.778 
0.76 I 
0.815 
0-8 10 
0.807 
0.803 
0.796 

0.684 
0.627 
0.62 1 
0.610 
0-607 
0-585 
0-582 
0.567 
0.550 
0.631 
0.624 
0-6 I9 
0.6 12 
0.604 

10% 

- 
0.8 1 7 
0.815 

0.801 
- 
- - - - 

0.813 
0.8 17 
0.806 

0.799 
- 

0.525 I 0.775 

- - - I -  

0.579 I 0.747 

The quantity R is the ratio of the limiting mobility of the ion in the mixed 
mlvurt to its value in water, as given in Appendix 6.1. 

Solvent compositions are in percent non-electrolyte to total solution, by weight. 
From STEEL, B. J., STOKES, J. M. and STOKES, R. H., J.  phys. chrm. 62 (1958) 

1514. 

average, c.g., R m 0.80 for many monovalent ions in 10 per cent 
sucrose. Hydrogen ion is less retarded than any other, and there is 
a fair degree of correlation between the size of the ion (allowing for 
probable hydration of many cations) and the extent of retardation. 

(3) Different non-electrolytes have slightly different effects, in 
the sense that the relation between the viscosity and the mobility of 
a given ion is not quite the same for different non-electrolytes. 

(4) In no case! is the mobility reduced to the fidl extent that the 
increase of viscosity would demand, i.c., the behaviour is not con- 
sistent with Stokes’ law (or Walden’s rule), but approximates to 
that described by 

Ayp = COnst . . . . (1 1.36) 
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where p is less than unity. This relation holds fairly accurately for 
a given ion in a given non-electrolyte solution, but the index p 
varies with both the ion and the non-electrolyte. For a given ion, p 
is approximately a linear function of the molar volume P of the 
non-electrolyte, decreasing as V increases, while for a given non- 
electrolyte p increases with the size of the ion, approaching unity 
for very large ions. The same relation, but in general with a 

'09 T/?& - 
Figure 11.2. Effits on various wns of uizcosiry increases caused by: 

(a) additwn of sucrose (circles), 
(b) louming oftemperatures (crosses). 

Viscosities and cquivaknt conductivities are cxpres.wd relative to waia  at 25". 

different value ofp, describes fairly accurately the variation of A0 in 
pure water as solvent when the viscosity is increased by lowering 
the temperature. Figure 11.2 compares the effects of these two kinds 
of viscosity-increase for a few ions. The large tetra-amyl ammonium 
ion has p m 1 for both kinds of viscosity-increase, i.e., it approxi- 
mates to Stokes' law or Walden's rule as would be expected. I t  is 
remarkable, however, that hydrogen ion, with the much lower value 
p = 0.63, does not seem to discriminate between addition of sucrose 
or mannitol and lowering of temperature as causes of viscosity- 
increase. This is doubtless connected in some way with its abnormal 
transport mechanism, (p. 121) which is believed to be limited 
mainly by the ease of rofution of water molecules. Most other ions, 
of which K+ is typical, show considerable differences in their res- 
ponses to the two kinds of viscosity-increase. It is thus not feasible 
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to treat the effect of added non-electrolytes in terms of a change in 
‘structural temperature’ of the water. 

The ‘Obstnictinn-e&ct ‘ 
The experimental work described above shows that when the 

viscosity of water is increased by molecular solutes, the resistance 
encountered by an ion moving through the solution is also increased, 
but not in direct proportion to the viscosity as would be predicted 
by simple hydrodynamic considerations. Presumably this direct 
proportionality would be observed for really large moving particles, 
but they would have to be large not merely in relation to the water 
molecules, but even in relation to the molecules or ions causing the 
viscosity increase. (It should be noted that in the conductance and 
transport number experiments discussed above, the concentration of 
the moving particles themselves is made effectively zero by suitable 
extrapolations, so that we do not have to consider their own effect 
on the viscosity.) 

This situation is sometimes described by saying that the ‘micro- 
scopic viscosity’ of the solution is lower than the measured viscosity, 
but this statement does not constitute an explanation of the effect. 
An alternative possibility is that the increased viscosity and the 
increased resistance experienced by the moving particle are not 
related as cause and effect, but are two parallel effects of a common 
cause, that cause being the obstructive action of the added solute. 
In viscous flow, the solute molecules or ions distort the stream-lines, 
introducing a rotational quality to the previously irrotational flow; 
in conductance and diffusion, they lengthen the effective paths of 
the moving particles. This suggestion was first advanced by W A N C ( ~ ~ )  
in connection with the self-diffusion of water molecules in protein 
solutions. We shall not make direct use of his treatment, since the 
result can be obtained more conveniently by the following argument, 
which also brings to notice a point not dealt with by Wang. 

We shall idealize the actual situation to the following model: 
the moving particles and the solvent molecules are both of negligible 
size compared to the added solute molecules causing the obstruc- 
tion; the latter are regarded as rigid spheres in a continuous 
medium. We shall discuss the motion of ions in terms of the passage 
of electric current through such a system. The added non-electro- 
lyte must now be regarded as a set of insulating spheres dispersed in 
a random manner through a conducting continuum, and we wish 
to compare the conductances of, for example, a unit cube of this 
material and a unit cube of the same conducting medium in the 
absence of the insulating spheres. When a single insulating sphere 
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is introduced into a uniform infiniteconductor, the standard methods 
of electrical theory show that the current-lines are distorted as 
shown in Figure 11.3; this will clearly cause an increase in resistance. 
The actual prohlem deals with a large array of such spheres com- 
paratively close together, and has been discussed by FRrCKE(S7) in 
connection with the conductance of blood, where the blood cor- 
puscles form ‘obstructions’ in the plasma. (His treatment, like 
Wang’s, deals with the more general case of ellipsoidal obstructions.) 
However, it is instructive to approach this problem in another way: 

- 

Figure I I .3. Cuwenl pOw round insulating sphere in conducting nudium 

it is a well-known principle of electricity that problems of steady 
current flow in conductors and of lines of force in insulators are 
formally identical, the only change necessary in the mathematics 
being the substitution of specific conductances for dielectric con- 
stants. Now the corresponding problem in dielectric theory is: 
what is the effective dielectric constant of a medium of dielectric 
constant eo in which are suspended spherical particles of a different 
dielectric constant el? This problem has received attention at 
intervals since it was first discussed by Rayleigh in 1892; all inves- 
tigators have concluded that the size of the spheres is irrelevant, 
only the fraction of the total volume which they occupy appearing 
in the equations. In Table II.6 the results of the main investigations 
are summarized, along with the corresponding results for the present 
case of electrical conductance. (It is notable that though the formal 
mathematics is the same, the electrical conductance of the spheres 
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Dielectric 
Medium: eg 
Spherical obstructions: -el 
Miuture: e 
Volume fraction of obstructions: 4 

E - E, RAYLEIOH, (1892) - = co 
E + 2% E l  + 2EO 

Conductance 
K,,IOl 

K,,,,, = 0 
K., 
4 

BRUGOEMAN (1935) I 

EK~CHER (1945) I 

I 

RAYLEIOH, J. W .  Phil. Mag. (5) 34 (1892) 481. 
BRUOOEMAN, D., Ann. Physik. Lpz. (5) 24 (1935) 636. 
BiLrrcwe~, C. J. F., Rec. Trau. Chim., Pays-Bas. 64 ( 1945) 47. 
See also EL SABEH, S. H. and HASTED, J. B., Proc. Php. Soc. 66B (1953) 61 1. 

# = 0.7405 which would give a negative conductance on several of 
the formulae; they are not intended to apply under such extreme 
conditions.) Bottcher’s formula has been tested by measuring the 
dielectric constant of suspensions of salts in organic liquids, and is 
satisfactory at volume fractions as high as 0.5. 

Equation 1 1.37 would not be immediately applicable to the equiv- 
alent conductances of Tuble 11.5, even if the model were valid for 
the solutions considered. Allowance must first be made for the fact 
that when calculating equivalent conductances of the electrolytes 
in the non-electrolyte solutions, the whole volume of the solution is 
taken as the basis for the concentration calculation. In formula 
1 1.37 on the other hand, K,,,,, represents the specific conductance 
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of the electrolyte solution outside the insulating spheres. Since the 
latter occupy a volume-fraction (6, we obtain: 

. . . . (1 1.38) 

This may be compared with the corresponding result for the relative 
viscosity of the non-electrolyte solution, which by equation (1 1.32) 
gives for small (6: 

qyq % 1 - 2 4 4  ....( 11.39) 

Thus the addition of sufficient large non-electrolyte molecules to 
lower the fluidity of water by 5 per cent should lower the mobility 
of ions in the solution by only 1 per cent, if this ‘obstruction’ model 
of the situation is valid. The other extreme model, in which the 
non-electrolyte solution is treated as a viscous continuum in which 
the ions move under Stokes’-Law conditions, would lead one to 
expect a 5 per cent decrease in mobility for a 5 per cent decrease in 
fluidity. Table 11.5 shows that the effects actually found are inter- 
mediate between these two extremes, i.e., there is for small ions 
about 3 to 4 per cent decrease in mobility for 5 per cent decrease in 
fluidity. This seems reasonable, since the ions and the non-electro- 
lyte molecules are in fact of comparable sizes, whereas the obstruc- 
tion model considen the ions to be much smaller than the non- 
electrolyte molecules, and the Stokes’-Law model considers them 
to be much larger. 

Furthermore, the largest ion studied-the tetra-n-amylammonium 
ion-shows the nearest approach to the predictions of the Stokes’- 
Law model, while the chloride ion is the least affected by increased 
viscosity (though even here the effect is much larger than the 
‘obstruction’ model predicts). 

BROERSMA‘~) has developed the hydrodynamic theory of a liquid 
containing suspended or dissolved particles which cause a change in 
the local viscosity, falling off with an inverse power of distance from 
the particle. With suitable choice of the parameters describing this 
change, the theory promises considerable success in the treatment 
of problems of conductance, viscosity and diffusion. 

In the meantime, we can conclude only that there is no universal 
quantitative relation between the mobility of an ion and the viscosity 
of the medium, at least when the viscosity-change is produced by 
adding non-electrolytes. The position may be expected to be even 
more complicated when the viscosity-change is produced by ions. 
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S E L F - D I F F U S I O N  A N D  T R A C E R - D I F F U S I O N  IN 
E L E C T R O L Y T E  S O L U T I O N S  

In a uniform liquid, the molecules are continually moving about in 
a random manner, and a given molecule at one point has a definite 
probability of arriving at some other point within a given time. 
This motion constitutes true self-diffusion, but is a process which 
can never be detected because of the indistinguishability of the 
molecules. A close approach to it is realized in the case of the inter- 
diffusion of two isotopically different species which differ only 
enough to be distinguishable, but have nearly identical dimensions 
and force fields. Since mixtures of isotopic species show practically 
ideal thermodynamic behaviour, the gradient of chemical potential 
for each isotope is also ideal, i.c., it issimply the gradient of (RTln c). 
The ‘driving force’ for the inter-diffusion of isotopic species may be 
considered to arise solely from the term contributed to the free energy 
of mixing by the entropy of mixing, which obeys the ideal relation: 

....( 11.40) 

Nl and JV’ being the mole fractions of the two species. 
A closely-related process occurs when an ion of one kind in very 

small amount diffuses in a large excess of other electrolyte; the 
name ‘tracer-diffusion’ has been given to this process. Examples 
are the diffusion of radioactive sodium ion present in tracer amounts 
in an otherwise uniform solution of (a) potassium chloride, or (b) of 
sodium chloride. In case (b) the diffusion coefficient of the tracer 
species is assumed to be identical with the true self-diffusion 
coefficient of sodium ion in the sodium chloride solution. In case 
(a), since the ionic environment of the tracer ion is effectively 
unchanged during diffusion, its activity coefficient remains practi- 
cally constant, so that the ‘driving force’ is once more the gradient 
of (RTlnc). In both cases the ‘diffusion potential’ is negligibly 
small, so that the movement of the tracer ions is not tied to that of 
ions of opposite sign. The electrophoretic effect, which involves the 
concentration of the diffusing ions, may also be neglected, since the 
concentration of the diffusing radioactive species is extremely low. 
Rather unexpectedly, however, the relaxation effect now becomes 
important, though in ordinary diffusion, owing to the preservation 
of the symmetry of the ‘ionic atmosphere’, it is negligible. The 
reason for this is that in self- or tracer-diffusion the tracer ion is 
moving relative to a background of nondiffusing ions, whereas in 
the ordinary diffusion of a single electrolyte all the ions are moving 
with the same velocity. 
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These tracer-diffusion coefficients, incidentally, arc the quantities 
which appear in the formulae of polarographic theory for the 
limiting diffusion-current at the dropping mercury electrode. 

But for the complications introduced by the interionic relaxation- 
effect (4. p. 136) tracer- and self-diffusion studies in electrolytes 
would provide valuable information on viscosity-effects. The 
tracer-diffusion of iodide ion in alkali chloride ~olutions(~~) has been 
studied with especial care both by conventional radioactive tracer 
techniques and by chemical analysis as means of following the iodide 
ion, with excellent agreement (-0.5 per cent) between the two 
methods. Fairly comprehensive data are also available for sodium ion, 
chloride ion, and hydrogen ion; the data are given in Table 11.7. 

T H E O R E T I C A L  E X P R E S S I O N S  FOR T H E  R E L A X A T I O N - E F F E C T  
IN SELF-DIFFUSION 

ONSAGER(~) has discussed the problem of the diffusion of an ion 
present in vanishingly small amounts in a solution of another 
electrolyte, as a special case of diffusion in multi-component systems 
and GOSTING and HARNED(*~) have shown that his formulae can be 
applied to the case of self-diffusion. In our notation, Onsager's 
equation for the diffusion coefficient Dr of an ion j present in 
vanishingly small amounts in an otherwise uniform electrolyte 
solution becomes : 

ude2 D;= u, [ k T  - 3~ (1 - d G ) ) ]  . . . .(11.41) 

The function d(u,) depends on the mobilities and valencies of the 
various ions present, and is discussed below; all the other symbols 
have already been introduced. Now (1 1.41) may be rewritten as: 

= D,W 1 - - uzje2 (1 - mj))] . . . .(11.42) [ 3ekT  

It  is instructive to compare equation (1 1.42) with equation (7.9) : 
both deal with a relaxation effect, the former in tracer- or self- 
diffusion, and the latter in electrical conduction. In conduction the 
relaxation effect changes the applied field by the factor: 

.. . (11.43) AX KIz*4e2 4 +x= --*- 3ekT 1 + 4 4  
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while in tracer- or self-diffusion it changes the virtual force acting 
on the tracer-ion j by the factor: 

. . . .(11.44) 

The only difference between expressions ( 1 1.43) and (1 1.44) lies in 
the valency factor and the mobility functions, 6 replacing Izlzrl 
and (1 - a,)) replacing q/(l + dq). These two mobility 
functions are both dimensionless quantities, q being defined by 
equation (7.10). The definition of d(u,) is rather more complicated, 
especially in the general case covered by Onsager's treatment. 
However, when the only kinds of ions present are the ions 2 and 3 
of the main electrolyte and the tracer-species 1, the definition 
becomes: 

. . . . (1 1.45) 
and for the case of most immediate interest, where all the ions are 
univalent and species 1 is an isotopic form of species 2 so that 
A: w Ag, (1 1.45) simplifies further to: 

ng + 3 4  1 + 24 =- . . . .(11.46) d(ul) = 4(A$ + A t )  4 
where tX is the limiting transport number of the ion 3, i.c., of the 
ion of opposite sign to the tracer-ion 1. (It may be noted that in 
the special case where the anion and ca:ion have equal mobilities, 
as is nearly the case in aqueous potassium chloride, for example, 
the mobility functions q / ( 1  + dq) and (1 - da)) become 
identical, both taking the value 1 - d/o.5 = 0.2929. In this case 
expressions (1 1.43) and (1 1.44) are not merely similar but identical.) 

Because of the similarity of form of equations (1 1.42) and (7.9), 
we can simply take over the numerical evaluations of the quantities 
in 7.9 for use in equation (1 1.42). Thus, referring to equations 
(7.29) and (7.31), we see that equation (1 1.42) becomes: 

2.801 x lo6 Di" = gro [ 1 - ( E T ) ~ ' ~  (1 - m - ) ) z f 4 1 ]  . . . . (1 1.47) 

and for aqueous solutions of 1 : 1 electrolytes at 25': 

Dt = DrO[l - 0.7816(1 - dGj))d~]  . . . .(11.48) 

Equations ( 1 1.47) and (1 1.48) thus represent the Onsager limiting 
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law for tracer- or selfdiffusion at low tokrl ionic strengths. The 
limiting value Of0 is given by the Nernst expression: 

Supporting 
ElcchoryrC 

-- - 

KCl 
NaCl 
Licl 

KCl 
NaCl 
Licl 
HCI 

KCI 
NaCl 
Licl 

KCI 
NaCl 
Licl 

= 2.661 x lo-'- 4! at 25" 
14 

. . . .(11.49) 

0. I 

DID" 
0.99, 

O*!x1 

0% 
0.96, 
0.95, 
0.97, 

0.96, 

0.974 

0.951 
o-951 

0.87, 
0.86, 
0.83, 

0.5 

DID" 
0.9% 
0.95 
0.93, 

0.96, 

0.894 
0.9 I , 
0.95, 

0.951 
0.90, 
0.893 

0.85, 
0.80, 
0.76, 

1 

DID" 
0.98a 
0.92' 
0.88, 

0.96, 
0.87, 

0.92, 

0.938 
0.86, 
@83a 

0.821 
0.74, 
0.675 

0.82, 

2 

DID" 

0.84, 
0.79, 

0.93, 
0.79, 

0.86, 

0.96. 

0.735 

0.90, 
0.776 
0.72, 

0*75? 
0.64, 
0.5 10 

3 

DIDo 
0.94, 
0.77, 
0.72, 

0.9 1, 
0.7 1% 
0.638 
0.80, 

0.86, 

0-63, 

0.67, 

0.68, 

0.525 
0.38, 

4 

DID" 
0.92, 
0.69, - 
0.87, 
0.62 - 
0.76' 
- 

0.59, 
0.544 
- 

0.425 
0.28, 

Data h m  the following sources, interpolated to round concentrations where 
necessary: 
(a) Mius, R., 3. Phys. C h . ,  61 (1957) 1258. 
(b) MILLS, R., private communication, (1958) ; 3. A m .  c h .  Soc., 77 (1955) 61 16. 
(c) &IS, R., 3. &s. C h ,  61 (1957) 1631. 
(d) STOKES, R. H., WOOLF, L. A. and Mrus, R., ibid., 61 (1957) 16%. 
(c) WOOLF, L. A., Ihuis, University of New England, 1958. 

Do = c A o ;  Do for Na+, Cl-, I- and H+ has respectively the valua 1.333 Er 
2*032,2@45 and 9.308 x lo-' an' SCC-1. 

No reliable studies of tracer-diffusion have yet been made at con- 
centrations of supporting electrolyte low enough to test the limiting 
law (1 1.42). The data in concentrated supporting electrolytes lie 
well above the predictions of the limiting law, a situation similar to 
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that arising in studies of conductance, ordinary diffusion, and 
activity. There is little doubt that the introduction of a finite ion 
size into the theory would raise the predicted values but it seems 
unlikely that it will explain the large differences in the tracer diffu- 
sion coefficients at high concentrations. I t  must be expected that 
the viscosity of the supporting electrolyte will play an important 

01 I ; , \. 
0 06 10 M 4 

4c - 
Figure 11.4. Tracer dz@uion coe&mls of ions in poloJsium chloride solutions 

role, and this is confirmed by a detailed consideration of the result 
in Table 11.7. 

Potassium chloride causes only a small change of viscosity with 
concentration, and the tracer diffusion coefficients of ions in potas- 
sium chloride solutions are presumably governed by interionic 
effects. In Figure 11.4 DIDO is plotted against d&1 for four ions; 
the limiting slope given by equation 1 1.42 is also shown. Evidently 
not even approximate reliance may be placed upon the limiting 
theory in the range of supporting electrolyte concentration above 
0.1 M. The sodium ion suffers only a slight retardation amounting 
to 2 per cent at 1 molar KCI, while the hydrogen ion suffers 17 
per cent retardation at the same concentration. 

If we consider the same ion in different supporting electrolytes, 
the curves for sodiuni chloride and lithium chloride fall progressively 
klow that for potassium chloride, suggesting that the viscosity is 
important. Indeed, the results for iodide ion fall on a single smooth 
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curve for both LiCl and NaCl as supporting electrolytes, when 
plotted against viscosity instead of concentration ; the same is true 
for sodium ion and for chloride ion, but not for hydrogen ion. The 
results for potassium chloride as supporting electrolyte do not lend 
themselves to this form of plotting, as the viscosity is nearly constant. 

I t  also appears that in lithium and sodium chloride solutions, 
sodium ion is less affected by the viscosity of the supporting electro- 
lyte than are iodide or chloride ions. A very tentative explanation 
is that in a concentrated solution the sodium ion will tend to have 
as its immediate neighbours chloride ions which have little effect on 
the local viscosity; the chloride and iodide ions, on the other hand, 
will be predominantly surrounded by sodium ions or lithium ions 
which cause a marked increase in the local viscosity. This sugges- 
tion is consistent with the ideas of BROERSMA'~~). 

C O N D U C T A N C E  A N D  VISCOSITY IN 
C O N C E N T R A T E D  SOLUTIONS 

In conductance, the interionic effects are even more complicated 
than in tracer-diffusion, for one is measuring the motion of all the 
ions, cations in one direction and anions in the other. Surprisingly, 
however, the equations developed for dilute solutions continue to 
give a reasonable account of the conductance up to quite high con- 
centrations, though of course without the nearly perfect quantitative 
fit which can be obtained at low concentrations. An equation which 
proves fairly successful is that proposed by WISHAW and STOKES'~~); 
this is equation 7.27, with the relaxation-factor ( 1  + A X / X )  given 
by Falkenhagen's earlier expression 7.13, and with the introduction 
of the relative viscosity of the solution: 

A q / q O  = (Ao - - ) ( I  46 +Y) 1 + KU 

....( 11.50) 

Though the equation has little theoretical justification at high con- 
centrations it is most effective, requiring only the single arbitrary 
parameter u to reproduce the conductances of fully dissociated 1 : 1 
electrolytes up to concentrations of many moles per litre with an 
accuracy of a few per cent, as shown in Figure 11.5. There is a 
tendency for the measured conductances of viscous salt solutions to 
be slightly higher than the equation predicts, if the u value is selected 
to give reasonable fit at the lower concentrations. A better fit can 
be obtained by using a fractional power of the relative viscosity, but 
this amounts to introducing a second arbitrary parameter. 
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A bibliography of recent conductance and viscosity data for a 
number of concentrated solutions appears in Appendix 6.3. 

MUTUAL DIFFUSION IN CONCENTRATED ELECTROLYTES 

In the ordinary diffusion of a salt in a concentration gradient, both 
ions must move in the same direction at the same speed, to maintain 
electrical neutrality. The main interionic effect is therefore the 

Figure 11.5. Equivalent conducrivius of concenfrafed 1 : 1 elctlrob& 

harmonic averaging of the ion mobilities in accordance with equa- 
tion l l .4; the electrophoretic effect is relatively small, and levels 
off to a nearly constant value at high concentrations as shown in 
Figure 11.1. The relaxation-effect, which presents the greatest 
theoretical difficulties in conductance and tracerdiffusion, is for- 
tunately absent since the ionic distribution remains symmetrical. 
From the success which the theory of the electrophoretic effect has 
in representing transport numbers, we may reasonably argue that 
it is equally valid in diffusion, even at several moles per litre. We 
therefore make use of equation 11.21 in the ensuing discussion of 
diffusion in concentrated solutions. 
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For concentrated solutions a number of effects, negligible for the 
dilute solutions 90 far considered, become of great importance. 
These are: 
1. That solvent molecules will in general move in the opposite 

direction to the solute. 
2. That some of the ions may carry with them a permanently 

attached layer of solvent molecules, which acts as a part of the 
diffusing solute entity. 

3. That the viscous forces may be considerably modified by the 
presence of large numbers of ions. 

Our theoretical treatment of these phenomena will be based on 
that due to HARTLEY and  CRANK'^). We consider first a non- 
electrolyte solution containing only two types of diffusing entity, 
the molecules A and B and also restrict ourselves to the case where 
the partial volumes, VA and PB, of both components are constant; 
this means in practice that the coefficients discussed will be ‘differ- 
ential’ values referring to diffusion between two solutions differing 
only slightly in concentration. In this case the diffusion coefficient 
measured experimentally will be in terms of the flux across a plane 
P so fixed that the total volumes on each side of it remain constant; 
that is, across a plane fixed with respect to the apparatus. This 
measured diffusion coefficient is denoted by DI for component A,  
and by DS for component B ;  and we have, denoting the fluxes of 
moles of A and B across unit area of the plane P by J I  and J I :  

CA and CB being the concentrations of A and B in moles per unit 
volume. The fluxes of volumes of A and B through the plane P are 
therefore : 

and 

But since there is no net transfer of volume across the plane P, it 
follows that the sum of these two quantities is zero: 

Also, since CA and CB are the numbers of moles of A and B in unit 
volume of solution : 

PAC, + PBCB = I 
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Differentiating this with respect to x gives: 

. . .( 
and on comparing (1 1.51) and (1 1.52) it is evident that for b 
hold it is necessary that: 

Dx E DE 

1.52) 

5th to 

except for the trivial cases PA = 0 or tB = 0. Thus the diffusion 
of a binary system where the partial volumes are constant can be 
described by a single diffusion coefficient, which may be called the 

O P  

- t IX‘fGWhJ - C, hcmahy dpontive ac - C, hws/y a4 negafive - Dimcfion fl &Rwh of A - Gihution cf &ffusian of R 
Figure 11.6 

mutual diffusion coefficient, and denoted simply by Dv; the same 
value of Dv will be found whether one measures and calculates 
from the concentration of component A or component B. 

Next, Hartley and Crank introduce the idea of an ‘intrinsic 
diffusion coefficient’ of each component, here denoted by Dh and 
Di. The passage of component A through the volume-fixed plane 
P just discussed must necessitate the passage of an equal volume of B 
in the opposite direction, in order to preserve the fixed volumes on 
each side of the plane. The total flow of each component is regarded 
as made up partly of a true diffusion-flux and partly of a ‘bulk flow’ 
which originates in the volume-difference between the two com- 
ponents. A plane Q may be imagined (though not as a rule con- 
structed) so that no ‘bulk flow’ occurs through it; and the ‘intrinsic 
diffusion coefficients’ DL and DL are defined in terms of the flux 
across unit area of such a plane. (A better physical idea of the 
meaning of these intrinsic diffusion coefficients may be obtained as 
follows: Imagine two solutions of slightly differing compositions to 
be placed in a porous-diaphragm diffusion cell such as that shown 
in Figure 10.1. Now imagine that the action of gravity is abolished 
and that both ends of the cell are opened. The liquids will stay in 
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place, having no reason to do otherwise, but there will be no 
artificial restraints upon the motion of the liquids, such as are 
normally imposed by the closure of the ends. Under these condi- 
tions, the rates of transfer of the two components across the 
diaphragm will be governed by the intrinsic diffusion coefficients 
Dh and D i .  In the normal use of the cell with the ends closed, the 
rate of transfer of both components is governed by the mutual 
diffusion coefficient Dv.) 

Since the partial volumes are constant, the concentration- 

gradients 5 and 5 must be opposite in sign; suppose that cA 
ax ax 

increases to the left (see Figure lZ.6), and CB to the right, and that 
the distance x is measured from left to right. Then on the right of 
the plane Q there will be a rate of increase of volume, due to the 

entry of A, given by - V D' and a rate of decrease of volume, 

due to the outward passage of B, given by + VBDl, ax. The net 

rate of increase of the volume V on the right of Q is therefore 

A 

acB 

given by : 

( 2 + V ~ D ~  2) . . . .(11.53) 
a v' 
at 
- = -  

This expression, since we are considering unit cross-section of the 
plane Q, also gives the rate at which the plane Q moves away from 
the tixed plane P. Since no bulk flow occurs through Q, the motion 
of this plane with respect to P must be due to a bulk flow through P; 
so that expression (1 1.53) also represents the bulk flow through P 
from right to left. The bulk flow therefore involves a transport of 
component '4 from the left to the right of P (Le., in the direction of 
diffusion of A), given by: 

av '  
J A  (bulk flow) = - cA at 

This transport of A across P by bulk flow is superimposed on the 
transport of A across P by 'pure' diffusion, which is given by: 

J c A  J A  (pure diffusion) = - Dh ax 
The total flux of A across P is therefore: 

J ,  (total) = - I)' * a x  %! -+ C, ( * A &  v D' .- 

. . . .(11.54) 
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But the total flux J A  across the fixed plane P also defines the experi- 
mentally measured mutual diffusion coefficient D": 

... a c A  J A  (total) = - D" . (1 1.55) 

Combining equations (1 1.54), (1 1.55) and (1 1.52) now yields: 

Dv = Dk.+ VACA(Dh - Dk) . . . . (1 1.56) 
Now the intrinsic diffusion coefficient Dh of A at a finite concentra- 
tion CA is related to its value D l  at infinite dilution (CA = 0) by 
the factor (d In uA/d In CA) which expresses the effect of the devia- 
tion of the solution from ideal behaviour. It is also probable, but 
by no means certain, that the bulk viscosity of the solution compared 
with that of the pure liquid B should also be introduced; we denote 
this relative viscosity by q/&. The activity uA in the thermodynamic 
factor may be expressed on any scale of concentration we like, since 
the logarithmic differentiation will eliminate any constant con- 
version factors; we choose the mole fraction scale (with mole 
fractions NA and Jv,) for later convenience. This gives: 

where D A B  is the diffusion coefficient of A at infinite dilution in B, 
and DSB is the (self) diffusion coefficient of B in pure B. 

I. 

JVA 

+ NBVB 
, one finds on logarithmic differentia- Since CA = 

tion, and using NA + NB = 1, 

d hl CA J v A ( P .  - V d  =- VBCA -= 1 
d In NA - N A P ,  + JvBVB Jv. 

and similarly 

Hence equation (1 1.57) becomes: 
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Furthermore, the Gibbs-Duhem equation gives: 

Using th is  along with equations (1 I .58) and (1 1.56) gives for the 
mutual diffusion coefficient D": 

Since 3 = 5 and CdpA + CBpB = 1, the square bracket 

simplifies giving finally: 
NB 'B 

which, by symmetry, can also be written: 

This is Hartley and Crank's expression (in a slightly modified form) 
for the mutual diffusion coefficient at any concentration. If volume 
effects and the counter-diffusion of the solvent are ignored, as was 
done in the derivation of the expressions for dilute electrolytes, one 
obtains an expression of the form: 

....( 11.61) 

for comparison with (1 1 .So), when we see that the more complete 
expression differs from (11.61) in three respects: first, the activity 
factor in (11.60) is a differential with respect to mole fraction 
instead of concentration; secondly, the diffusion coefficient of the 
solvent also appears; and thirdly, the relative viscosity of the 
solution has been introduced. 

The theory is capable of straightforward extension to the case of 
the diffusion of a single electrolyte in solution, making allowance 
for the possible hydration of the ions. We let B denote the solvated 
electrolyte, 1 mole of which is associated with h moles of bound 
water, and let A denote the free water. These we shall treat as the 
diffusing entities. In accordance with the notation used in the 
discussion of the chemical potential of solvated ions (Chapter 9), 

325 



11 THE THEORY OF DIFFUSION OF ELECTROLYTES 

primed symbols will he used to denote quantities in which account 
is taken of solvation. Equation ( I  1.60) now becomes: 

The mole fraction N i ,  like the term .ArB which we have used in the 
derivation of formula ( 1  1.60) means simply the ratio of the number 
of the diffusing entity B to the total number of diffusing entities of' 
both species. Since the diffusion of the ions of the electrolyte is 
restricted by the condition of electrical neutrality, it is permissible 
to treat the partial volumes, concentrations, ctc., as those of the 
hydrated electrolyte as a whole, without considering the separate 
ionic quantities. The only place in ( 1  1 .SO) at which consideration 
must be given to the fact of ionization is in the expression 
d In flkf$l; this may be written d In .iVif$l = d In a;P, since we have 
remarked that any scale of activity can legitimately be used. Now 
the solute is hydrated ana ionized; let it produce v ions per 'mole- 
cule' so that aB = (a,)' denotes the conventional activity as com- 
puted for the unhydrated solute. Then because of the hydration, 
and for an aqueous solution, d In ah = d In ag + hd In a, (where 
a, = water activity). Also by the Gibbs-Duhem relation: 

m 
dIna,= -- 55.51 In ' B  

whence 

d In a;P = (1 - 0.018hm) d In ag = ( I  - 0.018hm)v d In a, 
. . . .(11.62) 

where a* is the mean activity of the unhydrated solute. 
In formula (1  1.60), we also have to consider the meaning to be 

given to the limiting intrinsic diffusion coefficients D t  and O i l .  
In the case of mixtures of liquids which are non-electrolytes their 
meaning is clear. For an electrolyte solution, however, it is neces- 
sary that formula (1 1 .SO) shall reduce to the Nernst limiting value 
as .iV; --f 0. This means that because of the factor v in (1 1.62) we 
must put for electrolytes aA = Do/v where Do is the Nernst 
limiting value; or more completely, if we include the electro- 
phoretic corrections, D t  = (00 + A1 + A,)/v. DIA is the diffu- 
sion coefficient of water in the infinitely dilute solution, i.e., in the 
absence of any interfering non-ideal effects and volume restraints: 
we therefore put it equal to the self-diffusion coefficient of pure 
water, D&,. Now, with the special meaning which applies here 
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to the concept of 'mole fraction', we can put J V ~  and 
of the ordinary molality and the hydration number h:  

in terms 

m 55.51 - hm 
Jv; = . . . .(11.63) 55.51 - hm + m' Mi = 55.51 - hm + m  

Hence 

. . . .(ll.64) 
d In JV$, 1 - -_ -- 
d In m 1 + 0418(1 -- h)tu 

we therefore rearrange (1 1.60) to read:' 

JVi + N i 5 ]  !& ....( 11.65) 

and put Dig, = Do/v, DIA = D$,o, Mi and .N$, as given by (1 1.63), 
D%A 1? 

dlnaje d l n m  
dlnm d1n.N; DV = * - * - 

d In m 
as given by (1 1.64) and d In ah as given by (1 1.62), 

obtaining : 

( D:: - h)] rl% 
11 

d In a Dv = DO (=*) ( I  - 0.018hm) 1 + 0.018m Y 2 

....( 11.66) 
Equation ( 1 1.66) was first derived from equation (1 1.60) by AGAR'"). 
In (1 1.66), electrophoresis is neglected; if it is included, we merely 

d In a 
write (DO + A, + A2 + . . .) for DO. The activity factor f d In m may of course also be written in the alternative form 

(1 +mdIny/dm) 

The diffusion coefficient Dv given by (1 1.66) represents that which 
would be obtained if the volume-concentration and flux in the 
diffusion experiment were computed on the basis of the hydrated 
solute; however, since the volume-concentration of the electrolyte 
is unaffected by any considerations of hydration of the ions, it is 
the same as the diffusion coefficient D obtained by the ordinary 
computation with the concentration in moles of anhydrous solute per 
C.C. and the flux also in moles of anhydrous solute per cm2 per sec. 
For a uni-univalent electrolyte at m values small enough to justify 

neglecting the square of (0*018hm), and including the electrophoresis 
corrections in the main DO factor, but neglecting them in the small 

correction term v -, (1 1.66) becomes: DO 
D3.0 

. . . . (1 1.67) 
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We shall now use equation (1 1.67) in interpreting the D values of 
1 : 1 electrolytes at concentrations up to a few moles per litre. The 
value of the self-diffusion coefficient of water has been the subject of 
much recent research. PARTINGTON, HUDSON and BAONALL(~~) ob- 
tained 2-43 x cm2 sec-l at 25", with an estimated accuracy of 
f 0.5 per cent, by using the magnetically-stirred porous diaphragm- 
cell method ofstokes with heavy water as tracer; W A N G ( ~ ~ )  obtained 
by the Anderson capillary-tube method the values (at 25'): 
(2.34 f 0.08) x loe6 using heavy water, (2.44 f 0.07) x lods 
using tritiated water, and (2.66 f 0.12) x using H,O'$. 
The mean of Wang's three values is 2.45 x in excellent 
agreement with that of Bagnall and Partington; we shall therefore 
adopt the value of 2.4, x 10-5 for DB.0 at 25O in equation (1 1.67). 

In  the application of this equation, we note that all the quantities 
except the hydration number A are capable of calculation from 
experimental limiting mobilities and thermodynamic data; the 
terms Al and A% also involve assuming some value for the ion sue 
parameter a, but since this appears only in small correction terms, 
the exact value chosen is not highly critical. We shall use the u 
values given in Table 9.5. 

The factor 1 + m - In ') can be computed from the tabulated 
activity coefficients, or from the osmotic coefficients, 4, since by a 
simple application of the Gibbs-Duhem relation we obtain: 

(1 + m x y )  = 1 + - - = 4 + m - = 4 + - - 2 d d m  dm 2 dt/m 

( dm 

d l n  d m d l n y  d4 d m  d4 

. . . .(11.68) 

Any of these equivalent forms can be used, different ones being best 
adapted to different concentration regions. The slopes involved 
can be obtained graphically or by the numerical method of 

RUTLEDOE(~~). Values of D, Do, A,, AB, (1 + m 's), 
the ratio: 

and 

f ( D ) = D o ~ / [ ( D + A l + A 2 ) ( l  + m d z ) ]  ....( 11.69) 

are given in Table 11.8 at a number of concentrations, my for 
sodium chloride at 25O. It will be seen from equation (1 1.67) that 

the plot of -f(D) versus m should be a straight line of slope 

0.036 (D&o/oO - A). It should be noted that the D values, etc., of 
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this table are given at round molalities rather than at round volume 
concentrations as in Appendix 11.2; the quantities A, and A2 are 
calculated at round values of (KU) which are converted to concen- 
trations and thence to molalities, then graphically interpolated to 
the round molalities. 

A comparison of the last two columns of Table 11.8 shows that 
the relative viscosity factor can play an extremely important part. 

Table 11.8 
Applicatwn of Equation (I 1.67) to Sodium Chloride Solutions at 25" 

- 0.006 - 0.008 - 0.010 - 0.011 - 0.013 - 0.014 - 0.015 - 0.016 - 0.01 7 - 0.018 - 0.019 

m 

+ 0.024 + 0.032 + 0.040 + 0443 + 0049 + 0.050 + 0.052 + 0.052 + 0.05 1 + 0.049 + 0.047 

0 
0.0 1 
0.05 
0. I 
0.2 
0.3 
0-5 
0.7 
1 -0 
1.5 
2.0 
3.0 
4.0 

0.997 
0.989 
0-985 
0.982 
0.965 
0.946 
0-927 
0.879 
0.838 
0-752 
0-678 

D obs. 

1.001 
0.998 
1.002 
1.009 
1.009 
1-007 
1.014 
1-008 
1.010 
1.008 
1.023 

1*610* 
I -547 
1 *506 
1 -484 
1 -478 
1.477 
1.474 
1.475 
1.482 
1.494 
1.51 1 
1.538 
1 -567 

1 *OOo 
0-955 
0-927 
0917 
0-914 
0.9 15 
0-927 
0.946 
0-970 
1 *03 1 
1 *096 
1 -245 
1.410 

1 *OOo 
1-001 
1 -004 
1.009 
1.018 
1.027 
1 -046 
1 -065 
1 -094 
1.147 
1.205 
1.341 
I -509 - 

f(D) I '1 
:q. (1 I .69) 

Nemt limiting value - D. 

W e  have taken over the bulk viscosity of the solution from the 
theory for non-electrolytes, but it is by no means certain that this 
step is justified: the change of the bulk viscosity brought about by 
adding ions is not necessarily a fair measure of the change in 
frictional resistance experienced by the ions. For this reason we 
shall give two parallel sets of results, one in which we write: 

. . . .(11.70) rl - f ( D )  = 1 + 0.036m 
rl0 

to obtain h, and another in which we write: 

f(0) = 1 + 0.036m (7- D&*O h') . . . .(11.71) 

to obtain an alternative hydration number h'. 
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In view of our earlier discussions of viscosity effects, we might 
expect the actual hydration numbers to be between h and h', but 
nearer to the former. 

In the case of sodium chloride we see that bothf(D) and -f(D) 
approach unity at m = 0 in a satisfactory manner; it must be 
remembered that the experimental error in I) is about 0.2-0.3 per 

cent and that in the factor 1 + m - In ') is probably 0.2 per cent, 

at least for the more concentrated solutions. Consequently we 
'I should be satisfied if the functions f ( D )  or -f(D) are linear in 

m with a scatter of about 0.5 per cent, and extrapolate to unity 
with a similar tolerance. It should also be remembered that the 
calculation of the electrophoretic corrections is of doubtful validity 
for the higher concentrations where also A2 is rather sensitive to 
the value of the ion-size parameter, and that our neglect of the 
squares of terms in 0-018m, in obtaining equation (11.67) from 
equation (1 1.66) may well involve some departure from linearity 
at the higher molalities. For all these reasons, it seems advisable to 
use only the data up to 1 M for the evaluation of h and h'. We 

find for sodium chloride, from a graph of - f(D) versus m, 
T - f ( D )  = 1 + 0-014m (average deviation f 0.2 per cent up to 

1 M) and f ( D )  = 1 - 0-072m (average deviation f 0.2 per cent 
up to 1 M), whence putting D*/Do = 2.44/1.610 = 1.51 we 
obtain: 

I t  follows that either of these values, inserted in equations (11.70) 
and (1 1.69) in the case of h, or in equations ( 1 1.71 j and (1 1.69) in 
the case of h' will reproduce the observed diffusion coefficients of 
sodium chloride with an average accuracy of 0.2 per cent, i.e., 
within experimental error. The results for the ten 1 : 1 halides in 
Appendix 1 1.2 are also capable of representation by these equations, 
in the concentration-range up to 1 M, the values needed for the 
two alternative parameters h and h' being given in Table 11.9. The 
'deviations' listed indicate the percentage accuracy with which the 
equations are capable of reproducing the observed diffusion 
coefficients, using the given values of h or h'. It is clear that there 
is little to choose between the two equations on the score of accuracy. 
Equations (11.69) and ( 1  1.71), in which the viscosity factor is 

330 

?I 
'Io 

( dm 

'Io 

rl 
To 

'Io 

h ~ ~ c l  = 1.1, or ~ ' N ~ C I  = 3.5, 
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omitted, give at first sight a more reasonable set of hydration 
numbers, in that the values of h' increase in the order: iodide < 
bromide < chloride as would be expected from the order of the 
sizes of the bare ions. On the other hand, the reverse order, as 
found for the h values, is the same as that found in the treatment of 
activity coefficients in terms of hydration (Chapter 9). Furthermore, 

Table 11.9 
'Hydration Jvumbns' from D@ision 

1.2 1.5 1.1 

0.4% 0.6% 0.2% 

0.5% 1.2% 0.5% 

0.3 - 0.3 3.5 

04% 0.6% 0.2% 

0.5% 1.0% 0.4% 

1.2 2.2 

0.3% 0.5% 

06% 08% 

2-9 2-9 

0.5% 06% 

1.0% 1.3% 

6.3 5.6 

- 
- 
0.5 

0.2% 

0.5% 

0.2 

02% 

0.5% 

HCI 1 HBr 

the h values are all positive, whereas h' for potassium iodide is 
negative and so cannot be physically interpreted as a hydration 
number; and the h values are more nearly additive for the con- 
stituent ions than are the h' values. The following sets of ionic 
hydration numbers are capable of giving the h value for any salt 
in Tuble 11.9 within 0.1, except for sodium iodide and bromide 
where the additive values differ by 0.3 and 0.2 respectively from 
the observed. 

Ionic Hydration Numbers from Diffiuion * Ion I- I I!-- 
The two sets (a) and (b) both lead to the same sums for positive and 
negative pairs; the latter set based on h ( N H f )  = 0, is perhaps the 
more reasonable. 

The above treatment of diffusion in concentrated solutions, while 
serving to indicate the more important effects which have to be 
considered, is in no sense final or completely satisfactory. The 
parameter h is useful in that it enables one to represent the observed 
diffusion coefficients within about one half of one per cent up to 
one molar concentration by means of equations (1 1.66) or (1 1.67). 
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It does not follow that h therefore necessarily represents only the 
hydration of the solute; there may be other short-range effects 
which would result in the appearance of a multiplier of the form 
(1 - urn) in the expression for the diffusion coefficient. Compre- 
hensive investigations of the diffusion of non-electrolyte solutions in 
the light of equation (1 1.59) will no doubt help to provide informa- 
tion on such effects. 

In the case of the salts, the interpretation of h as the number of 
water molecules moving with the ion as part of the diffusing unit 
may be tentatively accepted. No surprise need be felt that these h 
values from diEusion are smaller than those obtained from the 
treatment of activity data in terms of hydration, since in the latter 
treatment h was introduced as the effective number of molecules 
bound by the ion-solvent forces, and would therefore include 
contributions &om water molecules beyond the first layer, which 
would not be firmly enough bound to move as a unit with the 
ion. These ‘hydration numbers’ h, are, however, somewhat lower 
than the majority of estimates of ionic hydration by other 
methods. 

For the halogen acids, it is no longer legitimate to interpret h as 
the number of water molecules moving with the diffusing ions, for 
one would then be obliged to claim that at least 1-6 mole of water 
were moving with the hydrogen ion. But the hydrogen ion moves, 
in the main, by a series of proton-jumps from one water molecule 
to another, and the volume transfer in this process is negligible. It 
is of course possible that in addition to this proton-jump mechanism 
some ordinary motion of clusters of water molecules with a proton 
at their centre occurs; but one would have to assume such clusters 
to be rather numerous and large to account for an apparent hydra- 
tion number of 1.6. A more likely explanation, for which we are 
indebted to Dr. J. N. Agarcu), is that water molecules close toa proton 
are not available as arrival points for another proton after one of 
its jumps; this would lead to the ease of such jumps diminishing 
more or less linearly with concentration and so producing a decrease 
in the diffusion rate, similar in magnitude to that occurring with 
salts because of the motion of water of hydration. 

C O N C E N T R A T E D  S O L U T I O N S  O F  P O L Y V A L E N T  
E L E C T R O L Y T E S  

The theory of diffusion for higher valency types in concentrated 
solution is even more tentative than for the 1 : 1 electrolytes. One 
reason for this is that the theory of the electrophoretic corrections 
is less satisfactory, even for very dilute solutions; also experimental 
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data of any worth-while accuracy are very sparse. Only for three 
salts (18,mnrs) at 2 5 O  are adequate experimental data at present 
available. The observed diffusion coefficients are plotted as curve 
I in Figure 11.7 which also shows some theoretical curves. 
Curve IV represents the function: 

Figure 11.7. O b m e d  and cakulakd d$&n c&&& of calcium chloride 
at 25% curve I ,  a w l ;  curve II, equation (1 $73) with h = 0; curve 1x1, 

cqualwn(11.73)wirhh=4; nuocIY,cquatton(11.72)wt?hh=9 

without a viscosity factor, for n = 9; curves 11 and 111 show the 
function : 

[I + 0 * 0 1 8 m ~ ~ - h ) ] $  ....( 11.73) 

with h = 0 and h = 4 respectively. Electrophoretic corrections 
have been omitted. I t  will be seen that all these functions approxi- 
mately reproduce the form of the experimental curve, giving a 
rise followed by a maximum. Quantitative agreement is, however, 
far fiom satisfactory. 
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WEAK ELECTROLYTES 
THE idea of a weak acid developed in the early days of physical 
chemistry when it was noticed that a very large number of acids, 
most of them organic, obeyed a rule to which Ostwald was led by 
applying the law of mass action, a%/( 1 - a) = K, to his extensive 
measurements of the conductivity of acids. For the so-called strong 
acids, the ionic concentrations, judged by Conductivity values and 
using the relation a = A/AO, led to values of the ionization ‘con- 
stant’ which varied markedly with the dilution. This was one of the 
‘anomalies of strong electrolytes’ and many attempts were made to 
circumvent the law of mass action and preserve the ionic theory 
before it was realized that interionic forces were so important in 
solutions of strong electrolytes and were, indeed, sufficient to resolve 
this anomaly. 

Interionic effects are, however, not negligible even in the case of 
weak acids. The effects enter in two ways. Taking one example 
from a series of measurements which later we will discuss in more 
detail, the specific conductivity of 0.02N acetic acid at 25’ is 
0-00023132 in marked contrast to a solution of hydrochloric acid 
of the same concentration for which K,, = 0.0091448. The con- 
ventional equivalent conductivity of acetic acid is obtained by 
multiplying its specific conductivity by the factor 1000/0.02 to give 
11.566. It is known from other measurements that the equivalent 
conductivity of acetic acid at infinite dilution is A0 = 390.71 so 
that if th sum of the equivalent conductivities of hydrogen and acetate ions 
is the same at all concentrations, the concentration of each of these 
ions is: 

and only a fraction, a = 0.0296, of the acetic acid molecules are 
dissociated. 

Introducing the law of mass action, we get: 

a% 
1 - a  K = - =  1.806 x 
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‘Two errors occur in this derivation. First of all, the equivalent 
conductivity a t  an ionic concentration ac (approximately 0.000592 N) 
is not 390.71 ; it is slightly less because the interionic forces reduce 
it from its limiting value at infinite dilution; it will be shown later 
that i t  is 387.16 so that a = 0.02987 and X = 1.844 x 

Another interionic effect is allowed for by introducing the activity 
coefficient product into the ionization constant: 

Later a value of approximately 0.946 will be obtained for 
YH+YA-/’YB* : this makes K = 1.740 x 1 O-6. 

These two corrections act in opposite directions; whilst they are 
not large in magnitude, they introduce changes into the ionization 
constant well beyond the very small errors of experiment found in 
the best measurements. 

We see, therefore, that the Ostwald method was saved by the 
fact that the ionic strength of a solution of a weak acid is very small 
and the interionic forces are therefore small: it is essentially the 
appreciable magnitude of the interionic forces in a solution of a 
strong acid which leads to the failure of the law of mass action, the 
so-called ‘anomaly of strong electrolytes’. 

The situation is even less happy if we try to measure an ionization 
constant by the usual combination of a hydrogen (or quinhydrone) 
electrode in a buffered solution of the partially neutralized acid 
together with a calomel electrode connected by a ‘salt bridge’. We 
cannot be sure to what extent the liquid junction potential between 
the salt bridge and the solution has been eliminated and as, more- 
over, it is usual to use moderately large concentrations of the 
buffered acid, the activity coefficient term is appreciable. The trend 
to-day is to discard cells with liquid junctions and to devise suitable 
combinations which are in principle concentration cells without 
transport. This trend can be over-emphasized and one should not 
lose sight of the use which can be made of cells with liquid junctions 
if results of only moderate accuracy are required. Such cells are 
easy to set up, results are obtained rapidly, and for many purposes 
give a good approximation to the ionization constant. But if 
results of the highest accuracy are wanted, the cell without liquid 
junction should be selected. 

The perfection of technique in relation to ionization constants can 
be appreciated by reading two papers on this subject, one(” using 
electromotive force measurements and the other(2’ relying on 
conductivity measurements. Each paper is a classic. 
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I O N I Z A T I O N  C O N S T A N T S  F R O M  C O N D U C T I V I T Y  
M E A S U R E M E N T S  

MacInnes and Shedlovsky had the advantage of great experience 
in conductivity measurements on non-associated electrolytes. They 
then measured the conductivity of acetic acid at 25" in the range 
t = 040003 to G = 0.2. Because of the incomplete ionization of 
this electrolyte, the limiting conductivity, could not be 
determined by direct extrapolation of these data. Instead, it was 
determined as &+ + &-, these figures being obtained by applying 
Kohlrausch's law to the known limiting conductivities of the strong 
electrolytes, hydrochloric acid, sodium chloride and sodium acetate. 
A first approximatiori to the degree of ionization of acetic acid was 
then obtained by the formula: a = A/Ao. The approximate 
nature of this relation arises from the fact that the actual solution 
contains a concentration of ions, ac, which, though small, is not 
zero; the exact relation is a = A/Ai where A, is the equivalent 
conductivity of a hypothetical fully ionized solution of acetic acid 
at a concentration ac. MacInnes and Shedlovsky estimated A, by 
combining empirical equations for the conductivity of the strong 
electrolytes, hydrochloric acid, sodium chloride and sodium 
acetate, thus obtaining an improved approximation to a and a new 
value of ac; these successive approximations to a converge rapidly. 
They then computed K,, the ionization constant, from the formula 

K, = - a*yzG using for the activity coefficient the value predicted by 1 -a' 
the Debye-Huckel limiting law at the concentration ac. The more 
complete theory of the conductivity available today somewhat simpli- 
fies the calculation of A,, and we shall use the experimental results 
of MacInnes and Shedlovsky to illustrate this simpler procedure. 

For Ai we shall use equation (7.36) in the form: 

A, = Ao - (BIAO + B J G / ( l  + B U G )  

Since the actual ionic concentrations are very low (ac < 0.002), 
the value of A, will not be very sensitive to the exact value of (I, 
and an estimated value of 4 A  may be employed. The activity 
coefficient, yi, at the ionic concentration ac may similarly be 
computed from the Debye-Huckel expression: 

logy, M logf, = - A d Z / ( l  + B u ~ Z )  

again with a = 4 A. 
In Table 12.1 the major stages of the calculation are shown for 
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some of the concentrations studied by MacInnes and Shedlovsky. 
It will be seen from this table that measurements at concentrations 
less than t = 0.006 lead to K, values constant within the experi- 
mental error, and we can put X = 1.752 x 10-6. However, the 
results at higher concentrations show a small downward trend with 
increasing concentration. This is probably due to neglect of the 
activity coefficient of the undissociated molecule, the use off, 
instead ofy,, the possible effect of changing viscosity on the con- 
ductivity of the solution and even dimerization of the acid'3'. AU 
these effects are likely to be approximately linear in the concentra- 
tion of the acid, so that by plotting the value of log KO in the last 
column of Table 12.1 against the concentration, an extrapolation 

Table 121 
Cakulation of lonizdwn Constant of Acetic Acid at 25" 

0*oooo2801 
0*00011135 
0*0002 I 8 4  
0.00 1 0283 
0*002414 
0.0059 12 
0.02 
0.05 
0- 1 
0.2 

210.38 
127.75 
96.493 
48.146 
32.2 I7 
20.962 
11.566 
7.358 
5.201 
3.65 1 

L/A@ = c 

0.5384 
0.3270 
0-2470 
0.1232 
0.0825 
0-0537 
0.0296 
0.0 188 
0.0133 
0.0093 

390.13 
389.81 
389.62 
389.05 
388.63 
388.10 
387.16 
386-27 
385.46 
384-54 

0.5393 
0.3277 
0-2477 
0.12375 
0*08290 
0.05401 
0.02987 
0.01905 
0.013493 
0409494 

- 2 lwf* 

0.0039 
0.006 I 
0.0074 
0.01 13 
0-0141 
0-0 1 78 
0.024 1 
0-0302 
0.0357 
0.0420 

K. x los 

1.753 
1.754 
1.752 
1.751 
1.752 
1 -750 
1 -740 
1.726 
1.700 
1-653 

should eliminate these effects. Such treatment of the results leads to 
KO = 1.753 x 10-6; since we have worked with the molarity as the 
concentration unit, this ionization constant is on the molarity scale. 
On the molality scale it would, by equation (2.42), be 1.758 x 10-6. 

I O N I Z A T I O N  C O N S T A N T S  FROM E L E C T R O M O T I V E  F O R C E  
M E A S U R E M E N T S  

The electromotive force method has the advantage of greater ex- 
perimental ease. It depends essentially on the construction of a cell: 

H,IHA, NaA, XYlX 
where HA is a weak acid and X is an electrode reversible to one ion 
of the electrolyte XY whose ionic concentration is known, i.e., 
usually XY and HY must be strong electrolytes. Since the cell: 

H,IHCIIAgCI, Ag 
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has been studied so extensively, it is natural that the study of weak 
acids should commence with the cell: 

H,IHA(m), NaA(m'), NaCl(m")IAgCI, Ag 

This is essentially a cell containing hydrogen ions derived from the 
weak acid and chloride ions from sodium chloride, together with 
two electrodes reversible to these ions. The potential of the cell is 
therefore : 

E = Eo - k log yH+yCI-mH+mCI- . . . .(12.1) 

We now introduce the law of mass action: 

.... Y H + Y A - ~ H + ~ A -  
Y H A ~ E I A  

K, = (12.2) 

where YHA is the activity coefficient of the undissociated part of the 
weak acid and not the ionic activity coefficient product, ya+yA-. 

Equations (12.1) and (12.2) give: 

Since m a -  = ma, mA- = ni' + mH+, mHA = m - mH+ then, unless 
the acid is moderately strong, mA- m m' and mHA m m, and: 

7~ . . . . (12.3) E - Eo + klog 7 = - k log K, - k log- mm" YH+YcI- 
m ?%+A- 

To take one example from the paper of Harned and Ehlers, at 
m = 044922, m' = 044737, m" = 0.05042, E = 0.57977 at 25" 
and Eo = 0-22239 whence the left-hand side of the above equation 
is 0-28164V and, to a first approximation, Ka = 1.729 x 10-9 
From cell measurements with different concentrations of the com- 
ponents, values of log KO, not corrected for the activity coefficient 
term, are plotted against the total ionic strength and the curve 
extrapolated to zero concentration to give the limiting value of 
logKO. For acetic acid at 25", Harned and Ehlers found 
KO = 1.754 x 10-5 which agrees remarkably well with the result 
of MacInnes and Shedlovsky. 

The method has the advantage of simplicity and speed; it is not 
difficult to extend the experiment over a temperature range by 
measuring the potential at 5" intervals from 25" to 60°, then coming 
down at  5' intervals to 0' and back again to 25O, with a triple check 
at 25". There is some reason to believe that the electrodes work 
best over the 0"-40" temperature range. If very accurate results 

340 



IONIZATION CONSTANTS 

are needed, the same cell can be measured with hydrochloric acid 
as electrolyte and a new determination of Eo made, thus obviating 
any minor difference due to the method of preparing the electrodes. 
The quinhydrone electrode can be used(') with acids like chloroacetic 
acid which are reduced by hydrogen. 

Instead of equating mA- to m' and mHA to m, it is more correct 
to put mA- = (m' + mH+) and mHA = (m - mH+), mH+ being calcu- 

lated either from mH+ w K,, ;;;. or from E sw Eo - k log mH+ma. For 
stronger acids, l i e  formic acid, a series of successive approximations 
may be necessary. For acids of even lower pK, the difficulty of 
calculating mE+ becomes more formidable as has been recognised by 
BAT& and by KING and  KING^. For example, sulphamic acid has 
PIC= 0-988 at 25O and an approximation to mH+ is not good 
enough; it could be evaluated from the e.m.f. data if y ~ + y a -  
could be calculated by a Debye-Huckel expression with a finite a 
term in the denominator. Unfortunately, the extrapolated value of 
pK is not independent of the u value selected, c.g. PK = 0.988 if 
a = 3.85A and PK = 1-084 if a = 640A and there is no way of 
finding which is the correct a value from the e.m.f. data alone. 
Conductivity measurements have, however, been made on sul- 
phamic acid' and, as we have already seen, an activity coefficient 
term is also needed in the calculation of the ionization constant. The 
resulting pR for sulphamic acid is again dependent on the a value 
selected but in this method an increase in a decreases the apparent 
pX whereas the converse is true in the e.m.f. method and King and 
King noted that the two methods led to the same extrapolated p X  
value (0.988) if u = 3.85A in both calculations. This they took as 
the most probable PK value although they noted that the agree- 
ment might be fortuitous in that the a value referred to sulphamic 
acid ions in one method and to these ions and those of sodium 
chloride in the other method. 

If the acid is very weak, boric acid8 for example, allowance must 
be made for hydrolysis : 

A- + H,O + HA + OH- 
Now mHA = m + m0H- and mA = m' - m0H- and mOH- comes from 

the approximation: mOH- = - If the acid is polybasic, for 

example phosphoric acid in its second stage of dissociation(@), the 
activity coefficient term in equation (12.3) is no longer small: we 

m 

Kam 

now get a term k log YE*Yc'-YEsoi, which is dealt with by using a 
?%+'YaPOi- 
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Debye-Huckel approximation: - log y Az21/Z, or even the 
extended Debye-Kiickel equation (9.1 1) for each ionic activity 
coefficient. But these are details which affect the computations; 
the principle of the method is remarkably simple and straightfor- 
ward. It should be added that special experimental technique is 
needed for the first ionization constant of carbonic acid(lO), when it 
is necessary to maintain a constant H,-CO, ratio in the gas around 
the 'hydrogen' electrode. The amino-acids are dealt(11) with simply, 

by considering them as dibasic acids derived from NH;RCOOH. 
An interesting problem occurs when a polybasic acid has ionization 
constants not fardifferent from one another, so that the acid molecule 
and its several derived ions may all be present in significant amounts 
during the neutralization. This effect is very marked with citric acid, 
and has been treated by BATES~'~). 

The electromotive force method has been applied to a number of 
weak acids, often over a temperature range and the field of mixed 
solvents has been explored. The extent of this work is illustrated in 
Appendix 12.1 in which are collected some of the more recent data 
pertaining to a temperature of 25" as well as the numerical values 
of the parameters of an equation which gives the temperature 
variation of the dissociation constant over a range from 0" to 50' 
or 60°. With few exceptions, the values recorded in th is  appendix 
were obtained by one of the two methods outlined above-conducti- 
metric or potentiometric with proper allowance for the interionic 
forces. 

The application of the method to a weak base involves nothing 
fundamentally different for a base such as ammonia has the 
ammonium ion as its conjugate acid and: 

+ 

NH: + H,O + NH, + H30+ 

with an ionization constant: 

YE+ YNH* m ~ +  ~ N H ,  K,, = 
YNH: mNH; 

whereas if the ionization is treated as that of a base: 

The cell: 
H,INH,OH (m), NH,Cl (m')IAgCI, Ag 

in which the hydrogen ions come from the solvent and are in 
equilibrium with the hydroxyl ions of the base, works well if 
adequate presaturators are provided for the stream of hydrogen gas 
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to prevent loss of ammonia from the cell and if a correction is made 
for the solubility of silver chloride in the ammoniacal solution, for 
which purpose the instability constant of the ammine Ag(NH,): 
must be known: the hydrolysis of the ammonium ion requires a 
further correction and the appreciable vapour pressure of ammonia 
has to be studied if the electromotive force is to be corrected to 
unit hydrogen pressure. With attention to these matters, a reliable 
set of potentials can be measured over a temperature range, 0 - 50'. 

reduce the correction due to solubility of the electrode material, 
the silver-silver iodide electrode has been used by OW EN^^ who 
found Kb = 1.75 x Another method, which avoids difficulties 
due to volatility of the base and dissolution of the electrode-material, 
is that of 'partial hydroly~is','~ In the cell: 

HplNH4A(m), NaClIAgCl, Ag 

where NH4A is the ammonium salt of a weak acid with ionization 
constant Kh, because of the equilibria between the various species 
in this solution, four equations can be deduced: 

BATES and PINCHING'3 found Kb = 1.77 X 10" at 25" To 

m mNH9 -k mNH; = mHb. -k mA- 

and the condition of electrical neutrality: 

m ~ +  -k ~ N H ;  =  OH- 4- mA- 

From the last equation it can be seen that mNH; = m, only if, 
the solution is neutral; if, as in this case, the solution is alkaline, 
mNEf is slightly greater than mA-: 

(a(B - mOH- . . . . (12.3b) 

From these four equations, it follows to a very good approximation 
that: 

KJA = ah+ 
or, more accurately: 

1 -up 
up 1 - u1 

K a K A  = ah+ . 3 .  - 
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whence 

As the last term is of the order 0.001, it suffices to calculate a2 
approximately from equation (12.3a) and then a1 from (12.3b). 
It is desirable that a2 be greater than 0-1 to ensure adequate buffer 
capacity but if the degrees of hydrolysis are too large, the electrode 
material becomes soluble: hence pKo and pKA should differ by 
less than two units. The first experiments were made with the base 
tris(hydroxymethyl)aminomethane, (CH20H), C . NH,, with the 
addition of equimolar amounts of potassium p-phenolsulphonate. 
Measurements were also made on the more conventional cell: 

H,IMOH, MClIAgCl, Ag 
The ionization constants found by the two methods were the same, 
confirming that the method of 'partial hydrolysis' was satisfactory. 
Subsequent measurements gave Kb = 1.77 x for ammonia at 
25'. 

T H E  S P E C T R O P H O T O M E T R I C  METHOD 

Ionization constants can also be measured by colorimetric methods 
or by ultraviolet spectroscopy. Figure I.?. I shows the ultraviolet 
absorption spectrum of p-nitrophenoP in a number of buffer 
solutions: it can be Seen that as the pH decreases absorption in the 
region of 3170A becomes more pronounced whilst that at 4070A, 
which is marked in alkaline solution, diminishes to zero in acid 
solutions. This suggests that absorption at 3170A is due to the 
uncharged p-nitrophenol molecule and that at 4070A to the nega- 
tively charged anion, there being an isosbestic point at 3500A 
where the extinction coefficients of the two species are equal and 
the two can be mixed in any proportion (at constant total molality) 
without change in absorption; thus the solution has the same 
optical density at any pH. At a wave length not that of the isosbestic 
point, however, the optical density does depend on the pH and: 

where D is the observed optical density, EHR and eR- are extinction 
coefficients, tHR and cR- concentrations and 1 is the cell length. 
Or : 

D = Dl(l - a) + D,a 
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where D,, D, and D are the optical densities of three solutions of the 
same total concentration of acid, measured in cells of the same 
length, D,  referring to a solution of low pH, D, to a solution of 

F i p e  12.1. Absorption spcCrnmr of -nitrophenol in solutions buffired at various pH values. 
Concentration o / p - n i t r o M l :  o.& 36 N. (From Braos, A. I., Trans. Faraakj Soc., 

50 (1954) SOO) 

high pH and D to one of intermediate pH in which a fraction a of 
the acid is present in the ionized form. The ionization constant of 
the acid is then given by: 

where pH 3 - log yH+ mH+ refers to a standard buffer in which 
the acid is dissolved for the measurement of D: the buffer should be 
so selected that its pH is about equal to the PK of the acid. The 
activity coefficient is calculated by Davies’ equation (9.13) although 
it has been found better to use 0.2 as the coefficient of the linear 
term. This may well be due to the fact that the method has so far 
been applied to organic acids with anions larger than those of the 
simpler electrolytes, requiring a larger Q term: in Davies’ equation 
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u = 3A, and the difference can be compensated by raising the 
coefficient of the linear term. The p X  value derived by this method 
should be independent of the nature of the buffer mixture, at least in 
the concentration range in which the assumptions about the ,:;q 

h Pfr? * \  

04 02 03 DY U.5 0.6 0.7 0.8 7'roo 
V'I - 

Figure 12.2. Ionization constant OJ'p-nitrophenol fiom measurements in four buffer mixtures 
A NaH,PO, : Na,HPO, : NaCl= I : 0.9819 : I 
B NaH,PO, : Na,HPO, : NaCl= 1 : 0.6376 : 1 
C NaH,PO, : Na,HPO, : NaCl = 1 : 1.529 : 1 
D NaH,PO, : Na,HPO, = 1 : 1 

(From ROBINSON, K. A. and Brccs, A. I., Trans. Furaday Soc., 51 (1955) 901) 

activity coefficient term can be expected to hold. Figure 12.2 shows 
that this is true for p-nitrophenoP in four buffer solutions up to a 
total ionic strength of 0.1 and gives us with confidence pX = 7.14, 
at 25'. 

Ionization constants can also be measured by potentiometric 
titration: the method need not be described in detail, for it has 
been dealt with elsewherela, but we will give a general formula for 
the hydrogen ion activity of a solution of a polybasic acid when 
titrated with alkali. Suppose an n- basic acid ionizes in n stages: 
HnA + Hn-,A ---t Hn-,A --c . . . . --+ HA + A, losing a hydrogen 
ion at each stage. Let the (n + 1) species carry p ,  q, r . . . . .t 
negative charges. Thus if H,A were citric acid, n = 3, p = 0, 
q = 1, r = 2, J = 3. HnA need not be a neutral molecule; if it 
were the NHl.N<t cation, then n = 2 , p  = -2, q = -1,r = Oor 
if it were the NH8*CH,.COOH ion, then n = 2, p = - 1, q = 0, 
r = 1. In any case, there will be n equations of the form: 

POLYBASIC ACIDS 
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where square brackets denote concentrations and activity co- 
efficients are introduced with proper reference to the charge on 
each species as indicated by the subscripts. The total concentration 
of acid is given by: 

and the condition of electrical neutrality is: 
c = [HnA] + [Hn-IA] + - * * + [A] 

[H+] + xc =)[H,A] + q[H,-,A] + . . . -t z[A] + [OH-l-Pc 
where xc is the concentration of alkali-metal cation resulting from 
the addition of alkali during titration. If H,A is a neutral molecule, 
p = 0; if it is a positively charged acid, such as the NFI;NH', 
ion, p has a negative value and the last pc term refers to an anion 
such as chloride which must accompany the positive ion. By 
elimination of the concentration terms from these equations, there 
results : 

< ( K l K 2 .  . . Kn) + . , . + Rug? K,K2 + &at-{ Kl = Pup+ 
where 

p = {xc + [H+l - W-I-l1/Y* 
Q = ((1 - x>c - [H+l + [oH-l)/~o 
R = ((2 - 4 c  - [H+l + [OH-I)/r, 

5 = {(n - 4 c  - CH+l + [OH-l>/rz 
- - - - - - -  

If [H+] and (OH-] are negligible compared to the terms in c (and 
this will usually hold for 4 < pH < 9) this equation reduces, for a 
monobasic acid such as acetic acid, to: 

( l  - x) Kl/rl = x'H+/Yo 

For a dibasic acid, it becomes: 

(2 - X )  X;Kdy2 + (1 - x)  KiUE+/Yi = x&+/j'o 
or : 

again assuming that [H+] and [OH-] are negligible. Thus 
(1 - x)y2 a,+/{(2 - x ) y 3  can be plotted against xyacrfi+/{(2 - x)yo} 
and Kl and X1K2 evaluated from the slope and the intercept of the 
plot, a method devised by S~eakman.'~ Alternatively, we can 
write: 

Kl = x w 2 / { r 0 [ ( 2  - 4 &/Ye 3- (1 - %I+/rll1 
K2 = [xuE2/Yo - ( - uH+/Yd/[(2 - x, Kl/Y21 
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whence Kl and Ka can be evaluated by successive approximations. 
The corresponding equation for NHjeNHj would be: 

(2 - 4 ~ 1 K J Y o  + (1 - 4 Kl%+/Y1 = .&+/Ye 

(2 - X ) ~ l K J Y l  + (1 - x)K,a,+/yo = .&+/Yl 

Ri 

and for the Ng.CHa.COOH ion: 

The ionization of a dibasic acid occurs by two paths: 

Ri 
H + +  I 

R- 

R, 
and it must be emphasized that the four ionization constants are 
not measured by direct experimental methods. Experiment does 
give the two ionization constants: 

and 

where the square brackets denote concentrations and the activity 
coefficients have been omitted for the sake of brevity. Clearly, 
Kl = KA.+ KB and l/Ka = l/Kc + l/KD and, since the free 
energy difference between (2H+ + R;R;) and RIH*ReH must be 
independent ofthe nature of the intermediate ion, KA-Kc = KB*KD' 

If the acid is symmetrical, R, = R,, as in oxalic acid and its 
homologues, then KA = K B  and Kc = KD, so that Kl = ~ K A  and 
Ka = 1/2.K,. If the negative charge on the R?R& ion is very 
far distant from the remaining hydrogen atom, so that it is without 
effect on the second ionization, we would expect K A  to equal Kc 
and KB to equal KO. In this extreme case, we would then have 
KJKa = 4*. The effect of the negative charge would, however, be 
to make it more difficult for the second hydrogen to ionize, so that 

* The general formula for an n-basic acid is: 



DIBASIC ACIDS 

KA > Kc and KB > KD, whence KJKg > 4. This is what is 
found: for azelaic acid, COOH(CH,),COOH, the first constant is 
six times as large as the second whereas for oxalic acid it is one 
thousand times larger. 

The acid, RlH.R2H, need not be symmetrical nor, indeed, need 
it be an uncharged molecule, for in the case of glycine hydrochloride 
we regard the cation, w*CHg.COOHy as a dibasic acid and 
formulate the ionization as: 

coo- 
Bb H+ + CHg 

COOHp <NH: -% coo- 
2 

H+ + CH2(NH 
cH'<NH+ C O O H d  > H+ + CHg< 

coo- 
NH2 

The CH2<NH+ species is called a zwitterionw; whilst it has zero 

net charge, it is highly dipolar with a dipole moment of the order of 
13 Debye units and cannot be regarded as a particle with no long 
range forces, a treatment which may be valid for the neutral 

molecule, CHg . As before, KAKC = K&D, but it is no 

longer valid to equate K A  to KB: in practice these are usually of 
different orders of magnitude. The relative amounts of zwitterion 
and neutral molecule coexisting in the solution are given by: 

3 

COOH 

<NHg 

and it will be observed that the ratio is independent of the hydrogen 
ion concentration. The inequality of KA and KB and of Kc and KO 
makes the problem more difficult to treat in that one further 
assumption has to be introduced. This usually takes the form that 
the effect of the carboxyl group on the ionization of the NHt group 
is not altered by estereing the carboxyl group: for example, that 
KE for the ethyl ester of glycine hydrochloride, a quantity which 
can be measured directly, is the same as K, for glycine hydro- 
chloride itself, a quantity which cannot be measured directly. 
Another methoda is to extrapolate from the ionization constants of 
the ethyl, propyl and butyl esters: it should be noted that, with 
p-aminobenzoic acid, the methyl ester does not fit into the 
sequence of the other esters. With some assumption of this nature, 
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ionization constants of an aminoacid can be determined and thence 
the fraction of the zwitterion present.22 For the aminoacids which 
go to form the proteins, the first ionization produces almost entirely 
zwitterions to the practical exclusion of the neutral molecules: to 
be exact, in the case of glycine the ratio of zwitterion to neutral 
molecule is 2.6 x 105. It  is different for the aminobenzoic acids, 
for the 0-, m- and p-isomers the fraction of zwitterion is 0.17, 
0.70 and 0.12 respectively. 

Returning now to a consideration of the symmetrical dibasic 
acid, BJERRUM23 recognised that the failure of the ratio Kl/K2 to 
equal the theoretical value of 4, can be explained by introducing 
into the free energy term an allowance for the electrical work to be 
done in dissociating the hydrogen ion under the influence of the 
charged carboxyl group distant R away: this work :will be e2/(&R), 
the probability of finding a hydrogen ion at the second carboxyl 
group will be increased by the factor exp{e2/(ekTR)} and the second 
ionization constant will be decreased by the same factor: hence we 
exDect: 

- Kl = 4 exp (GR) 
K2 

The effect of a dipolar substituent on the ionization constant of a 
monobasic acid has been dealt with similarly by E U C K E N ~ ;  if p is 
the dipole moment and 5 the angle of inclination, Eucken derives 
the equation: x; ep cos 5 - = exp (--) k TR2 

GANE and IN GOLD^^ have measured the ionization constants of the 
series of dibasic acids from malonic to azelaic acid. For glutaric 
acid and the higher homologues, Bjerrum’s equation gives reasonable 
values of R but for malonic and succinic acid the R values are much 
too low. Similarly Eucken’s equation, applied to acetic and chloro- 
acetic acids, gives too small a distance between the dipole and the 
carboxyl group. The theory would therefore appear to be sound 
in its application to long, thin molecules but not to shorter, more 
spherical molecules. That is to say, the theory applies when the 
electrical forces operate mainly through the solvent and we can 
use the macroscopic dielectric constant of the solvent in Bjerrum’s 
equation. This is not justifiable for a more or less spherical molecule 
and KIRKWOOD and WESTHEIMER~~ have elaborated Bjerrum’s 
work. They consider a model in which the acid occupies a spherical 
or ellipsoidal cavity in the solvent, the cavity having a dielectric 
constant, E -- 2, the value of‘ liquid paraffins. ‘rhe equations they 

K2 
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deduce represent observed ionization constants with reasonable 
assumptions about the size and configuration of the molecules. 

T H E  EFFECT OF T H E  SOLVENT ON T H E  IONIZATION 
CONSTANT 

The addition of another liquid to water usually reduces the dielectric 
constant; for example, a water-dioxan mixture containing 82 per 
cent dioxan has a dielectric constant of only 9.5. If this mixture is 
used instead of water as a solvent for a weak acid, the electrostatic 
forces between the cations and anions are increased and more 
opportunities are provided for the formation of covalent bonds. A 
decrease in the dielectric constant of the solvent should, therefore, 
be accompanied by a decrease in the ionization constant of a weak 
acid dissolved in it. This prediction has been amply confirmed by 
experiment. To quote only one example of the very large changes 
which are observed, the ionization constant of acetic acid in water 
at 25" is 1.754 x 10-6; in 82 per cent dioxan it is 3.1 x It 
is natural therefore to seek some relation between the dielectric 
constant and the ionization constant, but before considering this it 
would be well to study first the energy changes which accompany 
the transfer of a strong acid from one solvent medium to another. 

Much attention has been given recently to the properties of 
hydrochloric acid in different solvent media (see Appendix 8.2), 
by studying cells such as: 

H,IHCl in 20 per cent methanol/AgCl, Ag. 

Not only do such cells give information about the energy changes 
occurring during the transfer of hydrochloric acid from one solvent 
to another, but they are a pre-requisite if the Harned-Ehlers cell is 
to be used for studies of weak acids in mixed solvents. Moreover, 
we shall see later that the problems associated with this cell are 
closely related to those of the unbuffered cell: 

H,lacetic acid in sodium chloride solutionlAgC1, AS. 

Previously the potential of the cell: 

H,IHCl in water as solventlAgC1, Ag 

has been written: 
E = Ek - 2k log ym 

except that now we have introduced a subscript m to emphasize 
that the concentration and the activity coefficient are measured on 
the inolality scale. But there is no reason why we should not use 
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the mole fraction scale and indeed it may have theoretical advan- 
tages, so that we could have: 

E a= a - 2k log fNB 
The third possibility is: 

E = Q - 2k logyc 

We have therefore three standard potentials: 

E& = Lt [E + 2k log NB] 
N84 

Pm = Lt [E + 2k logm] 

e= Lt [E+2klogc] 
m+O 

M 

From the definitions of NB, m and c it follows that: 

E", = E& + 2k log lOOO/WA 

Q = Pm + 2k log do 

Similar measurements could be made for hydrochloric acid in 
another pure solvent such as methanol; the three Eo values would 
of course not be the same as in water; moreover, all the activity 
coefficients would be measured relative to unity at infinite dilution 
in pure methanol. 

Now suppose we had the hydrochloric acid cell with a 20 per cent 
methanol-80 per cent water mixture as solvent. We have a choice 
of two methods of defining any one of the three standard cell 
potentials. We could ignore the composite nature of the solvent and 
treat it just as a medium in which to dissolve the acid. By measuring 
the potentials at a series of acid concentrations we could obtain the 
standard potential as: 

'E = 'a - 2k log 8 f N B  

and 

This ungainly notation is used to indicate by the superscripts 
that the measurements are made in a mixed solvent medium and 
the subscripts mean that the activity coefficient is measured 
relative to unity at infinite dilution in this particular solvent 
medium. The corresponding equation for pure water as solvent 
would be: 

"E = "& - 2k log f NB 
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We might, however, prefer to consider the 20 per cent methanol 
cell in another way. We might say that it is nothing more than the 
cell with water as solvent to which has been added a certain pro- 
portion of methanol. As the 'water cell' has been studied so 
thoroughly, why not retain W E $ , ?  We are entitled to do so, writing: 

but it is most important to recognize that the activity coefficient of 
the acid in the mixed solvent is now measured relative to unity at 
infinite dilution in water and not relative to unity at infinite dilution 
in the mixed solvent. The standard potential is now given by; 

W E P ,  = Lt ["E + 2kl0g.W~ + 2kl0g#fJ ....( 12.5) 

where the last term does not disappear at infinite dilution in the 
mixed solvent. Instead, we see from equations (12.4) and (12.5) 
that: 

'E  = "4 - 2k log 4 f .WB 

N B 4  

Since the standard potentials both in water and in the mixed 
solvent are calculable from experimental measurements, then 

Lt log # f is also calculable. Is it a quantity of any significance? 

;;:presents the activity coefficient of hydrochloric acid at infinite 
dilution in 20 per cent methanol solution relative to unity at infinite 
dilution in pure water. At infinite dilution in either medium the 
interionic effects are absent. We are therefore measuring the effect 
of transferring a pair of ions from one solvent to another under 
conditions where the only effects are ion-solvent interactions. 
OWEN(*') calls this 'primary medium effect'. We naturally suspect 
that there ought to be a relation between the primary medium 
effect and the dielectric constants of the solvents. This is an im- 
portant matter to which we shall return, but first let us consider if 
there are any other kinds of medium effect. Consider the cell: 
Ag, AgCllHCl in waterlH,IHCl in 20 per cent methanollAgC1, Ag 
with the acid at the same mole fraction in each solvent. The cell 
reaction consists of the transfer of hydrochloric acid from the 
aqueous to the methanolic solution and the potential of the cell is: 

By making the mole fraction of hydrochloric acid the same in each 
half-cell, we have eliminated any energy change due to concentra- 
tion changes, that is to say the energy change is zero except for 
changes departures on departures from the laws of ideal solutions. 
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The mole fraction scale is particularly suited for considering such 
changes. But even if we can avoid energy changes resulting directly 
from a difference in concentration in the two half cells, the last 
term of equation (12.6) still represents a complicated operation- 
the transfer of hydrochloric from a finite concentration in water 
to infinite dilution in water, its transfer from infinite dilution in 
water to infinite dilution in 20 per cent methanol and finally a 
transfer from infinite dilution in 20 per cent methanol to a finite 
concentration in this solvent. But we can simplify this by noting 
that the potential of the cell could equally well be written: 

*E - “ E  = - 2k (log J f - log $ f) 
and we have already found that: 

W E &  - = Lt 2k log 4 f 
so that: N p O  

... 9s Bf log w = Lt log 4 f + log -- 
W f  h r B 4  Ef . (12.7) 

The term on the left Owen calls the ‘total medium effect’, total in 
the sense that it measures the total change in chemical potential 
attending the movement of hydrochloric acid at finite but equal 
concentrations in two solvents. Equation (12.7) shows that it is 
composed of two effects, the primary medium effect given by the 
first term on the right of the equation, determined by the difference 
of the ion-solvent interactions at  infinite dilution in each solvent 
and, in addition, a further effect given by the last term of equation 
(12.7). This Owen terms the ‘secondary medium effect’. Its signifi- 
cance is this: f measures the difference in the ‘non-ideal’ part of 
the chemical potential of hydrochloric acid at  a finite concentration 
and at  infinite dilution in 20 per cent methanol. It will be given by 
some form of the Debye-Huckel equation and one factor which will 
be important will be the dielectric constant of the medium. But 
#f measures a difference in the ‘non-ideal’ part of the chemical 
potential for the same concentration change in pure water and 
again the dielectric constant is important. In fact, the secondary 
medium effect should be given to a first approximation by 

gf 1.825 x lo6 
wf l o g r  = T 3 f 2  

when the subscripts, s and w, designate the solvent. Thus if the 
Debye-Huckel equation accounts for the activity coefficients in the 
separate solvents, it will give an equally good measure of the 
secondary medium effect. 
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These considerations are summarized as follows: the total 
medium effect on the transfer of an electrolyte from a finite concen- 
tration in one solvent to a similar concentration in another solvent 
is a composite one. The secondary medium effect results mainly 
from a difference in ion-ion interactions in the two solvents and is 
determined to a large degree by the dielectric constant of each 
medium. The primary medium effect is independent of concen- 
tration and results from a difference of the ion-solvent interactions; 
it also should be largely dependent on the dielectric constants. 

The simplest explanation of the primary medium effect is given 
by the Born equation for the energy of transfer of an ion of radius 
r from one solvent medium to another: 

or for a mole of a 1 : 1 electrolyte: 

Thus, if we could assume that the radius term does not change with 
the nature of the solvent, the standard cell potential should be a 
linear function of the reciprocal of the dielectric constant. Measure- 
ments have been made in recent years of for a number of 
solvent mixtures. The interpretation of the data is not easy. At one 
time it was thought(2*) that, by postulating that the hydrogen ion 
of hydrochloric acid was associated with one water molecule and 
assuming that the water activity could be equated to the mole frac- 
tion of water in the solvent mixture, the function - k log N,) 
would be the correct one to use. With the data available in 1941 
this seemed true: the data for a number of mixed solvents, plotted 
in this way, fell on a single curve. More recent measurements on 
more solvent mixtures suggests that the problem is not so simple(29); 
indeed, FEAKINS and FRENCHSO discard the Born term and find a 
relation between se, the standard potential on the molar scale, and 
&, the uolume fraction of water in the mixed solvent: 

‘q = “q - 2.5 k log +,,, 
the coefficient, 2.5, denoting that 2.5 molecules of water accompany 
the transfer of a hydrogen ion from one solvent to another. This 
relation holds for eleven solvent mixtures down to c $ ~  = 0.7: 
exceptions are glucose, glycol and dioxan-water mixtures. 

We can now consider the effect of the solvent on the ionization 
constant of a weak acid. The free energy change on the dissociation 
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of such an acid is - RT In K; this is the energy change when a 
mole of undissociated acid in its standard state is replaced by an 
equivalent amount of its ions each in the hypothetical standard 

state. Then RT In - ( W K  and 'K being the ionization constants in 

water and in a mixed solvent respectively) measures the change in 
free energy when a mole of undissociated acid is transferred from 

8K 
*K 

0.6 

t 0 3  
4 t k  - 8-J 

0.2 

0 1  

%072 0.013 O*O?(r 0.015 0916 &Of? 0@8 
1-0 
c 

'K 1 F i p e  12.3. log -x as a funtlion d- 

the mixed solvent to pure water and the ions are transferred in the 
opposite direction. Furthermore, if we work on the mole fraction 
scale for the ionization constant, these transfers occur between 
states of the same mole fraction and there is no energy term corre- 
sponding to 'ideal gas expansion'. Moreover, the transfers occur 
between states of unit activity coefficient; there is, therefore, no 

*K 
term to be introduced for interionic effects. The term RT log - 

W K  

should measure the effect of the solvent on the ions and the un- 
dissociated molecules. Finally, we lose no generality if, in a com- 
parison of acids in different solvents, we put X = 1 for each acid 
in water. 

Figure 12.3 is a graph on which are plotted against - the ionization 

constants of a number of weak acids each relative to unity for the 
ionization constant of the acid in water. The points do cluster 
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EFFECT OF TEMPERATURE ON THE IONIZATION CONSTANT 

round a line although there are considerable departures from it: 
the straight line in the figure would, by Born’s equation, assuming 
rI = 3-73 A for the hydrogen ion, lead to 1.2 A for the carboxylic 
anions, a small but not impossible value. Just as with the behaviour 
of hydrochloric acid in different solvent media, Born’s equation 
gives a first approximation to the properties of weak acids in 
different solvents, but it is evident that some highly specific effects 
must be allowed for if we are to give a complete account of weak 
acids. 

T H E  EFFECT O F  TEMPERATURE ON T H E  IONIZATION CONSTANT 

Potential measurements of the Harned-Ehlers cell (see p. 340) have 
been made over a temperature range (usually MO0) for a number 
of weak acids, and the ionization constant can be calculated at each 
temperature. Since: 

a ( A @ / T )  N O  =- alnx R -  = - a-r a?- 7 - 2  

the information is not limited merely to a series of ionization 
constants at different temperatures but can be expanded to embrace 
the heat content change on ionization (at infinite dilution) and (if 
the analysis is sufficiently detailed), the temperature coefficient of 
the heat content, i.c., the difference in heat capacity between the 
ions and the undissociated molecule. Many equations have been 
proposed to represent the temperature variation of the ionization 
constant, but it has not always been appreciated that the very 
method by which these constants are reported in the literature 
imposes limitations on the equations we can use. The experimental 
results are a set of potentials a t  regularly spaced temperature 
intervals. I t  has been asserted that these can be- represented within 
the experimental error by a quadratic in the temperature; indeed, 
in some cases the reported potentials may have been smoothed by 
means of this quadratic. The potentials being proportional to a free 
energy change, then this also must be quadratic in the temperature 
within the experimental error. Hence we can write‘sl’: 

and by ordinary thermodynamic methods it follows that: 
AGO = - R T l n K =  ( A  - C T +  DT2) 

AS” = (C - 2DT)  
M0 = ( A  - DT’) 
AC = (- 2DT) 

A 
T 2.303R log X = - - + C - D T  
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A number of equations have been proposed to express the ionization 
constant as a function of temperature and many of them do repre- 
sent the observed data faithfully: there may be theoretical grounds 
for preferring them, but equation (12.8) is more closely related to 
the experimental results and is therefore adequate as a compact 
method of recording a set of results. Only one example is known, 
cyanoacetic acids2, where additional terms are needed to represent 
the data. Equation (12.8) predicts that there will be a maximum 
value of the ionization constant at a temperature TmBI = d/A/D 
at which it will be given by: 

2.303 R log X = C - 2 d E  
At this temperature AH@ = 0. For many weak acids this maximum 
is found about room temperature: for example, it is 22~5°C for 
acetic acid. In Appendix 12.1 we give the values of the parameters 
necessary for calculating the ionization constants of some weak acids 
and bases. 

This equation is usually valid over the temperature range 0" to 
about 60" but it has been tested over the more extended range 0" 
to 90" for acetic acid in 50 per cent glycerol-water solution's'. 
Tub& 12.2 shows how well equation (12.8) represents the experi- 
mental results. 

Tab& 12.2 
Ionization Constant of Acetic Acid in 50 per cent Glycerol-water Solution 

log Ks E - + 3-4148 - 0.0142687 

K. x l(r 

obs. I calc. 
'limp. 

0°C 
10 
20 
30 
40 
50 
60 
70 
80 
90 

4.778 
5.097 
5.316 
5.378 

4-654 
4.315 
3.935 

4.784 
5.105 
5.303 
5.375 
5.333 

4.953 
4653 
4.307 
3.93 1 

5.187 
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%Cl mxaa 

0.5 
0.25 
0.10 
0.05 
0.0 I 
0.00 I 
0 

YECI 

0 
0-25 
0.4 
0.45 
0.49 
0.499 
0.5 

0.757 
0.741 
0.732 
0.729 
0.726 
0.726 
0.726 

~ 

If HA is acetic acid and m = 0.5, the hydrogen ion concentration 
is about 0.003 M so that clearly we can equate y ~ a  to 0.726. The 
point to be emphasized is that yHc1 is practically independent of 
acid concentration as long as t h i s  is small: moreover can be 
obtained from experiments on hydrochloric acid-sodium chloride 
mixtures. A measurement of the potential of Cell I therefore gives 
information on three matters(8"). First of all it gives ma+, the hydro- 
gen ion concentration in a solution of a weak acid and the salt of 
a strong acid, as: 

- k log VJH+ = E - EO + k IOg y ~ + y c l -  + k log m 
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Secondly, by introducing the law of mass action in the form: 

yi being an abbreviation for YH+YA-/Yary and introducing a 
Debye-Huckel approximation for yA, we can extrapolate to I = 0 
to get KO. Figure 12.4 shows this extrapolation for 0.1 M acetic acid 
in sodium chloride solution, the limiting value of log Ka being 
- 4.75 and KO = 1-72 x Thirdly, using this value of the 
ionization constant, we can calculate yA. It has been shown that 
this activity coefficient term behaves in some ways like the activity 

Figure 12.4. 
1- 

Extrapolation of ahtafiom unbuffered cell to give 
caylant of acetic acid 

coefficient of hydrochloric acid in a salt solution; with increasing 
salt concentrations it first diminishes in value, passes through a 
minimum at about 0.5 M and then increases to values which may 
exceed unity if the salt concentration is very large. The term differs 
from the activity coefficient of hydrochloric acid, however, in one 
important respect; at any given value of the total ionic molality, 
the activity coefficient of hydrochloric acid in different salt solutions 
is in the order: 

YHCKUCI) > YHCI(N.CI) > YHCKKCI) 
whereas the reverse is true of the yA term. Cell I is therefore an 
important source of information about the behaviour of weak acids 
in salt solutions but unfortunately the exact treatment of the 
problem is not as simple as we have suggested. So far we have 
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assumed that the term YH+YCI- introduced early in the theory, is 
not influenced by the presence of the undissociated acetic acid 
molecules, i.c., we have ignored the medium effect on both 
yH+yC1- and on yA. These complications have been considered by 
OWEN(*'* 51) and are worth while describing in some detail because 
they illustrate the importance of the medium effect. Moreover, 
whilst this is not the best method of finding an ionization constant, 
it does give information not obtainable from the Harned-Ehlers cell. 
In the following discussion we follow the treatment given by 
OW EN(^^). The correct equation for cell 1 is: 

E = W l P  - k log $YE+ &cI-mH+m 

where the activity coefficient term differs from that used before 
(and which should have been written gy~+gyc1-). We now put 
this equation in the form: 

- k log mH+ - 2k log wb = E - wlP + 2k log gyHcl + k log m 
ZYECI 

The second term is the total medium effect on hydrochloric acid. 
The right-hand side of the equation is identical with our first 
estimate of - k log mH+ which we now see to be erroneous by a 
factor dependent on the medium effect. The right-hand side, 
however, contains quantities all of which are known or are measur- 
able; it will be convenient to call it - k log mk+. 

Next we write the equilibrium equation as 

2 log mE+ - log (m - mE+) + 2 log $yA = log "'K 
or 

2 log m=+ - log (m - mE+) + 2 log ZyA 

We ignore the medium effect on mE+ in so far as it concerns the 
(m - mH+) term. Using a Debye-Huckel approximation for gyA 
the left-hand side can be plotted against the total molality and 
extrapolated to Z = 0: we have already done that in FigUrG 22.4 
for 0.1 M acetic acid and the extrapolation can be repeated for each 
molality of acetic acid at which measurements have been made. 
(Four such extrapolations are shown in Figure 12.5.) The limiting 
value at Z = 0 is: 

. . .(12.9) 

36 1 



12 WEAK ELECTROLYTES 

i.e., we have got the correct ionization constant except for a term 
which contains the primary medium effect. An extrapolation like 
that shown in Figure 12.4 has eliminated the secondary medium 

I=&.+m) 
Figure 12.5. Extrapolation of data at four molalitics of acetic acid to climtrok 

tht secondary medium @ct 

effect. If we have a set of such extrapolated values at a series of 
acetic acid molalities, we now make a second extrapolation by plot- 
ting the quantity in (12.9) against the acetic acid molality (Figure 
12.6). The result of this second extrapolation at rn = 0 is log WX. 

Aeefic acid mMp 
Figure 12.6. Extrafih6m o/ d$a at six ! d d i t h  of acetic acid lo 

the tMdtum gat 

In order to perform the second extrapolation in Figure 12.6, 
values at I = 0 were read from Figure 12.5. Values could, however, 
be read for a given non-zero value of I, plotted like Figure 12.6 and 
extrapolated to zero acetic acid molality. What would be the 
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significance of these extrapolated values ? They represent values of 

log -- - + log :?I) at zero acid concentration but finite ( m - mE+ 
salt concentration. But log$yA was replaced, for the purpose of 
extrapolation, by a Debye-Huckel approximation which can now 

mH+ 

be taken out again to give ( mH' ). This, divided into W K ,  m - mH+ 
~~ . 

gives the true value of yi = yH+ yA-/yHr in water as solvent at a 
given sodium chloride concentration. 

T H E  IONIZATION CONSTANT O F  WATER 

Water is a very weak acid and the determination of its ionization 
constant requires special methods. The equation for the potential 
of the cell: 

H,INaOH(m), NaCl(m')IAgCI, Ag: 

combined with 
ZE +Y O H - m ~   OH- K,  = 

aEaO 

gives : 

YH+YC'-aHaO . . . . (12.10) 
m' 

E - Eo + klogm = - klog Kw - k log 
YH+YOH- 

and extrapolation of the left-hand side of this equation against the 
total ionic strength gives - k log K ,  as the limiting value when 
Z = 0. Figure 12.7 shows two such extrapolations for cells containing 
lithium hydroxide-lithium chloride and potassium hydroxide- 
potassium chloride. The ionization constant of water has been 
deduced from measurements on a number of such cells(85' with 
good agreement (see Appendix 12.2), and some measurements have 
been made with mixed solvents, in particular dioxan(36). In water 
itselfat 25" the ionization constant is 1.008 x lo-''; in 20 per cent, 
45 per cent and 70 per cent dioxan it is 23.99 x 10-l6, 18.09 x 10-17 
and 13.95 x respectively. 

The ionization constant increases with temperature and can be 
represented's'' by an equation of the form of (12.8) 

4.47 1 -33 
'I - log Kw = - - 6.0846 + 0.01 7053 T 

The heat content change at 25' is ARo = 13522 cal mole-' and the 
heat capacity change is At?$ = - 46.53 cal degree-' mole-1. 
This equation predicts a maximum in Kw at  239'C, a temperature 

363 



12 WEAK ELECTROLYTES 

well outside the usual range: however, from experiments on the 
hydrolysis of ammonium acetate@'), evidence has been found that 
the ionization constant of water has a maximum value about 220OC. 

Z- 
Figure 12.7. Extrapolation of clccrromotive force data to give the wnirntion 

wnstant of water at 25" 

IONIC ACTIVITY COEFFICIENT P R O D U C T  OF W A T E R  I N  
S A L T  SOLUTIONS 

Equation (12.10) can be used to get YE+ YOH-/UH,O. The left-hand 
side of the equation contains only experimentally measurable 
quantities and K, has been calculated. Y E + Y C ~ -  can be found by a 
method similar to that described when discussing the unbuffered 
weak acid cell. This yH+yc1- is the activity coefficient product of 
hydrochloric acid at the very low hydrogen ion concentration of 
these alkaline solutions in the presence of a considerable amount of 
chloride and since this is separately measurable, the ionic activity 
coefficient product of water can be calculated. I t  is a quantity 
which varies with the total ionic molality very much as does 
yE+ycI-, but at any selected total molality it has the highest value 
in caesium chloride solutions and the smallest in lithium chloride 
solutions. In this respect it resembles YE+ y a - / y ~ ~  for a weak acid. 

T H E  H Y D R O G E N  ION ACTIVITY O F  SOME SOLUTIONS 

Cells such as: H,IAqueous buffer solutionlAgC1, Ag .... I 
give bg(uE+yCl-) E log (mE+yH+ya-) without ambiguity and 
with an accuracy depending only on the accuracy with which the 
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e.m.f. and the concentration of chloride ion can be determined, for: 
( E  - w f l ) / k  + log mcl- = - log (aH+ya-) . . . (12.1 1) 

Sometimes - log (aH+yCl-) is written fi(aH+ya-) or fiw(aH+ya:) .to 
emphasize that the value of Eo is for water as solvent, and achvity 
coefficients are given relative to the standard state in water. 

paH+ differs from fi(aH+ycl-) by log ya- ,  which cannot be found 
without some extrathermodynamic assumption. For aqueous solu- 
tions at 25" BATES and GUGGENHEIM(~) proposed the convention: 

- log y a -  = Az/i/(l + 1-5dT) . . . .(12.12) 
This is equation (9.7) with a = 4.56 A, and represents the activity 
coefficients of sodium chloride with remarkable fidelity up to 
I = 0.1. Thus the Bates-Guggenheim convention is equivalent to 
assuming that y a -  in any solution is equal to yNIa in a solution of 
sodium chloride of the same total ionic concentration (I < 0.1). 

Both fi(a,+ya-) and paH+ are therefore known if the e.m,f. of a 
cell of type I has been measured. Many such measurements have 
been made; moreover, by making such measurements at several 
chloride ion concentrations, a simple extrapolation can be made to 
give paH+ at its limiting value at zero chloride ion concentration. 
Appendix 12.3, Table 1 gives paa+ values for seven buffer solutions 
made from well-defined, readily available substances. 

Cells with liquid-junction are in more frequent use. Consider: 
Hal Solu tion Xlsaturated KCllcalomel, Ex . . . .I1 
H,ISolution Slsaturated KCllcalomel, E, . . . .I11 

HIISolution Xlsaturated KCllSolution SIH, 
a combination which is essentially the cell: 

. . . .IV 
The hydrogen electrode is often replaced by a glass electrode. The 
operational definition of pH is: 

where pH(X) is the value of pH to be determined in the solution of 
X and pH(S) is the value assigned to some standard, S. The 
British practice(8g) is to adopt a single standard, 0.05 M potassium 
hydrogen phthalate, and to assume that for it: 

~H(s) =pug+ = 4400 + 5 x 10-5(t - 1 5 ) ~  O < t < 5 5  

55 < t < 95 

pH(X) - pH(S) = (Ex - Eg)/k . . . .(12.13) 

= 4.000 + 5 x 10-5(t - 15)s - 0.002(t - 55) 

BATES(~~), however, relies more on three standards : the phthalate 
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solution, the equimolal phosphate mixture and the borax solution. 
For each of these, it is assumed that pH(S) .= paH+, using values of 
paH+ given in Appendix 12.3, Table I. 

The question now arises as to how closely pH(X), defined opera- 
tionally by equation (12.13), can be identified with paH+. A partial 
answer can be obtained by making pH measurements with S the 
standard phosphate mixture and X either the phthalate or borax 
standard. The results seem to depend, to some extent, on the way 
the liquid-junction is made, but, with care in making the junction, 
agreement within less than 0.01 between pH and paH+ is possible 
in the pH range 4-9. Above pH 9, paR+ seems to be higher than 
pH and the equation: 

@n+ = pH + 0.014 (PH -- 9.18) . . . .(12.14) 

has been proposed'41) to correct pH meter readings. 
Whether pH = F a H t  at pH < 4 is a question more difficult to 

answer. It seems certain that, for 0.05 M potassium tetraoxalate, 
paH+ is higher than pH by 0-02. It is not certain whether this is a 
peculiarity of the tetraoxalate buffer solution or a difference in- 
herent in all solutions of low pH. For calibration of electrodes for 
use at low pH, solutions of 0.01 M hydrochloric acid, p(aH+ya-) 
= 2-087, paH+ = 2.043 and 0.1 M hydrochloric acid, p(uH+yC1-) 
= 1-197, paH+ = 1.087, are useful. Appendix 12.3, Tables 2 and 3 
contain some other useful reference values. 

If the solvent is non-aqueous or only partially aqueous (the term 
'non-aqueous' can conveniently cover both categories), P(aH+ycl-) 
can be obtained without ambiguity from cells like type I but with 
a non-aqueous solvent. But there are now two values Ofp(aHtycl-) ; 
if we use W E 0  as in equation (12.1 1) then we get Pw(aH+ycl-), 
where activity coefficients are relative to the standard state in water; 
if we use ah'Q, we get ks(aH+ycl-), where activity coefficients are 
relative to the standard state in the non-aqueous solvent. 

paH+ (strictly speaking, ##aH+ sometimes written pa&) is also a 
well-defined quantity, equal to j&(aHtycl-) 4- log ga-, provided 
that we use a conventional value of sycl-. This can be done by 
using equation (9.7) for log sycl- with a = 4.56 A as before and 
values of the A and B parameters suitable to the temperature and 
the dielectric constant of the medium. Some paH+ values in 50 per 
cent ~ater-methanol(4~) have been determined for acetate, succinate 
and phosphate buffer solutions over both a temperature and a 
concentration range. At 25", PaH+ values were as follows: equimolal 
(0.025 M) acetic acid, sodium acetate and sodium chloride, 5.529; 
equimolal (0.025 M) sodium hydrogen succinate and sodium 
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chloride, 5.734; equimolal (0.01 M) potassium dihydrogen phos- 
phate, disodium hydrogen phosphate and sodium chloride, 8-021. 

If deuterium oxide is the solvent, the basic measurement is the 
e.m.f. of a cell of type I but with a deuterium gas electrode and a 
solution of deuterium chloride in deuterium oxide. The standard 
potential of the cell is determined; at 25" it is 0.21266 V compared 
with 0.22234V for ordinary water. Cell I is then used with a 
deuterium gas electrode and a buffer solution in deuterium oxide to 
give values of p(aD+ya-), whence values of paD+ are derived using 
a modified Bates-Guggenheim convention. The acetate and 
phosphate buffer solutions were studied(4a) from 5'40'. At 25" 
we have: 0.05 M CHaCOOD + 0.05 M CH,COONa,puD+ = 5.230 
and 0.025 M KD2P04 + 0.025 M Na2DP0,,paD+ = 7.428 

An operational pH scale for non-aqueous solvents could be 
defined by cells such as 11, I11 and IV, using the same solvent in all 
cell compartments. It is not known to what extent paB+ and pH in 
non-aqueous solvents would be self-consistent. 

More is known about the cell(44): 

H,IX in non-aqueous solventlsaturated aqueous KCll 
aqueous calomel electrode . . . .V 

The operational pH is still: pH(X) - pH(S) = (Ex  -.E,)/k, 
where E x  is the e.m.f. of cell V and E, that of cell I11 containing a 
standard buffer solution such as the phosphate mixture in aqueous 
solution. We suppose that the non-aqueous solution contains at 
least a small amount of chloride ion so that measurements of 
p(a,+ya-) can be made in cells without liquid-junctions. If we 

Cell V must have a liquid-junction potential E ,  at the interface 
between the aqueous and non-aqueous solutions. The best that we 
can hope for is that (pH - E,/k) will measure hydrogen ion activity: 

use "F, we get pw(a,+yFl-!. 

PH - E,/k = PP(aH+YCI-) + logwycl- 
But log wycl-/sycl = log mya- is the medium effect-the 'primary' 
medium effect of equation (12.7). Hence, 

pH -&(a,+ycl-) - log 8Yc1- = Ej/k + log m~c1-  * * * (12.15) 
The first two terms on the left can be measured, the third is deter- 
mined by convention. log,,,ycl- depends only on the nature and 
composition of the solvent and it is not unreasonable to hope that 
E j  will likewise be independent of the nature and amount of the 
solutes. Experiment shows that this is so for water-methanol, 
water-etlianol and water-dioxan solvents. This, however, only 
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proves that E,  is, at least to a good approximation, a constant for 
any one solvent medium. Equation (1 2.15) can be rearranged thus: 

. . . . (12.16) 

Again, 6 should depend only on the nature and the composition of 
the solvent and its value can be determined by measuring pH and 
#a: values for a few solutions, using cells with and without liquid- 
junctions, respectively. Thus a correction factor can be provided 
to convert pH values intopa: for each solvent composition. Some 6 
values for water-methanol solvents are as follows: 

h ( a H + )  orpa: = pH - 6 
where 6 = Ej/k - log ,,,yH+ 

Wt. per cent 
methanol 10 20 30 40 50 60 70 

As an example, for 52.1 per cent methanol, 6 = 0.130. A 
solution of 0.004996 M borax and 0.009992 M potassium chloride 
in this solvent gave fis(aH+ya-) = 9.525, pa; = 9.432. The pH 
value as measured by a combination of cell I11 (aqueous phosphate, 
pH 6.865) and cell V gave pH = 9.565. Applying the correction 
6 = 0.130, gives pa; = 9.435, which compares very well with that 
obtained from a cell without liquid-junction. 

6 0.002 0.01, 0.03, 0.08, 0.12, 0.14, 0.1 I ,  

REFERENCES 

HARNED, H. S. and EHLERS, R. W., 3. AM.  chcm. Soc., 54 (1932) 1350; 

* MACINNES, D. A. and SHEDLOVSKY, T.,3. A m .  c h .  Soc., 54 (1932) 1429 
* KATCHALSKY, A., &ENBERG, H. and LIFSON, S., ibid., 73 (1951) 5889 
4 WRIGHT, D. D., ibid., 56 (1934) 314 
6 BATES, R. G.,3. Res. nut. Bw.  Sfund., 47 (1951) 127 
6 KING, E. J. and KING, G. W.,3. A m .  c h .  Sot., 74 (1952) 1212 
f TAYLOR, E. G., DESCH, R. P. and CATOTTI, A. J., ibid., 73 (1951) 74 
8 OWEN, B. B., J. Amer. c h .  Sot., 56 (1934) 1695 
0 NIMS, L. F., ibid., 55 (1933) 1946; BATES, R. G. and ACREE, S. F., 3. 

Res. nut. Bur. Stund., 30 (1943) 129 
10 HARNE~, H. S. and DAVIS, R., 3. AM.  chcm. Soc., 65 (1943) 2030 
11 - and OWEN, B. B., ibid., 52 (1930) 5091 
12 BATES, R. G. and F’INCEIING, G. D., ibid., 71 (1949) 1274 
13 BATES, R. G. and PINCHING, G. D., J.  Res. nut. Bur. Sfund., 42 (1949) 4 19 
14 OWEN, B. B., 3. A M .  c h .  Soc., 56 (1934) 2785 
16 BATES, R. G. and PINCHING, G. D., 3. Res. nut. Bur. Sland., 43 (1949) 

519; 3. Amcr. chcm. Sot., 72 (1950) 1393 
1‘ BIGGS, A. I., T Y ~ .  Furuduy Soc., 50 (1954) 800 
17 ROBINSON, R. A. and BICGS, A. I., ibid., 51 (1955) 901 
18 KOLTHOFF, I. M. and FURMAN, N. H., ‘Potentiometric Titrations’, 

John Wiley and Sons, Inc., New York 2nd ed., 1931 
I Y  SPEAKMAN, J. C., J .  chem. Soc., (1940) 855; see also ANG, K. P., 3. phys. 

368 

HARNED, H. S. and OWEN, B. B., C h .  Rcv., 25 (1939) 31 

Chem., 62 (1958) 1109 



REFERENCES 

10 ADUS, E. Q., 3. A m .  c h .  Soc., 38 (1916) 1503; BJERRUM N., x., 
phys. Chem., 104 (1923) 147 

*I ROBINSON, R. A. and BICOS, A. I., Ausf. 3. Ch., 10 (1957) 128 
2* COHN, E. J. and EDSALL, J. T., ‘Proteins, Aminoacids and Peptides,’ 

Reinhold Publishing Corp., New York (1943) 
Ia BJERRUM, N., Z. phys. Chem., 106 (1923) 219 

EUCKEN, A., Ansew. Chem., 45 (1932) 203 
ss GANE, R. and INGOLD, C. K., 3. c h .  SOG., (1928) 1594 
1’ KIRKWOOD, J. G. and WFSTHEIMER, F. H., 3. chnn. Phys., 6 (1938) 506, 

l7 OWEN, B. B.,J. A m .  c h .  Soc., 54 (1932) 1758 
HARNED, H. S. and CALMON, C., ibid., 61 (1939) 1491 ; ROBINSON, R. A. 

CROCKFORD, H. D., ‘Symposium on Electrochemical Constants,’ p. 153, 

a0 FEAKINS, D. and FRENCH, C. M., 3. c h .  Soc., (1957) 2581 
a 1  HARNED, H. S. and ROBINSON, R. A., Trans. Faradqy Soc., 36 (1940) 973 
s* FEATES, F. S. and Ins, D. J. G., 3. c h .  Soc., (1956) 2798 
aa HARNED,H.S.~~~NESIZER,F.M.H.,J.A~.~~~.S~~.,~~(~~~~)~~~ 
a4 -and ROBINSON, R. A., ibid., 50 (1928) 3157; HARNED, H. S. and 

Owm, B. B., ibid., 52 (1930) 5079; HARNED, H. S. and 
MURPHY, G. M., ibid., 53 (1931) 8; HARNED, H. S. and HICKEY, 
F. C., ibid., 59 (1937) 1284 

*5 - and SCHUPP, 0. E., ibid., 52 (1930) 3892 [CsOH + CsCl] ; HARNED, 
H. S. and HAMER, W .  J., ibid., 55 (1933) 2194 [KOH + KCI]; 
HARNED, H. S. and COPSON, H. R., ibid., 55 (1933) 2206 
[LiOH + LiCl]; HARNED, H. S. and HAMER, W. J., ibid., 55 
(1933) 4496 [NaOH + NaBr and KOH + KBr] ; HARNED, 
H. S. and MANNWEILER, G. E., ibid., 57 (1935) 1873 
[NaOH + NaCl]; HARNED, H. S. and DONELSON, J. G., ibid., 
59 (1937) 1280 &iOH + LiBr]; WD, H. S. and GEARY, 
C. C., ibid., 59 (1937) 2032 [&(OH), + BaCl,]; HARNED, 
H. S. and PAXTON, T. R., 3. phys. C h . ,  57 (1953) 531 

a6 HARNED, H. S. and FALLON, L. D., 3. A m .  c h .  SOG., 61 (1939) 2374 
N o w ,  A. A., KATO, Y. and SOSMAN, R. B., ibid., 32 (1910) 159 

38 BATES, R. G. and GUCCENHEIM, E. A., Pure appl. C h . ,  1 (1960) 163 
39 ‘pH Scale’, British Standard 1961: 1641, British Standards Institution, 

London 
40 BATES, R. G., ‘Determination of pH’, John Wiley and Sons, Inc., New 

York (1964) 
4 1  BOWER, V. E. and BATES, R. G., 3. Rm. nat. Bur. Stund., 55 (1955) 197; 

BATES, R. G. and BOWER, V. E., Anal. Chem., 28 (1956) 1322 
(8 PAABO, M., ROBINSON, R. A. and BATES, R. G., 3. Amcr. c h .  Soc., 87 

(1965) 415 
‘3 GARY, R., BATES, R. C. and ROBINSON, R. A., 3. p/ys. Chem., 68 (1964) 

1 186,3806; 69( 1965)2750 
VAN UITERT, L. G. and h, C. G., 3. A m .  c h .  SOC., 75 (1953) 451 ; 

GUTBEZAHL, B. and GRUNWALD, E., ibid., 75 (1953) 565; 
DE LIGNY, C. L. and REHBACH, M., Rcc. Trav. chim. Pays-Bas. 
79 (1960) 727; BATES, R. G., PAABO, M. and ROBINSON, 
R. A., 3. phys. Chem., 67 (1963) 1833; ONC, K. C., ROBINSON, 
R. A. and BATES, R. G., Anal. Chem., 36 (1964) 1971 

513 

and HARNED, H. S., C h .  Rm., 28 (1941) 419 

Washington (1951) 

369 



13 

THE ‘STRONG’ ACIDS 

THE common acids, hydrochloric, nitric, perchloric and sulphuric, 
have many properties in common with other electrolytes but their 
dissociation into hydrogen (or H,O+) ions and their ability to act 
as solvents themselves, endow them with some characteristics which 
are described separately in this chapter. 

The thermodynamic properties of aqueous hydrochloric acid show 
a striking resemblance to those of lithium chloride. (See Appendix 
8.10.) The osmotic and activity coefficients of hydrochloric acid, 
the chlorides of the alkali-metals and ammonium chloride form a 
very regular group of non-intersecting curves, the coefficients at any 
given concentration decreasing in the order: 

H+ > Li+ > Na+ > K+ > NH: 
The activity coefficients can be quantitatively accounted for by the 
combination of the Debye-Huckel theory with the concept of ionic 
hydration which was discussed in Chapter 9. The values of the 
‘hydration parameter’ (h)  required in equation (9.25) at 25’ are: 

HCl, 8.0; LiCI, 7.1; NaCl, 3.5; KCl, 1.9; and NH,Cl, 1.6. 
It will be recalled that these values represent an allowance for the 
total ion-solvent interaction; we are claiming that the thermo- 
dynamic properties of the solution are the same as those which 
would be expected if the ‘molecule’ of solute consisted of two ions, 
solvated with a total of h molecules of water, rather than asserting 
that in fact the kinetic entities are (taking lithium chloride as an 
example) an unhydrated chloride ion and a lithium ion solvated 
with 7-1 molecules of water. On this basis the high value for the 
hydration number of the hydrogen ion in hydrochloric acid is not 
unreasonable. The familiar formula H,O+ is no more than a 
statement that at any given moment the proton must be on one 
water molecule or another; it is quite likely that its presence would 
lead to an intensification of the temporary bonds of that molecule 
to its neighbours, so giving the hydrogen ion a large thermodynamic 
hydration number. 

BASCOMBE and  BELL(^^), and W Y A T T ( ~ ~ ) ,  have found that the vari- 
ation of the Hammett acidity function with concentration in strong 
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acid solutions (up to 8 M) is consistent with hydration of the proton 
to H+(H,O),. A similar conclusion is reached by VAN ECK, MENDEL 
and B o o G ( ~ C )  from X-ray diffraction studies of concentrated hydro- 
chloric acid. Such a clustering would not seriously limit the 
mobility of the ion in conductance or diffusion, since most of the 
transport of hydrogen ion occurs by a 'jumping' of the proton from 
one water molecule to another rather than by the bodily motion 
of the whole cluster (see p. 121). The introduction of some such 
abnormal transport mechanism for the hydrogen ion is unavoid- 
able if the extremely high mobility of this ion is to be explained. 
However, it presents an interesting problem: why is the concen- 
trationdependence of both the conductivity and the transport 
number of hydrochloric acid so successfully accounted for by the 
theory developed in Chapter 7 for normal electrolytes, in which the 
transport is by ordinary motion of the ions through the solvent? 
On examination of the form of the theoretical expression, an answer 
suggests itsclf. 

The equivalent conductivity of an ion of an electrolyte is given by 

equation (7.25); c i s  the relaxation effect, AX being the extra 

field acting on the ion due to the field of the surrounding ions. This 
is a purely electrostatic effect, and will be just as effective in stimu- 
lating proton-jumps as it will in causing normal ionic motion; 

consequently the factor ( 1 + - y) will be applicable to hydro- 

X 

chloric acid. The term (Fa 2) gives the electrophoretic 
6nqN 1 + KO 

effect. This is a hvdrodvnamic effect. and as such will affect the 
chloride ions but c&not'be expected ;o apply to the proton-jump 
part of the motion of hydrogen ions. However, it has never been 
claimed that the proton-jump mechanism is the only cause con- 
tributing to the conductance of the hydrogen ion: if a cluster of 
water molecules is associated with a proton, that cluster will move 
in an electrical field even if the proton does not jump. In fact, only 
relatively few protons need jump to produce the observed conduc- 
tivity: the rest of the hydrogen ions will be moving in the normal 
manner, probably with a mobility comparable to that of lithium 
ions. Now the electrophoretic term in equation (7.25) does not 
involve the mobility of the ions directly: we might write the first 
factor as: 
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where 4 is the abnormal or proton-jump part of the limiting 
conductivity, and is the part contributed by the normal motion; 
the electrophoretic correction is the same however the total value 
of A=+ is distributed between the two processes. This will mean that 
equation (7.25) is applicable to the hydrogen ion in hydrochloric 
acid. In fact, the equation, even in the simplified form (7.36) gives 
an excellent account of the change in equivalent conductivity with 
concentration up to several tenths molar. The same argument will 
of course explain the success of equation (7.40) in reproducing the 
observed transport numbers. The value of the ion-size parameter 
required in the transport number equation is 4-4A and in the 
conductivity equation it is 4.3A; this is very nearly the value 
(4.47 A) demanded by the Debye-Huckel equation for the activity 
coefficient. It is only at fairly high concentrations that the con- 
ductivity begins to drop more rapidly than equation (7.36) would 
predict . 

The conductivity of hydrochloric acid solutions has been 
thoroughly studied by OWEN and SWEET ON"^) over a wide range of 
concentrations and temperatures (see Tublc 13.1). Below about 

0 
0.25 
1.00 
2-25 
4-00 
6.25 
9.00 

Table 13.1 
Eguiuolmt Conductwity (A) of Concmtrakd Aqwous HydrrocNoric Acid Solutww 

297.6 361.9 426.0 489.0 550.2 609.3 666.6 
266.2 322.1 377.4 431.1 482.8 531.9 578.2 
235.2 284.0 332.3 379.4 424.9 468.2 509.2 
192.0 230.9 270.0 308.6 346.1 382.1 416.3 
143-5 171.6 200.1 228.6 256.9 284.2 310.1 
97.9 116.0 134.7 153.6 172.5 191.2 209.5 
61.3 72.2 83.5 94.9 106.6 118.2 130.0 

c I 5' I 15' I 25" I 35" 1 45' 1 55' 1 65" 

From OWEN, B. B. and SWEETON, F. H., J. Amn. c h .  Soc., 63 (1941) 2811. 
The Ao values given in the original paper differ by up to 0-2 unit from those 

in the table above, which are obtained by applying equation (7.37) to measure- 
ments on solutions below 0.1 N. 

0.1 N their results can be accurately represented by equation (7.36), 
the parameter u taking the value of 4.3 A at all temperatures from 
5" to 65". In  these relatively dilute solutions, therefore, the acid 
behaves as a normal non-associated electrolyte. At higher concen- 
trations, however, the conductivity falls more rapidly than equation 
(7.36) predicts. Thus in 4 N solution at 25" the observed equivalent 
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conductivity is A = 200.1 ; even the introduction of the bulk visco- 
sity (q/qo = 1.255 at 4 N and 25°C) as in equation (1 1.50), brings 
the calculated value down only as far as A = 258, still some 25 per 
cent high. In view of the comparatively good success of equation 
(1 1.50) with other concentrated non-associated electrolytes (see 
Figure Z2.5), it seems that some special explanation of its failure for 
hydrochloric acid must be invoked. Association into hydrogen 
chloride molecules cannot be the explanation, for the vapour 
pressure of hydrogen chloride over the 4 N solution is far too small 
to admit of any significant concentration of such molecules in the 
liquid. However, the special proton-jump mechanism by which the 
hydrogen ion is mainly transported (see Chapter 6) provides a 
reasonable explanation: at the high electrolyte concentrations in 
question, a substantial proportion of the water molecules must be 
oriented round ions in positions which leave them unable to par- 
ticipate in the normal coordinated or 'hydrogen-bonded' water 
structure: such molecules would presumably not be available as 
arrival points for the 'jumping' protons, the mobility of which would 
therefore be considerably reduced. This suggestion is due to 
ONSAOER(*), who h t h e r  points out that the specific resistance of 
hydrochloric, sulphuric and nitric acids reaches a maximum of 
about 1.3 Q-cm at high concentrations: this leads him to estimate 
the dielectric relaxation time of water as 1.45 x 10-18 seconds. The 
value obtained from high radio frequency measurements is of the 
order of lo-" sec at room temperatures, so that Onsager's estimate 
is too low. It was, however, obtained by ignoring the contribution 
of the anion to the conductivity; the effect of this approximation 
would at least be in the observed direction, although it would be 
difficult to estimate its magnitude. 

S U L P H U R I C  ACID AS A N  I O N I Z I N G  S O L V E N T  

Sulphuric acid is of exceptional interest in the study of electrolytes. 
Its behaviour in aqueous solutions is naturally of great practical 
importance in view of its widespread use in chemical industry; 
while from a theoretical view-point perhaps even more valuable 
information has been gained from the study of sulphuric acid as a 
solvent for electrolytes. 

Most of the present extensive knowledge of the properties of 
solutions in sulphuric acid is due to some recent comprehensive 
studies by GILLESPIE and his collaborators(3). They found a freezing- 
point of 10.36"C for pure sulphuric acid. (KUNZLER and GIAUQUE(~) 
found 10.35O.) The freezing-point is depressed by both water and 
sulphur trioxide in excess of the exact stoichiometric composition 

373 



13 THE 'STRONG' AClDS 

H,SO,. The pure liquid has a remarkably high electrical conduc- 
tivity, 

= 0.01033 SZ-' cm-' 

A-g4" = 040580 Q-I cm-I 

This conductivity is raised by both excess water and excess sulphur 
trioxide, though according to Kunzler and Giauque the minimum 
electrical conductivity occurs not quite at the composition of pure 
sulphuric acid but at 99.996 f 0.001 per cent H2S0,. The di- 
electric constant has recently been determined'5* 6) as E, (25°C) = 
1 0 1 ,  so that it is one of the few solvents with a dielectric constant 
higher than that of water. Its viscosity is also unusually high, 

q(zs., = 0.2454 poise, 

some twenty-seven times that of water at 25". 
Thus the properties of most direct relevance to the behaviour of 

dissolved ions, viz., the self-dissociation, the dielectric constant, and 
the viscosity, are all substantially greater than the corresponding 
properties €or water, and this fact is reflected in a number of 
interesting ways. 

The conductivity of pure sulphuric acid is attributed to the 
ionization : 

2H2S0, e H,SO$ + HSOr 

for which an apparent molal scale ionization constant 

X- [H3SOa][HSOr] = 1-7 x 1O-O 

has been estimated. Another reaction, 

2H2S0, f H,O+ -t HS207 

is believed to occur simultaneously, with an ionization constant of 
8 x This extensive self-dissociation considerably complicates 
the interpretation of both cryoscopic and conductivity results €or 
solutions in this solvent; the total concentration of self-dissociation 
products is estimated as 0-043 molal, in striking contrast with the 
value of only 2 x lo-' for the sum of the hydrogen and hydroxyl 
ion concentrations in water. 

Sulphuric acid has good solvent powers for both organic and 
inorganic compounds : sulphuryl chloride and trichloracetic acid, 
for example, dissolve as non-electrolytes, while alkali and alkaline- 
earth metal bisulphates and perchlorates, nitric acid, water, sulphur 
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trioxide, n-propylamine, benzoic acid, acetone, and alcohols 
dissolve as electrolytes. An interesting and unusual feature of the 
electrochemistry of solutions in sulphuric acid is that, because of 
the strong proton donating character of the solvent, the anion 
formed in the electrolyte solutions is almost invariably the bisulphate 
ion, examples of some ionization-reactions being : 

KHSO, += K+ + HSO; 
H 2 0  + H,SO, + H,O+ + HSO; 
C,H,OH + 2H2S0, + C2H5HS04 + H,O+ + HSO;; 
HNO, + 2H,SO, + NO$ + H90+ + 2HSOr 
NH,CIO, + H,SO, + N H f  + HClO, + HSO; 

At present the only feasible way of studying the thermodynamics of 
such solutions is by freezing-point depression measurements, an 
extensive study of which, with modern experimental techniques, has 
recently been made by Gillespie and his co-workers. The ionization 
equations quoted above are derived from their studies. Gillespie’s 
school reached the conclusion that interionic effects were negligible 
within experimental error, as had been previously suggested by 
HAMMETT and DEYRUP(’), and postulated an extremely high 
(‘ferroelectric’) dielectric constant for sulphuric acid to account for 
this. No reliable measurements of the dielectric constant were at 
that time available, but the recent measurements by BRAND, JAMES, 
and RUT HER FORD(^) by radio frequency methods at wavelengths as 
low as 10 cm have overcome the experimental difficulties of measur- 
ing the dielectric constant of this highly conducting liquid, and show 
that the value is approximately E, = 110 at 20”. Whilst higher 
than that of water, this value is certainly not of the ‘ferroelectric’ 
order of magnitude, being comparable with that of liquid hydrogen 
cyanide: in the latter solvent (see Chapter 7) interionic attraction 
effects are by no means negligible. Brand, James and Rutherford 
point out that a probable explanation of the ‘pseudo-ideal’ be- 
haviour of electrolytes in sulphuric acid is that the ionic strengths 
of the solutions used in the cryoscopic studies are necessarily high 
(greater than 0.05) because of the strong self-dissociation of the 
solvent; in this region of ionic strength the activity coefficient and 
osmotic coefficient would be expected to vary only slowly with 
concentration, as is the case in water. They have, in fact, shown 
that the osmotic coefficients of a number of electrolytes in sulphuric 
acid solutions are in very fair accord with Guggenheim’s modification 
of the Debye-Hiickel equation (equation 9.13). 
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C O N D U C T I V I T I E S  OF S O L U T I O N S  I N  S U L P H U R I C  A C I D  

Gillespie and his co-workers have also made important studies of 
the conductivity of electrolytes in sulphuric acid, supplemented by 
measurements of transport numbers, viscosities, and densities. Once 
again the strong self-dissociation precludes the measurements at 
low ionic strengths which have proved so valuable with aqueous 
and other solutions; nevertheless some important conclusions have 
emerged. In spite of the high viscosity of sulphuric acid, equivalent 
conductivities are of the same order of magnitude as those found in 
water. This result is explained when the transport numbers are 
considered: in Hittorf measurements on the alkali and alkaline- 
earth metal bsulphates, the highest cation transport number found 
was 0.030 for the potassium ion in 0.6molar potassium hydrogen 
sulphate. The equivalent conductivity of this solution was found 
to be A = 78 (at 25"), so that the cation contribution to the con- 
ductivity is only 2.3 units. In aqueous solutions of this concentration 
the potassium ion contributes about 50 units to the conductivity. 
The ratio of the mobilities of the potassium ion in water and sul- 
phuric acid is therefore comparable to the inverse ratio of the 
viscosities of these solvents, and can be regarded as normal. No 
marked variation of the transport number with temperature in 
the range 25"-60° was observed, although a slight increase may 
occur. 

The observed high conductivities must therefore be attributed 
mainly to the abnormal transport mechanism for the anion: as 
remarked above, the anion in electrolyte solutions in sulphuric acid 
is nearly always the bisulphate ion, HSO,-. A 'proton-jump' 
mechanism(8) such as almost certainly exists for the hydrogen and 
hydroxyl ions in water, is the natural assumption, and is consistent 
with the known association of sulphuric acid molecules through 
'hydrogen bonds'. The H$Ot ion, i.c., the proton solvated with 
one sulphuric acid molecule, shows a similar high mobility attribut- 
able to the same type of mechanism. 

Equivalent conductivities in sulphuric acid are strongly concen- 
tration-dependent, that of potassium hydrogen sulphate, for 
example, dropping from A = 158 at 0.1 to 63 at 1 molar. 
This drop is considerably more rapid than could be accounted for 
by interionic effects, and occurs even in the case of ammonium 
hydrogen sulphate where the viscosity of the solution scarcely 
changes with concentration, so that it cannot be attributed to 
increasing viscosity. It therefore seems to arise from some effect of 
the ions on the proton-jump process responsible for the anion 
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mobility. A somewhat similar effect exists in aqueous solutions of 
hydrochloric acid, but does not become serious until substantially 
higher concentrations are reached. 

The viscosities of solutions of metal bisulphates in sulphuric acid 
are highly specific properties of'the cation: the ammonium ion 
scarcely alters the viscosity, while the alkali-metal and alkaline- 
earth metal cations produce an approximately linear increase in 
viscosity with concentration. The slope of the viscosity-concentra- 
tion curves increases in the order 

NHt < K+ < Na+ < Li+ < Ba++ < Sr++ 

being especially great for the last two members, one molal solutions 
of which have at least seven times the viscosity of the solvent. This 
suggests strong ion-solvent interactions, further evidence for which 
is found in the apparent molal volumes of the cations, which are in 
all cases lower than the volumes estimated from crystallographic 
radii, and are, indeed, in most cases negative. These apparent 
volumes are consistent with an increasing amount of solvation, with 
resulting electrostriction of the sulphuric acid molecules near the 
ion, in the same order as is suggested by the viscosities. If the 
ammonium ion is assumed to solvate with one molecule of H$O,, 
the results lead to solvation numbers of 2, 3, 3, 8 and 8 for K+, 
Na+, Li+, Ba++ and Sr++ respectively. The transport numbers are 
also consistent with this order for the solvation, and it is the same 
order as is found for the solvation of metal ions in water, thus indi- 
cating that the cation solvation is electrostatic in nature. 

N I T R I C  A C I D  AS A S O L V E N T  

The depression of the freezing-point of nitric acid on the addition 
of either water or dinitrogen pentoxide has been studied by 
GILLESPIE, HUGHES and INGOLD'S). Their nitric acid had a freezing- 
point between - 41.71" and - 41.81' (FORSYTH and GIAUQUE(~O) 
record - 41.65'). Dinitrogen pentoxide causes about twice the 
depression due to an equimolar amount of water; the effect of the 
former is consistent with dissociation into two ions, but water seems 
to be dissolved in the molecular form. A more accurate representa- 
tion of the data is obtained by assuming that the ions of dinitrogen 
pentoxide are solvated with four molecules of nitric acid whilst the 
water molecule seems to take up only two molecules of nitric acid. 
It is believed that ionization occurs according to the equation: 

N,O, + N o t  + NO; 
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and these workers suggest that, if the nitrate ion is solvated with 
two molecules of nitric acid as seems likely from the observations of 
C H ~ D I N  and VANDONI(~~) on the vapour-pressure lowering of nitric 
acid solutions of potassium nitrate, then the nitronium ion must 
also take up two molecules of nitric acid. Further evidence comes 
from the electrical conductance of nitric acid which is increased 
very much on the addition of dinitrogen pentoxide(le), whilst the 
addition of water up to 10 per cent by weight causes very little 
change in conductance. 

Another interesting feature is the marked rounding-off of the 
freezing-point curve in the vicinity of 100 per cent nitric acid, 
indicating considerable self-dissociation: 

2HNOs + NO; + NO; + H,O 
for which an equilibrium constant, 

X = mNo: mNOi mBtO = 0.020 

(in mole kg-1 concentration units) has been estimated. 

R A M A N  S P E C T R U M  OF N I T R I C  A C I D  A N D  ITS A Q U E O U S  
SOLUTIONS 

Like the extinction coefficient of a solution for the absorption of 
light, the intensity of a Raman line should be proportional to the 
concentration and not to the activity of the molecule or the ion in 
which the line originates(l3). There is a strong line at 1050 cm-l in 
the Raman spectrum of aqueous nitric acid which is also found in 
the spectrum of the alkali nitrates in aqueous solution: the intensity 
in concentrated acid solutions is, however, less than in a solution 
of alkali nitrate of the same concentration. I t  is likely that the line 
is characteristic of the nitrate ion and the diminished intensity in 
concentrated nitric acid solution is taken as evidence of the forma- 
tion of undissociated molecules. In this way an ionization constant 
of K = 23.5 has been cal~ulated(1~) in good agreement with K = 22 
from nuclear magnetic resonance measurements(lQ’; the acid is 
about 50 per cent ionized at 11 N. In the same way perchloric acid 
has been found to be incompletely dissociated“&* 15) with X = 38; 
it is therefore considerably stronger than nitric acid and its dissocia- 
tion falls to 50 per cent only at 15 N. The incomplete dissociation 
of nitric acid is reflected in its activity coefficient; a plot of the 
stoichiometric activity coefficient against concentration does not 
fit into the family of curves formed by other 1 : 1 electrolytes, but 
M C K A Y ( ~ ~ )  has shown that the fit can be realized if the proper 
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ionic activity coefficient, with allowance for incomplete dissocia- 
tion, is used. 

The Raman spectrum of pure nitric acid consists of eight more 
or less sharp lines and a diffuse band. Six of the lines and the band 
are attributed to the nitric acid molecule and there is general 
agreement about the assignment of most of them to various vibra- 
tional modes. Valuable work has been done by INGOLD and his 
school(16' and the spectrum can be summarized as follows: 

610 cm-l: bending of the 0-N-OH angle 

680 bending of the 0-N-0 angle 

925 stretching of the N-OH bond 

1300 symmetric stretching of the NO, group 

1675 anti-symmetric stretching of this group 

3400 (band) OH stretching, the band being diffuse because of 
intermolecular hydrogen bonding 

1535 first overtone of the out-of-plane vibrations of the 

The remaining two lines are not due to the nitric acid molecule: 
that at 1050cm-l is assigned to the nitrate ion and that at 1400 
cm-1 to the nitronium ion, NO:. Both lines are weak and are 
caused by some self-dissociation of the molecule: 

NO, group. 

2HNO3 -+ He0 + NOf + NO; 

The assignment of this sharp, highly polarized line to the 
nitronium ion is supported in several ways. A number of solid 
nitronium salts have been isolated: (NO$ ClO;), (NO$ HS,O,-), 
((NO;), S,O,--) and (NO; SOSF-), and in each case the Raman 
spectrum shows a line at 14.00 cm-1 together with, of course, lines 
characteristic of the anion. Moreover, the salt-like character of 
(NO8 ClO;) has been by an x-ray crystallographic 
study. The Raman spectrum of solid dinitrogen pentoxide gives 
both lines suggesting that in the solid state this substance has the 
very interesting salt-like structure, (NOf NO;) analogous to phos- 
phorus pentachloride, (PClt PCI;) and again x-ray crystallo- 
graphy supports this structure(l*). Ingold has also studied this 
problem in another way: in pure nitric acid both the lines at 1050 
and 1400cm-' are weak, but on the addition of approximately 
10 mole per cent of either perchloric acid or selenic acid, the line at 
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1400 cm-l was enhanced and that at 1050 cm-l was suppressed. 
This is exactly what we would expect from the reactions: 

HNO, + 2HC104 + H,O+ + NO$ + 2 C 1 0 ~  
HNO, + 2H2Se0, +. H,0+ + NO.$ + 2HSeO; 

If sulphuric acid were used instead of perchloric or selenic acid, a 
similar reaction would be expected : 

HNO, + 2H2S04 --f H,O+ + NO.$ + 2HSO; 

but it was observed that both lines were enhanced. At first sight 
this might seem to be anomalous but it is readily explained when it 
is realized that the bisulphate ion, HSO;, itself has a Raman line 
at 1050cm-1, a fact which has created some confusion in that 
experiments on HN0,-H,SO, mixtures have suggested that the 
two lines are in some way coupled together. I t  required these 
experiments in which anions were produced with no Raman line in 
the region of 1050cm-1 to demonstrate that the two lines had 
separate origins; indeed, if the nitronium ion is a product of this 
reaction, it can, because of its centro-symmetric nature, give only 
one Raman line. It is also significant that if dinitrogen pentoxide 
is added to nitric acid both lines are enhanced because of the 
dissociation : 

N20, --t NO,+ + NO; 

The attribution of the 1050 cm-1 line to the nitrate ion is amply 
justified by its occurrence in the spectra of non-associated nitrates 
in aqueous solution(lS), and it was by this line that Redlich arrived 
at a value for the dissociation constant of nitric acid in aqueous 
solution. 

THE R A M A N  S P E C T R U M  O F  S U L P H U R I C  A C I D  

Ingold ct al. list seven lines in the Raman spectrum of sulphuric 
acid at 391, 416, 562, 910, 976 and 1376 cm-I with ;L broad band 
at 1125-95 cm-1. The bisulphate ion, HSOz, has lines at 590, 
895 and 1050 cm-1, the last being the only one not close to molecular 
sulphuric acid lines and therefore the most useful one for detecting 
the bisulphate ion; it is supposed to be due to a stretching of the 
S O H  bond. The line at 590 cm-1 lies close to the 562 cm-l line 
of sulphuric acid and that at 895 cm-1 is close to the 910 cm-l line. 
It therefore requires very careful examination of the microphoto- 
meter records to find evidence for these bisulphate ion lines. 
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The addition of sulphur trioxide to sulphuric acid leads to a 
weakening of the molecular acid lines and when the solutions have 
the composition of disulphuric acid, H$,O,, the molecular sulphuric 
acid lines are absent and have been replaced by a new set with a 
strong line at 735 cm-1, useful for characterizing disulphuric acid. 

Addition of further sulphur trioxide leads to trisulphuric acid, 
H$S,Ol, with a strong, characteristic line at 480 cm-1 and another 
at 530 cm-l which is also useful for identification although sulphur 
trioxide itself has a line close to this. There is some evidence of the 
existence of tetrasulphuric acid, H2S401S, and even higher polymeric 
forms before sulphur trioxide appears in monomeric and polymeric 
forms. I t  is possible to make an assignment of the different Raman 
lines to various molecular and ionic forms of these acids for details 
of which the original paper should be consulted. 

AQUEOUS SULPHURIC ACID 

 YOUNG(^^) has described the construction of a Raman spectrograph 
which gives results of high quantitative accuracy. Considerable 
work has already been done on aqueous sulphuric acid solutions, 
using the 910 cm-l line to identify the undissociated sulphuric acid 
molecule, the 1040cm-1 line for the bisulphate ion, and a line at 
980cm-l for the sulphate ion, SOT-. Thus, by comparing the 
intensity of the 980 cm-1 line in a solution of ammonium sulphate 
and in a sulphuric acid solution, the SOT- ion concentration can 
be calculated, assuming that the ratio of the intensities of the lines 
is the ratio of the ion concentrations. The HSOi ion concentration 
is obtained from the 1040cm-1 line and the concentration of 
H,SOI molecules by difference. This latter concentration should 
be proportional to the intensity of the 910 cm-1 line, and the data 
did satisfy this severe test. Perhaps the most concise way of repre- 
senting the results of this work, which is fully supported by recent 
nuclear magnetic resonance rneasurements(1%), is in the form of a 
graph (Figure 13.1) from the Record of Chemical Progress(l9) which 
shows that, except in extremely dilute solution, the SO,- ion is not 
a major constituent of these solutions; at moderate concentrations it 
is the HSOi ion which predominates and only above t -  14 does 
the undissociated molecule contribute significantly. The dotted line 
in the figure is calculated on the assumption that each molecule 
of water added to pure sulphuric acid reacts according to the 
equation : 

H2S04 + H2O + HSO+ + HSOi 
Since the second dissociation of sulphuric acid is relatively weak, 

it is suppressed by the hydrogen ion resulting from the strong first 
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dissociation. With a degree of ionization a for the bisulphate ion, 
we have : 

x =  YE+YSOi- a(* -k a)m ~ 0.01 

Since Figure 13.1 indicates that u w 0.3 at 2 My the activity coeffi- 
cient part of this expression must have the low value of N 0.0 1 , and 

YESO; - a 

Mo/ur;ty 

Figure 13.1. Graph showing the proportion of H,SO, molecules, HSO; ions 
and SO;- ions in aqucour sulphuru acid solution. (From YOUNG, T. F., 

Rec. chon. Progr., 12 (1951) 81) 

this must be mainly due to the low value of I~so,-- since the ratio 
yE+/yHBoi must be near unity. 

I t  is interesting that the thermodynamic behaviour of aqueous 
sulphuric acid approximates to that of the 1 : 1 electrolyte, hydro- 
chloric acid; a similar effect occurs with ammonium sulphate and 
ammonium chloride. If we treat a 1 : 2 electrolyte formally as a 
1 : 1 electrolyte, its osmotic coefficient becomes q5f = +}2,q5 being 
its value on the basis of a 2 : 1 electrolyte (Y = 3). In Figure 13.2 
this modified osmotic coefficient 6 for sulphuric acid is compared 
with the osmotic coefficient q5 of the genuine 1 : 1 electrolytes, 
ammonium chloride and hydrochloric acid, at concentrations up to 
6 M. The curve is somewhat higher than that of hydrochloric acid 
but is clearly of the same type. At its lower extremity it begins to 
show a rise which is of course due to the increase of the second disso- 
ciation with dilution. Above 0.5 M, there is much more similarity 
between the sulphuric acid and hydrochloric acid curves than there 
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is between hydrochloric acid and ammonium chloride. The differ- 
ence between the latter is attributable to the great difference in the 
extent of ‘thermodynamic’ hydration of the proton and the ammon- 
ium ion, while the difference between the two acids is probably 
mainly due to the fact that the bisulphate ion is larger than the 

2 

2 

? 

t ‘  a 
& 
a? 

? 

0 

m- 
Figure 13.2. OsmoIu coe&nts 3f sulphuric acid and ammonium sulphnlc considered as 
effitivdy I : I clectrolyks. From WISHAW, B. F. and STOKES, R. H., Trans. Faraday 

sod., 50 (1954) 954 

chloride ion. In passing, it is worth noting that at these high con- 
centrations ammonium sulphate behaves much more like the 1 : 1 
electrolyte ammonium chloride than like a fully dissociated 1 : 2 
salt: indeed, it is doubtful whether there is such a substance except 
at great dilution. The ion-pair NH,SO,- is considerably less stable 
than the covalently-bound particle HSO;, as is evidenced by the 
dashed part of the ammonium sulphate curve in the figure which 
shows that dissociation into a I : 2 electrolyte is becoming significant 
below 2 M. 

IONIZATION CONSTANT O F  T H E  SECOND STAGE O F  
DISSOCIATION OF S U L P H U R I C  ACID 

Except at very high concentrations sulphuric acid is a non-associated 
electrolyte in its first stage of dissociation, to which YOUNG and 
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BLATZ(~@) assigned an ionization constant of the order of 108. In its 
second stage of dissociation it is a moderately weak electrolyte with 
an ionization constant about 0.01. An acid of this strength produces 
sufficient ions to make the computation much more difficult than 
that for a much weaker acid like acetic acid. SHERRILL and 
NOYES(%) made a computation from conductance data which is 
interesting in being one of the early calculations in which the 
importance of the Debye-Huckel theory was realized. The equiva- 
lent conductivity A of a solution of sulphuric acid of molality my in 
which all the molecules have lost the first hydrogen ion by dissocia- 
tion and a fraction, a, have lost the second hydrogen ion to form 
the SO,-- and a fraction (1 - a) remain in the HSO; state, is: 

211 = (1  + a)Ap + (1 - a)AHso, t ZaAso-,- 

The observed transport number is obtained, at least in principle, 
by measuring the net transfer of hydrogen ion to the region around 
an electrode when current is passed. Part of this is due to transport 
of HSOi ions in the opposite direction so that: 

(1 + a)AH+ - (1 - a)AH80i 

2A tHt = 

and the two equations can be solved to give 

(1 + tn+)A - AH+ a =  
AH* + As0;- 

The transport number is known, AH+ is found from the conductivity 
and transport number of hydrochloric acid at a comparable ionic 
concentration and As0 - from data for potassium sulphate. A 
certain amount of successive approximation is necessary because 
AH+ and Aso,- have to be interpolated at ionic strengths not known 
at the commencement of the calculation. 

The two equations of this method can also be solved to give: 

Since the conductivity of a solution of sodium hydrogen sulphate is: 

and lHsos is known from the sulphuric acid measurements, a second 
value of the ionization constant of sulphuric acid can be got from 
the conductivity of the sodium salt. Shemll and Noyes arrived at 
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Kp = 0.0115 by both methods, but a recent recalculation(21) has 
led to the opinion that 0.0102 would be a better value. 

A second attack(22) on this problem follows the work of Harned 
and Ehlers on acetic acid by using the cell: 

H,INaHSO,(m), NapSO,(m'), NaCl(m") IAgCl, Ag 

Whilst this cell gives very reproducible potentials, there are diffi- 
culties in the calculation that are met with even in the case of an 
acid like formic acid, but are enhanced when the acid is polybasic 
and one of the ionization constants is of the order of 0.01. However, 
by a tedious set of approximations, Hamer arrived at values of K 
between 0" and 60°, that at 25" being 0.0120. Hamer's data have 
been recalculated(21) making allowance for the formation of some 
NaS0,- ions, to give K = 0.0102 at 25". 

A third method uses the cell: 

HaIHWm), H2SOdm') IAgCl, Ag, 

an interesting variant of the Harned-Ehlers cell which avoids the 
correction for NaSOi ion formation, apart from which the calcula- 
tion is similar to that used with Hamer's cell. DAVIES, JONES and 
 MONK(^^) arrived at Ka = 0.0103 at 25". 

Perhaps the most reliable value comes from the spectrophoto- 
metric work of YOUNG, KLOTZ and SINGLETERRY(~~) using a method 
which is not unlike that of VON HAL BAN(^) et al. for picric acid and 
a-dinitrophenol, but which is not limited to weak acids giving 
coloured solutions. 

Two absorption cells are used, one filled with a 'reference' 
indicator solution (4 x 10-6N methyl orange) and between 
3 x lo-' and 6 x lO-4N hydrochloric acid, so that the pH is 
about 3.4, and substantial proportions of each of the coloured forms 
of methyl orange are present. The other cell contains a similar 
indicator solution to which is added sodium sulphate. The intensity 
of the light transmitted by this solution for light of wavelength 
5200 A is determined by a photoelectrically registering spectro- 
photometer. Since both the red and the yellow forms of the indicator 
are present, by Beer's Law: 

log 7 10 = ode,, + ( 1 - a)+ 

where Zo and Z are the intensities of the incident and transmitted 
light, I is the cell length, a is the fraction of the total indicator 

385 



13 THE ‘STRONG’ ACIDS 

concentration, c, which is in the yellow form, In-, this form having 
an extinction coefficient q,, whilst ( 1  - a) is in the ‘red’ form, HIn, 
which has an extinction coefficient E~ lea and lq, are determinable 
by adding an excess of acid or alkali to the solution so that the 
measurement of the transmitted light through the stock indicator 
solution with about 5 x lo-“ hydrochloric acid and sodium 
sulphate in amounts up to about 0.04 N is essentially a determina- 
tion of the indicator ratio, cI,-/cHI~ = a/(l - a). But this ratio 
occurs in the equilibrium equation: 

YH+YIn- cH+cIn- KI,, = - - 
Y H b  %o 

or log CH+ = log KI,  - log R - 2 logy 

where R is the ratio cIn-/tHIn and y2 is an abbreviation for 
YH+YIn-bHIw 

Using the same indicator solution but with no added sodium 
sulphate, let the results of intensity measurements be represented by: 

log Cpr+ = log K h  - log RO - 2 logy0 

The addition of sodium sulphate has therefore altered R in two 
ways, a neutral salt effect o n g  resulting from change in the total 
ionic strength, and a change in cE+ resulting from combination of 
hydrogen and sulphate ions. It is now assumed that the addition of 
a salt such as sodium chloride changesy but not tH+; let it be added 
in such amount that the total ionic strength is increased as it was 
on the addition of sodium sulphate. Then the new R value is 
given by: log 4. = log KI, - log R - 2 logy 

log- CH+ = l o g x  tp + 2log- u” 
4. Y 

Hence: 

and RO Yo log - = - 2 log - 
R Y 

The method therefore gives cH+, the hydrogen ion concentration of 
the sodium sulphate solution relative to that of the stock solution, 
say cH+ = Y&+. But the bisulphate ion is subject to the equilibrium 
equation : 

YH+YSOi4H+cSO~- 



l i m p .  K. 

35" 0.0077 0-0002 
0.00565 f O.ooOo7 

55" 0-00413 f O-oooO1 

5O 
15' 
25" 

'The limits shown in this table correspond to the agreement 
between two sets of measurements made by Singleterry, in one of 
which sodium chloride was used as 'neutral' salt and in the other 
barium chloride. The ionization constants can be represented by: 

0.0185 f 0.0005 
0.0139 f O~OOO4 
0.0104 + 0.0003 

475.14 
T log K, = - - + 5.0435 - 0*018222T 

with the following thermodynamic properties for the dissociation 
process at 25". 

hRO = - 5237 cal mole-' 
AC$ = - 49.7 cal deg-I mole-' 
As0 = - 26.6 cal deg-1 mole-' 

Singleterry estimated ARo = - 5188 and - 5319 cal mole-' from 
the two sets of measurements; the entropy change is almost the 
same in each of his calculations, but he derived - 45.9 and - 57 
cal deg-I mole-' for the partial molal heat capacity so it is evident 
that a mean value should be used with caution. This equation 
predicts that K, should have a maximum value of 0.14 at - 112". 
It is of course dangerous to extrapolate so far from the range of 
temperatures in which this equation is valid; nevertheless it is 
evident €tom a plot of log& against the temperature that the 
maximum cannot be attained without a considerable reduction of 
temperature below 5". 
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The high value of this ionization constant results in some anoma- 
lous properties of sulphuric acid in comparison with non-associated 
electrolytes. For example, the apparent mold volume of a simple 
electrolyte in aqueous solution is usually a linear function of the 
square root of the volume concentration; this statement, sometimes 
known as Masson’s ruIe(25), often holds up to surprisingly high 
concentrations. The behaviour of sulphuric acid is very different, 
as was shown by KLOTZ and ECKERT(*~). The circles in Figure 13.3 
represent their experimental measurements and the lower straight 

gr- 
Figure 13.3. Apparent mold a ~ l m  of aqueous sulphurit acid. I in mokwity uniu 

line is the calculated apparent molal volume of the hypothetical 
fully dissociated (2H+ + SO,-) electrolyte, obtained by applying 
the additivity rule to the apparent molal volumes of potassium 
sulphate, hydrochloric acid and potassium chloride. It is evident 
that only at the most extreme dilutions will the apparent molal 
volume of sulphuric acid be at all close to that expected of the 
completely dissociated acid. At concentrations experimentally 
accessible the volume is considerably higher and becomes linear in 
the square root of the concentration at high concentrations when 
the solution contains effectively only H+ and HSOc ions. Klotz and 
Eckert were able, from the known degrees of dissociation, to calcu- 
late the apparent molal volume of the hypothetical fully dissociated 
(H+ + HSO;) electrolyte, shown by the upper straight line of 
Figure 13.3. Thus they have demonstrated that the anomalous posi- 
tion of the experimental points can be resolved by assuming two 
straight lines to represent the variation of the volume function with 
d Z  and apportioning the contribution of each species according to 
the known fraction present. 
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The surface tension of aqueous sulphuric acid exhibits greater 
complexity. The surface tension of a salt solution usually increases 
linearly with the molality, the slope being characteristic of the salt, 
but for hydrochloric and nitric acids the surface tension decreases 
with increasing concentration and the slopes are not quite straight 
lines. 

The curve of the surface tension of sulphuric acid solutions 
against the concentration is markedly temperature dependent; at 
0" and at low concentrations the curve has a negative slope leading 
to a minimum surface tension at about 0.6 M after which the surface 
tension increases again to a flat maximum at about 7 M. The 
minimum is not found at higher temperatures, although the initial 
branch of the curve at 18" is almost sigmoid in shape, and the 
maximum occurs at higher concentrations as the temperature is 
increased. By employing an additivity principle similar to that used 
by Klotz and Eckert, YOUNG and GRIN STEAD(^) were able to 
calculate the surface tension of solutions of the hypothetical, fully dis- 
sociated acid (2H+ + SOT-) from data for hydrochloric acid, sodium 
sulphate and sodium chloride and to show that the surface tension 
should decrease with increasing concentration. That of the fully 
dissociated acid (H+ + HSO;), however, should increase with 
concentration. Qualitatively we can see that the observed minimum 
may well result from the balance set up between the positive slope 
of the (H+ + HSOT) curve and the negative slope of the 
(2H+ +SO,--) curve. Young and Grinstead were able to go 
further than this and to show that, from the known degrees of 
dissociation at various concentrations, it could be predicted that at 
0" the minimum should be at 0.65 M (observed 0.5-0.7 M) and 
the lowering of the surface tension, relative to pure water, at the 
minimum should be 0- 15 (observed 0.2 1 dyn cm-1). The maximum 
is more difficult to account for quantitatively; in these solutions the 
SO,-- ion is negligible in amount, the HSO; is present in consider- 
able quantity but is diminishing in extent relative to the undissoci- 
ated sulphuric acid molecule. Pure sulphuric acid has a considerably 
lower surface tension than water and the formation of the un- 
dissociated sulphuric acid molecule should lower the surface tension 
of the solution, i.e., it should act contrary to the elevating effect of 
the (H+ + HSO;) acid and hence there should be a maximum 
surface tension. The quantitative calculation is made difficult 
because the behaviour of two-component liquid mixtures is not yet 
thoroughly understood, but Young and Grinstead were able to 
show that the value of the maximum surface tension and the 
concentration at which it is found are in accord with the idea that 
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13 THE 'STRONG' ACIDS 
it could be compounded of values due to the two solute species, 
bisulphate ions and undissociated molecules. 

It should also be mentioned that the heat of dilution of sulphuric 
acid to infinite dilution is very large. This is mainly due to the heat 
liberated on the ionization of the bisulphate ion which is present in 
considerable amount at ordinary concentrations, but, of course, 
dissociates completely on sufficient dilution. By a similar process 
of compounding the contribution of the (H+ + H+ + SO;) and 
(H+ + HSO,-) species, Young and Blatz were able to give a remark- 
ably good account of the observed heat of dilution of sulphuric acid 
solution up to about 0.05 M. 

Selenic acid seems to be an acid comparable in strength to 
sulphuric acid, the second ionization constant being 0.0120 at 25" 
according to PAMFILOV and AGAFONOVA(~~). Their measurements 
extended over the range 0" to 30" and calculations based on their 
results suggest ARo = - 2080 cal mole-', which is considerably 
less than Young et al. found for sulphuric acid. Telluric acid has 
very different properties: salts such as Ag,TeO, can be prepared, 
the first ionization constant is 2.31 x and the second is about 
10-l2, so that telluric acid is very weak even in its first dissociati~n(*~). 
Sulphurous acid'w) has ionization constants K, = 1.72 x and 
KO = 6-24 x 10-8 whilst iodic acid'31.32) (K = 0.168) and tri- 
chloracetic acid's*) ( K  = 0.232) are two more examples of acids 
intermediate between non-associated electrolytes and the majority 
of the weak acids. By contrast, the ionization constants of periodic 
acid(=) are Kl = 0.028 and K, = 5.38 x 1O-O. 

Finally it may be mentioned that hydrofluoric acid is unlike the 
other halide acids in being a weak acid with an ionization 
of 6-7 x loq4 at 25" and with a strong tendency to associate: 

HF + F- z HF; 
the 'association constant' being 3.9 at 25". This leads to low values 
of the stoichiometric activity coefficient as follows: 

m 0001 0.003 0005 0.01 0.03 0-05 0.1 0.3 0.5 1.0 
y 

REFERENCES 

0544 0.371 0.300 0.224 0.136 0.106 0.077 0.044 0.031 0.024 

BASCOMBE, K. N. and BELL, R. P., Disc. Furaday Soc., 24 (1957) 158 
Ib WYAIT, P. A. H., ibid., 24 (1957) 162 
lc VAN ECK, C. L. P. u. P., MENDEL, H. and BOOG, W., ibid., 24 (1957) 200 
ld OWEN, B. B. and SWEETON, F. H., J .  Amer. chnn. Soc., 63 (1941) 281 1 
1 ONSAGER, L., Ann. N.?". Acad. Sn'., 46 (1945) 265 
3 GILLESPIE, R. J. with HUGHES, E. D., INGOLD, C. K., GRAHAM, J., 

PEELING, E. R. A. and WASIF, S., 3. c h .  Soc., (1950) 2473- 
2551,2997; (1953) 204,964 

These papers contain a comprehensive bibliography of earlier 
work, in particular that of HANTZ~CH, A. and of HAMMEIT, L. P. 

390 



REFERENCES 

4 KUNZLER, J. E. and GIAUQIJE, W .  F., 3. Amer. chem. Soc., 74 (1952) 804 
5 BRAND, J. C. D., JAMES, J. C. and RUTHERFORD, A., 3. chem. Soc., (1953) 

6 GILLESPIE, R. J. and COLE, R. H., Trm. Furuduy Soc., 52 (1956) 1325 
7 HAMMEIT, L. P. and DEYRUP, A. J.,3. A m r .  chem. Soc., 55 (1933) 1900 
8 HAMMEW, L. P. and LOWENHEIY, F. A., ibid., 56 (1934) 2620 
* GILLESPIE, R. J., HUGHES, E. D. and INGOLD, C. K., 3. chem. Soc. (1950) 

10 FORSYTHE, W. R. and GIAUQIJE, W .  F., 3. Amer. chem. Soc., 64 (1942) 48 
11 C ~ I N ,  J. and VANDONI, R., C.R. Acud. Sci., Paris, 227 (1948) 1232 
19 BERL, E. and SAENGER, H. H., Monutsh., 54 (1929) 1036 

14 YOUNG, T. F. and KRAWETZ, A. A., quoted by REDLICH, 0. and HOOD, 
G. C., Disc. Furuaizy Soc., 24 (1957) 87 

14* HOOD, G. C., REDLICH, 0. and REILLY, C. A., 3. chem. Phys., 22 (1954) 
2067 

15 REDLICH, O., HOLT, E. K. and BIGELEISEN, J., 3. Amer. chem. Soc., 66 

15a MCKAY, H. A. C., Trm. Furuduy Soc., 52 (1956) 1568 
1' INGOLD, C. K., MILLEN, D. J. and POOLE, H. G., 3. c h .  Soc. (1950) 

2576; MILLEN, D. J., ibid. (1950) 2589, 2600, 2606; INOOLD, 
C. K. and MILLEN, D. J., ibid. (1950) 2612; GOULDEN, J. D. S. 
and MILLEN, D. J., ibid. (1950) 2620 

17 Cox, E. G., JEFFERY, G. A. and TRUTER, M. R., Nature, Lond., 162 
(1948) 259 

18 GRISON, E., ERIKS, K. and DE VRIES, J. L., Actu cryst., Camb., 3 (1950) 290 
19 YOUNG, T. F. and BLATZ, L. A., Chem. Rcv., 44 (1949) 93; YOUNG, T. F., 

Rcc. chem. Prog., 12 (1951) 81 
lo* REDLICH, 0. and HOOD, G. C., Disc. Furuduy Soc., 24 (1957) 87 
10 SHERRILL, M. S. and Noyes, A. A.,3. Amer. chem. Soc., 48 (1926) 1861 
21 DAVIES, C. W., JONES, H. W. and MONK, C. B., Trm. Faraduy Soc., 48 

(1952) 921 ; see also KERKER, M., j .  Amer. chem. Soc., 79 (1957) 
3664 

*9 HAMER, W .  J., 3. A m .  chem. Soc., 56 (1934) 860 
KLOTZ, I. M., SINGLETERRY, C. R., 27w~e.r~ University of Chicago (1940) 

24 HALBAN, H. VON and SIEDENTOPP, K., <. phys. Chem., 100 (1922) 208; 
HALBAN, H. VON and EBERT, L., ibid., 112 (1924) 359; HALBAN, 
H. VON and KORTUM, G., ibid., 170A (1934) 351 

95   LASS ON, D. O., Phil. Mag., 8 (1929) 218 
KLOTZ, I. M. and ECKERT, C. F., 3. A m .  chem. Soc., 64 (1942) 1878 

97 YOUNG, T. F. and GRINSTEAD, S.  R., Ann. N. E Acad. Sci., 5 1 (1949) 765 
PAMFILOV, A. V. and AGAFONOVA, A. L., <hur. Fir. Khim., 24 (1950) 

1147; C h .  Abstr., 45 (1951) 2293 
BLANC, E.,J. Chim.phys., 18 (1920) 28; BRITTON, H. T. S. and ROBINSON, 

R. A., Iran,  Faraday Soc., 28 (1932) 531; FOUASSON, F., Ann. 
Chim., 3 (1948) 594; ANTIKAINEN, P. J., S w m n  Kem., 28e (1955) 
135; 30e (1957) 201 

2447 

2552 

REDLICH, O., Chem. Rev., 39 (1946) 333 

(1944) 13 

ao TARTAR, H. V. and GARRETSON, H. H.,3. Amer. chem. Soc., 63 (1941) 808 
11 Fuos, R. M. and KRAUS, C. A., ibid., 55 (1933) 476 
91 HALBAN, H. VON and BR~LL, J., Helv. chim. Actu, 27 (1944) 1719 
1s NASANEN, R., Acta c h .  scund., 8 (1954) 1587 
84 BROENE, H. H. and DE VRIES, T., 3. Amer. chem. Soc., 69 (1947) 1644 

39 1 



14 

ION ASSOCIATION 

THE concept of ionic association provides a relatively simple and 
self-consistent method of dealing with the situation which arises 
when ions of opposite sign are close together. In these circumstances 
the energy of their mutual electrical attraction may be considerably 
greater than their thermal energy, so that they form a virtually new 
entity in the solution, of sufficient stability to persist through a 
number of collisions with solvent molecules. In the case of a sym- 
metrical electrolyte, such ion-pairs will have no net charge, though 
they should have a dipole moment. They will therefore make no 
contribution to the electrical conductivity, while their thermo- 
dynamic effects will be those of removing a certain number of ions 
from the solution and replacing them by half the number of dipolar 
‘molecules’. With unsymmetrical electrolytes the position will be 
more complicated, since the simplest and most probable type of 
ion association, that involving only two particles, will result in the 
appearance of a new ionic species of a charge type not previously 
present; this will contribute to the conductivity, though less than 
would its constituent ions in a free state. In such cases further 
association to form neutral particles may also be reasonably 
expected. 

The question which immediately presents itself is: when can 
two adjacent ions be called an ion-pair? This is rather like the other 
question we have had to consider: when is a water molecule to be 
regarded as part of the hydration shell of an ion? and we shall 
give a rather similar answer, vie., that an ion-pair must be long- 
lived enough to be a recognizable kinetic entity in the solution. 
We have treated the hydration question by a simplified picture in 
which different degrees of hydration are smoothed out to an average 
number of molecules of water of hydration. Similarly we use the 
idea, due to BJERRUM(~), that the average effects of ion-pair forma- 
tion may be calculated on the basis that all oppositely charged ions 
within a certain distance of one another are ‘associated’ into 
ion-pairs, though in reality a momentarily fast-moving ion might 
come within this distance of another and pass by without forming 
a pair. 
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BJERRUU'S TREATMENT 

Bjerrum proposed that this critical distance, which we shall 
denote by q, should be chosen as: 

.... q = -  IGz*le2 
2ekT ,(14.1) 

This is seen to be the distance at which the mutual electrical 
potential energy of the two ions: 

Izlz*le2/(4 
is equal to 2kT. The reason for this particular choice appears from 
the following argument: 

In discussing the Poisson-Boltzmann equation: 

we have said that no self-consistent solution is possible unless the 
series expansion of the exponential is stopped at the first power of 
y, or at the second for the special case of symmetrical electrolytes, 
and that pursuing the expansion further, apart from the mathe- 
matical complexity, leads to difficulty with the principle of linear 
superposition. The Bjerrum treatment avoids these difficulties. 
The density of i-ions around a selected j-ion is given as before by 
the Boltzmann expression (4.5) and the number in a shell of thick- 
ness dr at a distance r is: 

When r is small, Bjerrum neglects the effect of interionic forces on 
the reasonable ground that the potential of the central ion will be 
dominant and writes: 

zje 
fp, = ; 

so that the number of i-ions in the shell is: 

Considering a series of shells each of equal thickness, dr, the number 
of ions which on a time average find themselves in each succeeding 
ring, can be calculated. In Table 14.1, we give the results for an 
aqueous solution at 25" containing a 1 : 1 electrolyte, for the cases 
where zr and zf are of opposite sign and of the same sign. The 
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14 ION ASSOCIATION 

second column contains the value of the probability factor, the next 
column the volume of a shell 0.1 A thick, and the last column the 
number of ions to be found in each shell. (In making the calcula- 
tion it has been assumed that the probability factor in the second 
column is constant in any one shell of thickness 0.1 A; this, of 

Tablc 14.1 

2 
2.5 
3 
3-57 

35.57 
17.36 
10.78 
7.39 

5 I 2::: 

1.37 n; 
1.22 nl 
1.18 nf 
1.20 nf 
1.31 n, . .. 

3-28 ! I 2-77 
8 2-44 

0.005 6 
0.01 n, 
0.02 n, 
0.03 nj 
0.08 n. 

I 

~ 

Number of ions in shell x 10'' 
4 d  dr x 10" 

(dr 0.1 x lo-' a) o ~ o ~ ~ k  
charge charge 

0.50 
0-79 
1.13 
1 *60 
2.0 1 
3.14 
4.52 
6.14 
8.04 

course, is not so, but this crude method of calculation suffices for 
purpose of illustration.) It will be seen that when i a n d j  are ions 
of opposite sign, then with increasing r there is a decreasing proba- 
bility of finding an i-ion in any unit of volume, but the volume of 
the shell increases and the two opposing effects combine to give a 
distance at which there is minimum probability of finding an i-ion 
anywhere on a sphere surrounding the centralj-ion at this critical 
distance. The position of minimum probability is: 

as can readily be shown by  differentiating the function 

For a 1 : 1 electrolyte in water at 25" q = 3.57 A; at distances 
closer to the central ion the population of oppositely charged ions 
increases rapidly (see Figure 14.1) : the population also increases at 
greater distances but the rate of increase is less. There is no such 
effect with ions of like charge: there is small probability of finding 
them close to the central ion and the population shows no minimum. 
As regards the ions of opposite charge, if the distance of closest 
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CALCULATION OF DISSOCIATION CONSTANT 

approach is 3.571z1z21 A or more, it is assumed that there will be 
no ion-pairs. If the ions can approach closer than this, Bjerrum 
would regard those within the sphere of radius 3.571z1tal A as 
‘undissociated’ ion-pairs. I t  is to the ions outside that the Debye- 
Huckel theory is to be applied. (We use the expression ‘number of 
ions’ although it would be closer to physical reality to say, at 
greater length, the time average probability of finding an oppositely 
charged ion within this critical distance.) Before we apply these 

Figure 14.1. Number of wm in a shell 0.1 A thick at a distance 
from a central ion 

considerations to ion-pair formation, let us consider the magnitude 
of the effect we are discussing. Consider a solution of a 1 : 1 
electrolyte, 0.01 N in concentration corresponding to n1 = 6 x lo1* 
ions1c.c. Even in the absence of any electrical force exercised by 
the central ion, the ‘normal’ distribution would lead to the presence 
of 0.0127 ions in the shell between 2 and 8 A, or, putting it more 
realistically, a single ion has a volume of 1.7 x lo5 cu. A at its 
disposal. The attractive force of the central ion increases the con- 
centration to an extent given approximately by averaging over the 
figures in the penultimate column of Table 14.1, viz., 0.050 ions in 
the shell. This figure is probably too large because Bjerrum has 
simplified the treatment of the problem by subjecting the ions 
surrounding the central ion to the potential of this ion alone, 
whereas allowance for the interionic forces would act in the opposite 
direction. 

The degree of association (1 - a) is obtained by integrating the 
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14 ION ASSOCIATION 

number of ions in all the shells from the distance of closest approach 
up to the critical Bjerrum distance: 

(1 - a )  =h, [ exp ( -- ::$) r2dr 
Put 

z1z2e2 x =  -- 
ekTr 

so that the integral becomes: 

where 

and 

Thus 

where Q(b)  =Sbr4& dx 

Values of the integral, Q(b) ,  have been tabulated('* 2, (see Appendix 
14.1). The law of mas  action gives: 

2 

a2y% 
(1 - a) 
- = K  

assuming that the activity coefficient of the ion-pair is unity. The 
calculation now proceeds in three stages: 

1. In very dilute solutions, a w l,p w 1 and 

- a m P- c lo00 X (&) zlzalez Q(b) . . . .(14.2) 

For any value of u (< q) there are corresponding values of b and 
1 

Q(b)  and hence of - so that K is a function of the closest distance of K 
approach of the ions. 

2. From the two equations: 

and 
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CALCULATION OF DISSOCIATION CONSTANT 

the degree of association (1 - a) at any value of t  can be calculated 
by successive approximations. As the theory is not expected to 
apply to solutions that are not dilute the distinction between the 
activity coefficients f andy can be ignored. 

3. From the equation (cf. eq. 2.40): 
fw =&b. 4 

knowing a and f from the second computation, we can calculate 
fob., the activity coefficient which should result from experimental 
measurements, assuming complete dissociation, on an electrolyte 

1 -  
Figure 14.2. EJect of distance of thest approach on the degree qf association 

at 0.1 M for a 1 : I elcclrolylc in wafer 

possessing the value of a adopted at the commencement of the 
calculations. Bjerrum has given extensive tables of the degree of 
association of 1 : 1 electrolytes in water at 18' and the activity 
coefficients which should be observed on the assumption of complete 
dissociation. The tables cover the range O.OOO1 to 2 N for values 
of a between 0.47 and 2.82 A. Figure 14.2 shows how the degree of 
association varies with a at m = 0.1. At a = 2 A, only about 
2.5 per cent of the ions are associated; a has to be reduced to 1-4 A 
to increase this to 10 per cent and only at about 0.6 A do the ion- 
pairs preponderate over the free ions. Such small ionic radii are 
unusual and therefore we should not look to aqueous solutions 
expecting to find outstanding examples of ion-pair formation in 
1 : 1 electrolytes. 

Fuoss'"' has recently pointed out that a continuous distribution 
such as that shown in Figure 14.1 ignores the discrete molecular 
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nature of the solvent: he suggests that two ions should be counted 
as a pair only if they are in contact, with no solvent molecule inter- 
vening. Configurations in which the ions are separated by only a 
fraction of the diameter of a solvent molecule are highly improbable. 
On this basis he finds for the dissociation constant K of a 1 : 1 electro- 
lyte the simpler result: 

. . . .(14.2a) 

For large values of 6-i.e., in solvents of low dielectric constant, this 
result differs from (14.2) by approximately a factor 6, which is of 
minor importance compared to the large value 8. Some further 
discussion of this new theory is given in Appendix 14.3. 

One example can be quoted which illustrates Bjerrum’s theory in 
solvents of dielectric constant not less than 57. The dissociation 
constant of lanthanum ferricyanide, LaFe(CN) 6, has been deter- 
mined recently(314), not only in water as solvent, but also in aqueous 
mixtures of ethanol, glycol, acetone, dioxan and glycine, the last 
being used to provide solvents of dielectric constant greater than 
that of water. The dissociation constants were derived from con- 
ductivity measurements in very dilute solution and it was found 
that X = 1.82 x 10-4 in water as solvent, a value comparable with 
that of formic acid. The critical distance for a 3 : 3 electrolyte is 
32.1 A: calculation shows that a closest distance of approach of 
7.2 A corresponds, on Bjerrum’s theory, to a dissociation constant 
of 1.82 x 10-4 if we regard any ion distant between 7.2 and 32.1 A 
from an oppositely charged ion as forming, temporarily at least, an 
ion-pair with its neighbour. It was also found that Walden’s rule 
held for these solutions, A030 changing very little from one solvent 
to another, and it was therefore assumed that this distance of 7.2 A 
would not vary with the nature of the solvent. K is then a function 
of the dielectric constant which appears twice in equation (14.2), 

in the - ‘z1z2’e2 factor and in the Q(b) factor. The continuous line e k l  
in Figure 14.3 shows how X should vary with the dielectric constant 
on Bjerrum’s theory, the points being the observed dissociation 
constants. Considering how difficult to determine are these dis- 
sociation constants, requiring accurate measurements at very low 
concentrations, it is not surprising that there is some scatter of the 
points, but the dissociation constant decreases with decreasing 
dielectric constant in a way very close, indeed, to that predicted by 
Bjerrum’s theory. 

Solvents of lower dielectric constant should favour ion-pair 
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formation to an even more marked degree. At the critical distance 

defined by q = - the potential energy of the ion-pair is 2 kT, 
that is to say, the energy necessary to separate the pair is comparable 
with their energy of thermal motion. Whilst in water as solvent the 

2ekT'  

I;i,sure 14.3. Dissociation constant of lanthanum fcmcyanide as a funciiaii u/ the 
dielectric comtant d t h e  solvent, compared with the prediction qfLlj,rrum's equation 

majority of ions, especially the solvated ones, cannot approach 
within their critical distances, q can exceed the ordinary ionic 
diameter if the dielectric constant is lowered. A convincing proof 
of this has been advanced by Kmus and Fuoss(** 5, using conduc- 
tivity measurements on tetraisoamylammonium nitrate in a series of 
water-dioxan mixtures covering a wide range of dielectric constant 
from 2-2 to 79. Solutions of concentration as low as c = 10-5 were 
examined and the spread of the dielectric constant led to a tre- 
mendous variation of the equivalent conductivity; for example, at  
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c = 0.0005, A was 85.1 in water but only 0.000129 in dioxan. 
With changing electrolyte concentration in any one solvent the 
conductivity exhibits curious changes. With pure dioxan as solvent 
there is a minimum in very dilute solution (at c = 2 x 10-5): the 
curve of conductivity against concentration (best plotted as log A 
versus log c)  then shows three points of inflection at higher concen- 
trations. On the addition of water to the solvent, that is, on 
increasing the dielectric constant, the minimum is found at higher 
concentrations and becomes less pronounced. Thus, with 4 per cent 
of water ( E  = 3.5) the minimum is at c = 3 x lo-* and disappears 
if there is 20 per cent of water in the solvent ( E  = 12). 

It is with the conductivities in very dilute solution that we are 
now concerned, i.c., the conductivities at concentrations lower than 
that at which we find the minimum. Very marked departures from 
the limiting Onsager equation are found in solutions of low dielectric 
constant; for example, the Onsager equation for a 9.5 per cent 
water solution ( E  = 5.84) is: 

A = 30 - 4 7 3 4 ~  

predicting A = 20.5 at c = 4 x 10-4 whilst the observed figure 
was only A = 2.48. It is now assumed that this indicates ion-pair 
formation and a series of approximations gives a dissociation con- 
stant of the order of Fuoss and Kraus had at their disposal 
dissociation constants of tetraimamylammonium nitrate in nine 
solutions. From each dissociation constant they were able, using 
Bjerrum’s equation, to calculate that the distance of closest approach 
was 6.4 A (the values ranged from 6.01 to 6-70 A). They plotted a 
graph of log K as a function of log E, log K being calculated by 
Bjerrum’s equation for a = 6.4 A and on this graph the experi- 
mental values of K agreed remarkably well with the predicted curve. 
Another method of showing this agreement is to calculate (see 
Table 14.2) K for each solvent assuming a constant value of 
a = 6.4 A and compare X with the experimental values. This is a 
severe test of the theory, because the dielectric constant varies by 
sixteenfold and the dissociation constant varies over a range of 

Only at the lowest water content is there a difference which 
could be called significant, and in this solution the minimum in the 
conductivity curve is found at c = 0.0007, so that the disturbing 
factors to which the minimum is due may well have affected the 
measurements at lower concentrations. This experiment of Kraus 
and Fuoss must be regarded as establishing the essential soundness 
of Bjerrum’s concept of electrostatic ion-pairs, though Fuoss(0) now 
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considers that the data are perhaps better represented by equation 
(14.2a) than by Bjerrum's result (14.2). 

Ion-pair formation does indeed occur when most electrolytes are 
dissolved in any solvent other than one of the few which have high 
dielectric constants. Water is one of these; as it is also the cheapest 

Table 14.2 

Dissociation Constant of Tetraisoamylammonium .Mtrak in Dwxane- Water Mixtures 

a = 6.4 A 

0-60 
I *24 
2.35 
4.01 
6-37 
9.50 - _ _  

14-95 
20.2 
53.0 

2.38 
2.56 
2-90 
3.48 
4.42 
5.84 
8-5 

11.9 
38.0 

2 x 10-16 

I x l0-1* 
2.5 x 
3 x 10-8 
1.65 x 

I x 10-14 

I x 10-4 
9 x 10-4 
0-25 

I 

2 x 10-16 

1 x lo-" 
1-4 x 
1-7 x lo-* 
1.6 x 

2 x 10-14 

0.9 x 10-4 
7 x 10-4 
0-28 

and most accessible of solvents, it is not surprising that much of our 
information about electrolytic conductivity concerns aqueous solu- 
tions. This is fortunate in one way because electrolytes obey com- 
paratively simple laws in solvents of such high dielectric constants, 
but it should not be allowed to obscure the fact that electrolytes are 
incompletely dissociated in the majority of solvents. This is illus- 
trated by Appendix 14.2 which lists the limiting equivalent con- 
ductivities and dissociation constants of a number of salts in seven 
solvent media. Even simple salts are weak electrolytes in solvents 
of low dielectric constant: to emphasize this we quote a few examples 
from recent work(%): 

Salt Solvent & Temp. "C K 

KBr Acetic acid 6.20 30 1.1 x 10-7 
KBr Ammonia 22 -34 18.9 x 10-4 

KI Acetone 20.70 25 8-02 x 10-3 
KI n-Propanol 20.1 25 3.0 x 10-3 
KI Pyridine 12.0 25 2.1 x 10-4 

CsCl Ethanol 24-30 25 6.6 x 10-3 

NaI Ethylenediamine 12.9 25 6.86 x 
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T R I P L E  ION FORMATION 

Simple electrostatic theory shows that a systeni of two charged 
spheres placed symmetrically on each side of an oppositely charged 
sphere, all three being of the same size, has an energy 50 per cent 
greater than that of two oppositely charged spheres. Thus there is 
reason to believe that triple ions (+ - +) or (- + -), might be 
formed in solvents of low dielectric constant. The following treat- 
ment is taken from a paper by Fuoss and KRAUS'~). Consider the 
simplified case of an extremely dilute solution where the activity 
coefficients can be equated to unity and the limiting conductivity 
at infinite dilution is a sufficient approximation to the conductivity 
of a fully dissociated salt solution at this low concentration; let the 
solvent be one of low dielectric constant so that the degree of 
dissociation of ion-pairs is very small and ( 1  - a) m 1. 

Then for the reaction: 
M X + M + + X -  

K a% 

If there is a possibility of the further equilibria: 
(MXM)+ + MX + M+ 
(XMX)- s MX + X- and 

let 

an equality which implies that ions M+ and X- are equal in size 
and that there is equal probability of forming (MXM)+ or (XMX)- 
triple ions. 

The total concentration is: 
c = [MX] + 3 [M+] + 3 [x-] 4- ? [MXM'I 4- C [XMX-I 

aT = [MXM+]/c = [XMX-]/c rut  
SO that, if a and aT are small, 

a d/(W k m - c  and aT m -  
QT k 

Let A0 be the limiting conductivity at infinite dilution of the simple 
ions, i.e., 

and A& that of the triple ions, i.e., 

Ro = A&+ + A t -  

A$ = A&+ + A h -  
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Then the observed conductivity will be: 
A = aAo + a,A$ 

which is of the form 

This is the equation of a curve with a minimum and, by differentia- 
tion, it can be shown that the concentration corresponding to the 
minimum conductivity is: 

A = Ac-112 + 

a condition which gives three more important relations: 

Adn = 2 u A @  = 2a,*,A% 
showing that at the minimum, the conductivity is due in equal parts 
to single and to triple ions. Figure 14.4 shows a plot of A.\/c against 

C- 
Figure 14.4. Thgroph qfhdc against c for tetra;Om&ammonium nifrab in 

wclrcr-dioxnn of diekctrk conrfmt 2.56 

c for tetrahamylammonium nitrate in a water-dioxan solvent of 
dielectric constant 2-56. Up to c = 0.0007, the points lie on a 
straight line whose slope is 0.0119 and intercept 2.85 x If 
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Ao is equated to 30 (by comparison with Ro for this salt in solvents 
of similar viscosity) and A% is put equal to 10 on the ground that 
the triple ions will move about three times as slowly, then 

cdn = A/B = 2.85 x 10-6/0*01 19 = 2.4 x 
AmiD = 22/(AB) = 3.68 x 

K = 9 x 10-15 
k = 8 x lo-' 

To show the magnitude of the two dissociations the values in Table 
14.3 have been calculated. 

c x l(r 

1.5 
3.0 
8.0 

10 
24 
30 

100 

a x  l(r 

2.4 
1 -7 
1.1 
0-95 
0.6 I 
0-55 
0.30 

Table 14.3 

ay x IW 

0-5 
0-7 
1.1 
1.2 
1 *9 
2- I 
3-8 

5.8 5.8 
4.4 - 
4.05 I 4.03 
3-68 - 
3.75 3-68 
4-70 I 5.25 

As the concentration increases from very small values, a decreases 
more rapidly than aT increases and the conductivity decreases; at 
c = 8 x a = aT, but the conductivity is still decreasing. It 
is only when c = 24 x that the conductivity contributions of 
the two types of ions are equal and the conductivity has a minimum 
value, after which the formation of triple ions is dominant and the 
conductivity increases again. 

I t  must be noted now that, by selecting a solvent of such low 
dielectric constant (and therefore low values of a and ar) the calcu- 
lation has been capable of simplification by neglecting the interionic 
effects. For a solvent of higher dielectric constant, interionic forces 
are no longer negligible and the computation is not so straight- 
forward. 

Fuoss and Kraus were able to carry the argument one stage 
further: by treating the approach of a negative ion towards the 
positive ion of an ion-pair, subject to coulomb forces only, they were 
able to show that there is a certain value of the distance which is 
critical: once the approaching ion is within this critical distance it 
is to be regarded as forming a triple ion. The dissociation constant 
can be derived in the form of a complicated integral for details of 
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which the original paper should be consulted. However, assuming 
a critical distance of 9 A, good agreement with the experimental 
values of k was found : thus for the water-dioxan mixture of dielec- 
tric constant 2.56 for which k was found to be 8 x 10-6, theory 
yielded 9.3 x The critical distance of 9 A may seem very 
different from 6.4 A which had to be used in dealing with ion-pair 
formation. This, however, was a simple case of (+ -) union, 
whereas the triple ion formation is an average process involving 
(+ - +) and (- + -) in one of which two very large ions 
participate. 

An interesting question arises when two ions are competing to 
form a triple ion. On a random distribution XMX- and YMY- 
should be present in equal amount and XMY- at twice this con- 
centration. This has been found'") to be true for tetra-n-butyl- 
ammonium chloride and azide in benzene but for the chloride- 
nitrate, chloride-perchlorate and nitrate-perchlorate mixtures the 
XMY- triple ion is favoured. 

QUAD R U P 0 LE FORMATION 

The existence of a minimum in the conductivity concentration 
curve of an electrolyte has been explained by the formation of triple 
ions. At higher concentrations the conductivity changes in a com- 
plicated way and it is probable that higher aggregates are formed, 
for example, quadrupoles (+ - + -). Definite evidence for this 
has been found from the freezing-point measurements of solu- 
tions of triisoamylammonium picrate in benzene'". At extremely 
low concentrations the freezing-points can be explained on the 
basis of an equation@) for the j function of the freezing-point de- 
pression if a reasonable model is assumed for the ion-pair-an 
ellipsoid with axes in the ratio 2 : 1 containing a point dipole of 
moment 12.9 Debye units(s). But at higher concentrations the 
apparent molecular weight increases. It is assumed that this re- 
action occurs: 

2M+X- + M+X-M+X- 

Let a fraction, a, of the M+X- ion-pain associate in this way: then 
we can write: 

2(1 - a)% k --.- '- a 
a 
2 As each ion-pair is replaced by - quadrupoles leaving( 1 - a) ion- 

pairs, the total number of particles becomes ( 1  - 8). This we 
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a 
equate to the osmotic coefficient and hence to (1 - j) or j = - 2 and (1 - 2j) = (1 - a) so that: 

(1  - 2j)*c 
k ,  = 

j 
or, rearranging: 

j = c/k, (1 - 2j)2 

Therefore the function j/( I - 2j)2, obtained from the experimental 
data, should be a linear function of the concentration. This is 
exactly what Fuoss and KRAWS(~) found-plotted in this way a 
straight line was obtained up to a concentration of about 0.03 N, 
the slope giving a dissociation constant of 0.105 for this particular 
electrolyte in benzene. 

I O N - P A I R  FORMATION IN W A T E R  AS S O L V E N T  

The electrolytes so far considered as showing evidence of ion-pair 
formation do so to a marked extent. The phenomenon therefore 
occurs to a measurable degree even at low concentrations where the 
conductivity and the activity coefficient of the few dissociated ions 
can justifiably be described by equations known to be very good 
approximations at such high dilutions. It is, however, suspected 
that ion-pair formation does occur in some electrolytes, for example, 
with potassium nitrate in aqueous solution, but to an extent much 
less than in the examples we have already considered. The con- 
ductivity of potassium nitrate follows the predictions of the Onsager 
limiting equation much more closely and to much higher concen- 
trations than we have any right to expect; this can be expressed 
differently by saying that if the (1 + KU) factor is introduced into 
the Onsager limiting conductivity equation, the u value required 
(about 1.9 A) is just possible if the planar nature of the nitrate ion 
permits a number of close encounters. The activity coefficient of 
potassium nitrate is also much lower than we would expect. I t  is 
believed by many that the behaviour of potassium nitrate can be 
explained by postulating a small amount of ion-pair formation; 
about 3 per cent at 0.1 N would suffice. Unfortunately, whilst it 
would be comparatively easy to detect the ions if only 3 per cent 
of the potassium nitrate were dissociated, it is not easy to detect the 
ion-pairs if only 3 per cent are present in this form, except perhaps 
in unusual examples where the ion-pairs have characteristic Raman 
or ultra-violet absorption spectra. We have to measure the 
diminution from 100 per cent to something of the order of 97 per 
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cent for the proportion of ions present and, to add to the difficulties, 
this has to be done in a range of comparatively high concentration 
for the ion-pair effect to be noticeable, assuming that it does exist. 
We must therefore try to estimate ionic concentrations of such 
magnitude that our theories are inapplicable with any great 
assurance; for example, if the ionic concentration is estimated from 
conductance, it is difficult to prove that the 3 per cent deviation 
from theoretical prediction is due to ion-pair formation and not to 
some defect in the theory. The subject has indeed suffered from the 
difficulty of knowing how to describe the behaviour of the ionized 
part of the molecule at comparatively high concentrations. 
DAVIF,S(~O) has used an empirical equation to describe the conduc- 
tivity of a solution up to about 0.5N and by comparison with 
observed conductivities, he has come to the conclusion that many 
salts, including sodium and potassium nitrate, sodium and potassium 
iodate, silver nitrate and potassium bromate are only about 97 per 
cent dissociated at 0.1 N. 

We have already seen that the theoretical equation (7.36) works 
very well for aqueous 1 : 1 electrolytes of the non-associated type. 
It would therefore seem reasonable to expect it to represent the 
conductivity of an associated electrolyte if we put a equal to 
the critical Bjerrum distance: for a temperature of 25O, we write: 

a being the degree of dissociation of the ion-pairs. But if we put 
a = 3.57 A in this equation, we should also use the same value of a 
in the equation for the activity coefficient: 

. . . . (14.3) 

which is required to calculate the dissociation constant: 

ignoring the small difference between f andy. The results of calcu- 
lations along these lines are given in lable 14.4 for potassium and 
silver nitrate and for thallous chloride, using the conductivity data 
of SHEDLOVSKY(~~) for the first two, and of GARRETT and 
VELLENGA(~*) and of BRAY and WINNINOHOF(~~) for the last salt. 
The dissociation ‘constant’ hardly lives up to its name for the two 
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nitrates, since with increasing concentration it increases for potas- 
sium nitrate and decreases for silver nitrate, but a reasonably good 
‘constant’ results for thallous chloride. At low concentrations the 
‘constant’ is very sensitive to small changes in either A or AO-a 
change of 0.01 in either at 0.005 N corresponds to only 0.01 per 
cent in a but to 5 per cent in (1 - a) ! On Bjerrum’s theory dis- 
sociation constants of the order of these we have obtained for 

138.86 
136.61 
133.67 
128.51 
126.23 
123.60 

Table 14.4 

Dissociation Constants of Potassium Nitrate, Silun Nitrate and Thallouc Chloride at 25” 

0-9973 
0.9942 
0.9906 
0.9829 
0.9788 
0.9741 

C 

0.005 
0.0 I 
0.02 
0.05 
0.07 
0. I 

0.005 
0.01 
0.02 
0.05 
0. I 

040507 
O-Oo601. 
0.00750 
0.01 
0.01 108 
0-0 I501 
0.01607 

127.43 
125.24 
122.38 
I 17-39 
112.64 

hob‘. 

138.48 
135.82 
132-41 
126.31 
123.56 
120-40 

127.20 
124.76 
121.41 
115.23 
109.13 

143.10 
142.25 
141.13 
1399.00 
138-35 
136.03 
135.40 

0,9982 
0.9962 
0.992 1 
0.9816 
0.9688 

144.85 
144.34 
143.65 
142.65 
142-27 
141.05 
140.75 

- 2 logf  

0.9879 
0.9855 
0-9825 
0.9744 
0.9724 
0.9644 
0.9620 

0.0664 
0.0909 
0.1230 
0.1792 
0.2040 
0.2327 

0.0664 
0.0910 
0.1231 
0-1791 
0.2322 

0.0665 
0-072 I 
0.0794 
0*0901 
0.0942 
0.1074 
0.1 105 

R 

I *42 
1 -38 
1-57 
1.87 
1 a98 
2.14 

4verage 1.73 

2-38 
2.12 
1 48 
I *73 
1 -76 

Average 1-97 

0.35 I 
0.343 
0.345 
0.302 
0-306 
0.306 
0-303 

Average 0.322 

potassium and silver nitrate would be given by electrolytes whose 
ions could approach within 2 A, and this may be a reasonable value 
if it is remembered that the nitrate ion is planar and some of the 
encounters can be comparatively close ones. For thallous chloride, 
however, the distance would be only about 1 A and this is not 
consistent with the ionic dimensions. The hypothesis of ion-pair 
formation can be checked in another way, since the product of a 
and y, as calculated above, should equal the activity coefficient 
measured experimentally and computed assuming complete dis- 
sociation. For both potassium and sodium nitrate at 0.1 N, y 
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calculated by equation (14.3) is 0.765, the ay product is 0-745 and 
0.741 respectively compared with the observed activity coefficients, 
0.739 and 0734 (Appendix 8.10). Again the agreement is not good, 
but for thallous chloride at 0.01 N, ay is 0.878 compared with the 
observed value of 0.876. 

The problem of incomplete dissociation has been approached 
from another angle by studying reaction rates'l". In a reaction 
between a neutral molecule, S, and the ion X- of an electrolyte 
MX the rate depends, according to the transition state theory, on 
the concentrations of S and X- and the activity coefficients 
fs fx-/jsx-, SX- being the transition-complex. In dilute solution fs 
should be close to unity and X- and SX- having similar charges, 
their activity coefficients should be almost equal. Consequently the 
rate of reaction should depend on the concentration rather than the 
activity of X- and any ion-pair formation between M+ and X- 
should reduce the reaction rate in amount proportional to the 
number of ion-pairs formed, unless the transition complex, SX-, 
can also form an ion-pair with M+. Whilst this possibility cannot be 
excluded and, indeed, seems to be realized in the saponification of 
ethyl acetate(l5), it should be negligible if the complex, SX-, is 
large as in the catalytic decomposition of diacetone alcohol by 
hydroxyl ions. Support for this belief comes from further experi- 
ments on the hydrolysis of carbethoxymethyltriethylammonium 
iodide, EtC02*CH,N(Et),I, whose transition complex has zero net 
charge; conclusions drawn from these experiments agreed with 
those in which diacetone alcohol was used. 

In solutions of potassium or rubidium hydroxide this alcohol is 
decomposed at a rate directly proportional to the stoichiometric 
alkali concentration, the reaction constant per mole of hydroxide 
varying only between 0.2165 and 0.2193 up to 0.4 N. Some 
curious results were obtained with sodium hydroxide; concentra- 
tions increasing up to 04 N leading to a decrease of the reaction 
constant from 0.2182 to 0-2051; this may mean that sodium 
hydroxide is only 94 per cent dissociated at 0.4 N and 98 per cent 
at 0.1 N, corresponding to a mean ionic diameter of about 3.1 A 
if the mechanism of association were Bjerrum ion-pair formation. 
The 'effective' radius of the hydrated sodium ion of sodium 
chloride, allowing for a penetration of 0.7A (see Chapter 9) is 
2.2 A, so that the hydroxyl ion could approach within 3.1 A if it 
had a radius of 0*9A, a not impossible value if the radius of the 
water molecule is 1.4 A. But there seems to be an objection to this 
idea. Whatever our doubts about the accuracy of some of these 
ionic dimensions, the rubidium and potassium ions must be 
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considerably smaller than the hydrated sodium ion and, therefore, 
rubidium and cesium hydroxides should be even weaker electrolytes. 
This is contrary to the findings of Bell and Prue and, indeed, 
contrary to all our ideas about the alkali hydroxides. We will 
return to this later. (See p. 423.) At present our interest is more 
with calcium, barium and thallous hydroxide. With each of these 
the rate-constant falls with increasing hydroxide concentration, 
showing large departures from the value of 0.218 for the fully 
dissociated hydroxides and suggesting a considerable degree of 
association. Making reasonable assumptions about the activity 
coefficients of the various species, Bell and Prue decided that the 
dissociation constants of calcium, barium and thallous hydroxide 
were 0.051, 0.23 and 0.38 respectively, the last corresponding to 
about 87 per cent dissociation of thallous hydroxide at 0.1 N. 
Working from these dissociation constants and the Bjerrum equation 
(14.2) the distances of closest approach can be calculated and 
compared with the crystallographic radii as follows: 

closest appoach I 
2.55 A 2.52 A 

TlOH 1-23 2.97 

The a values needed for calcium and barium hydroxides are 
reasonable, although it is curious that barium and hydroxide ions 
do not approach nearer than 5.55 A. But the dimensions of the ions 
of thallous hydroxide are such that they cannot approach closer 
than 2.97A without an interaction more profound than that 
induced by coulomb forces. Bell and Prue concluded, therefore, 
that a covalent link must be formed. 

Another method of studying the incomplete dissociation of 
electrolytes depends on measuring the solubility of a sparingly 
soluble electrolyte in the presence of another electrolyte(16). Calcium 
and thallous iodate are examples of salts of conveniently low 
solubility. From such measurements we derive the activity coeffia 
cient in the presence of the added electrolyte because, if so and J 

are the solubilities in pure water and in the presence of the other 
electrolyte and fo and f are the corresponding activity coefficients, 
the condition for saturation is foro = fs. These activity codficients 
are expected to conform to a selected equation considered to be 
valid for all salts at low concentrations and a lack of such agreement 
is taken to mean that an incompletely dissociated ‘intermediate 
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ion', ion-pair or molecule has been formed. The method can be 
illustrated by reference to some measurements of the solubility of 
thallous iodate in potassium chloride solution("'. 

In pure water at 25" thallous iodate is soluble to the extent of 
1.838 x mole/l rising to c = 2.359 x lo-* in the presence of 
potassium chloride at a concentration of 0.05422 N. The activity 
coefficient, f,, is now calculated by the equation 

0*5.\/I ... - logf= - 1 + dI - O*lI . (14.4) 

givingf, = 0.954 at a concentration corresponding to the solubility 
of thallous iodate in water. From the solubility in 0.05422 N 
potassium chloride, the activity coefficient of thallous iodate can 
now be calculated as 0.743. This is the stoichiometric activity 
coefficient assuming that the solubility measurements give ionic 
concentrations. But using equation (14.4) for this total ionic 
strength, an activity coefficient of 0.812 is calculated. The ratio of 
these two activity coefficients is a measure of the amount of thallous 
ions which have gone to form thallous chloride molecules. Hence 
the dissociation constant of thallous chloride can be calculated. In 
practice it is not quite as simple as this because corrections have to 
be made by successive approximations to get the total ionic 
strength; thallous iodate and potassium iodate give small amounts 
of undissociated molecules and, in some experiments, e.g., when 
thallous iodate is dissolved in potassium sulphate solution, allowance 
must be made for KS0,- ions. Bell and George give the following 
dissociation constants: 

0" 25" 40' 

TISO; 
TlCl 
T~OH 
TlCNS 
TlF 
TlFe( CN);-- 
CaOH+ 
caso, 

0.042 
0.165 
0.155 
0.1 I5 

0.00065 
0.043 
O.Oo60 

- 

0.043 
0.2 10 
0.150 

0.8 
0.00060 
0.040 
0.0049 

0.044 
0.230 
0.142 
0-230 

O.oOO54 
0.033 
0.06) I 

- 

I I I 

From the solubility of calcium iodate in calcium hydroxide solution, 
DAVIES and HOYLE('*) obtained 0.050 for the dissociation constant 
of CaOH+, in good agreement with the value Bell and Prue found 
from reaction rate experiments, whilst measurements have been 
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made on magnesium and strontium hydroxide which fit in the 
series: MgOH+ (04026), CaOH+ (0.05), SrOH+ (0-11), BaOH+ 
(0.23). 

I O N - P A I R  FORMATION W I T H  2 : 2 E L E C T R O L Y T E S  

Reference has already been made to the difficulty of finding 
equations which will describe the behaviour of the ionized portion 
of a partly dissociated 1 : 1 electrolyte in any but dilute solutions. 
Two additional difficulties are met with 2 : 2 electrolytes, such as 
zinc sulphate. First, it is very doubtful if we have an equation 
which will describe the conductivity of even a hypothetical non- 
associated 2 : 2 electrolyte because, as we have seen in Chapter 7, 
it is doubtful if we are justified in taking only the first two electro- 
phoretic terms in equation (7.24), whilst the introduction of higher 
terms cannot be justified as long as we use the modified Boltzmann 
distribution given by equation (4.9). In other words we are at- 
tempting the problem of a partially dissociated 2 : 2 electrolyte 
without adequate solutions of the problem of a non-associated 
2 : 2 electrolyte. Secondly, we are in considerable difficulty when 
we try to find A0 values for such electrolytes. This is not a problem 
of theoretical significance but it does add to the complexities of the 
task. For two electrolytes, cadmium sulphate and magnesium 
sulphate, we can circumvent the latter difficulty because for the 
first salt we can extrapolate the conductivity data(19' at very low 
concentrations, and for the second salt we know the limiting 
mobility of the magnesium ion from magnesium chloride data and 
that of the sulphate ion from sodium sulphate data. Having 
obtained A0 = 133.07 indirectly, we can use the measurements of 
DUNSMORE and JAMES(*) at concentrations below 0.001 molar, 
applying the method already described for potassium and silver 
nitrate. We write the conductivity equation (7.36) as: 

. . . . (14.5) d(4 
1 +9*378d(a~)  A = 133.07 - 484.8 

and the activity coefficient equation: 
4.074 1/ (a) 

1 + 9*378d(c(~) .... - logf= ( 14.6) 

where the figure 9.378 corresponds to an u value of 14.28 A-the 
Bjerrum critical distance for a 2 : 2 electrolyte in water at 25". 
The equations can be solved for a by successive approximations to 
give the results in Table 14.5. The values of K show a reasonable 
degree of constancy with an average of 4.96 x 
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Of the seven measurements made by Deubner and Heise on 
cadmium sulphate at 18", those at the four lowest concentrations 
agree with the predictions of the Onsager limiting law: 

The other three points were at very low concentrations so that we 
can use equation (14.5) without the (1 + KU) term to get 0.0066, 
0.0051 and 0.0043 for the dissociation constant. 

'Table 14.5 
Dissociorion Cwistunt d McrgnuiUm Sulphate at 25" 

A = 113.15 - 408.14~ 

c x 104 

0.8098 
1.6336 
2.6924 
4.297 
6.006 
8.380 
0.85 I I 
1 a 4  
3.090 
4.270 
5.597 
7.197 
8.846 

bob'. 

127.31 
124.27 
121.34 
1 17.85 
114.92 
I 11.61 
127.1 I 
123.13 
120.33 
1 17-80 
I 15.50 
113.14 
I 1  1.02 

Ao.10. 

129.07 
127-60 
126.30 
124.86 
123.70 
122.43 
128.98 
127.1 1 
125.90 
124.88 
123-95 
123.02 
122-2 1 

a 

0.9864 
0.9739 
0.9607 
0.9439 
0.9290 
0.91 16 
0-9855 
0-9687 
0.9558 
0.9433 
0.9318 
0.9197 
0.9084 

- 2 k f  

0-0672 
0.0919 
0.1 138 
0.1380 
0.1575 
0.1791 
0.0687 
0.1002 
0. I205 
0.1376 
0.1533 
0.1689 
0.1825 

K x  103 

4.96 
4-8 I 
4.87 
4.97 
5-08 
5.2 1 
4.87 
4.75 
4-84 
4.88 
5-0 1 
5.02 
5.23 

K = 4.96 x 10-8 

A new approach has been devised recently by JONES and  MONK'^^) 
with the cell : 

H,IHCI, MgSO,IAgCl, Ag 

which measures the quantity yH+ya-mH+ for a solution containing 
H+, CI-, Mg++, HSOh and SO,-- ions as well as undissociated 
MgSO,. A series of successive approximations, along with a know- 
ledge of the ionization constant of the HSO; ion is sufficient to give 
the dissociation constant of magnesium sulphate. Jones and Monk 
determined this over the temperature range 20' to 35", finding 
K = 0.0044 at 25". A similar method has been used(z1' to study 
the equilibrium between magnesium ions and phosphate, glucose- 
1 -phosphate or glycerol- 1 -phosphate ions, the dissociation constants 
at 25" being 1.95 x 3.31 x and 3.25 x respec- 
tively; for calcium glucose-l-phosphate(ala) K = 3.20 x at 25". 
These studies cover a wide temperature range and have much 
biological interest. 

413 



14 ION ASSOCIATION 

Mention should also be made of a spectrophotometric method(22) 
which takes advantage of the non-associated nature of bivalent 
metal perchlorates. Copper perchlorate has a characteristic absorp- 
tion band in the ultra-violet, presumably due to the copper ion. 
If lithium sulphate (also, probably, a non-associated electrolyte) is 
added to solutions of copper perchlorate it is found that the extinc- 
tion coefficient increases as the amount of lithium sulphate is 
increased. This is ascribed to formation of CuSO, molecules or 
ion-pairs. Measurements have also been made‘”) in solutions of 
copper sulphate alone which lead to a dissociation constant of 
0.0035 at 25” in agreement with 0.0039 calculated from conduc- 
tivity data(“) at the same temperature and 0.0033 from cryoscopic 
experiments(*6): it is shown that much higher values of the dissocia- 
tion constant result if a smaller distance of closest approach of the 
ions is assumed, the above values being calculated on the assump- 
tion that the correct a value to use in calculating osmotic and 
activity coefficients of the free ions is the Bjerrum critical distance 
of l4A. 

Supporting evidence has been found recently in two different 
ways. The first is that, as we saw in Chapter 11, the diffusion 
coefficients of magnesium and zinc sulphate are explicable if it can 
be assumed that they form ion-pairs with dissociation constants of 
the order of 0.005. Another piece of evidence comes from measure- 
ments of the Wien effect. We omitted all mention of this when 
discussing conductance : the ONSACER-WILSON theory(26) of this 
effect is complicated but, very briefly, the effect is concerned with 
the motion of ions under very high potentials such that the ions 
move so quickly that the ‘ionic atmosphere’ does not have time to 
build up completely or, at sufficiently high field strengths, the 
atmosphere does not build up at all. This leads to an increase of 
the ionic mobility. If the electrolyte is weak, another effect is 
superimposed: ONSAGER(~’) has shown that at high field strength 
the ionization constant will be increased and he has obtained an 
equation relating this to the field strength. It is not easy to see why 
there should be an increase in the ionization constant but, putting 
it rather crudely, the absence of the ‘ionic atmosphere’ round the 
ion reduces the concentration of ions and, by a mass action effect, 
favours further ionization of molecules. Patterson et al. have 
improved the experimental methods of determining the Wien effect 
and they find that, for magnesium, zinc and copper sulphate and 
for lanthanum ferricyanide(*s), the observed Wien effect is much 
larger than that predicted by the Onsager-Wilson theory. Taking 
reasonable values for the dissociation constants of these electrolytes 
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at very low field strengths, determined by the methods already 
described, they use Onsager’s equation to calculate the increased 
dissociation constants at high field strengths and hence the increased 
ionic concentrations which give the high conductances. With this 
correction good agreement with the Onsager-Wilson theory is 
found, thereby indirectly supporting the ion-pair theory. 

Another method(*@) which promises well is that of sound absorp- 
tion; 2 : 2 electrolytes, in contrast to other valency types, have two 
maxima in their sound absorption spectra which can be definitely 
assigned to interaction between the cation and the anion. 

ION-PAIR FORMATION W I T H  UNSYMMETRICAL 
ELECTROLYTES 

The conductivity method should be applied to ion-pair formation 
with unsymmetrical electrolytes with considerable caution: we have 
seen in Chapter 7 that in deriving equation (7.36) we have dropped 
higher-order electrophoretic terms on grounds of self-consistency, 
although they are of appreciable magnitude. We are therefore less 
successful in predicting the conductivities of unsymmetrical electro- 
lytes; Table 7.6 shows that up to c = 0.005 we can represent con- 
ductivities with an average deviation of 0.3 units for calcium 
chloride and 0.4 units for lanthanum chloride. Indeed, as the 
calculated values are higher than the observed, it might well be 
argued that even these salts are incompletely dissociated, provided 
we could satisfy ourselves that the difference did not arise fiom the 
unsatisfactory nature of the theory when applied to unsymmetrical 
electrolytes. JENKINS and  MONK'^) made measurements on sodium 
sulphate at concentrations as low as c = 6 x at the highest 
concentration, c = 6 x the conductivity was 123.57 whilst the 
limiting law (equation 7.29 gives 123.85. The introduction of a 

lated conductivity to 124.14, 0.57 units higher than the observed- 
a very narrow margin when we are in doubt about the higher 
electrophoretic terms in the theoretical equation ! These authors 
also made measurements on lanthanum sulphate. At their highest 
concentration, c = 3 x the observed conductivity was 72.81, 
the limiting law gives 126.31 and a (1 + KU) factor with a = 6 A 
would raise this to 129.07. In this case the difference between the 
observed conductivity and that calculated by the limiting law is 
substantial and one can accept ion-pair formation for this electrolyte 
with much more confidence. Jenkins and Monk calculated 
K = 2.4 x lo-‘ in good agreement with 2.2 x found by 
DAVIES@~) from measurements of the solubility of lanthanum iodate 
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in potassium sulphate solution(s2). To take one set of observations 
from this work, the solubility is 12.153 x lo-' mole/l in 20 x 10-4 
molar potassium sulphate, whereas the solubility in water is 
8.9006 x lo-' mole/l. The solubility product is then 

39f4(8*9006 x lo-')' = 6.06 x 10-12 

if we calculate the activity coefficient by the Debye-Huckel limiting 
law (equation 9.10). The solubility product in the potassium 
sulphate solution is 11.64 x lo-'* so that it seems that too much 
lanthanum iodate has dissolved. I t  is now assumed that the true 
concentration of lanthanum ions is reduced by formation of LaSOt 
ions and, by successive approximations to get the total ionic 
strength at which f is to be calculated, it is found that the correct 
solubility product is obtained if the concentration of Lasot ions 
is 7-499 x lO-'mole/l. The law of mass action then gives 
K = 2-12 x 10-4. It is worth while examining this calculation to 
see what is the nature of the approximation made by using equation 
(9.10). If we repeat the calculation using equation (14.4), modified 
for the 3 : 1 electrolyte, lanthanum iodate, we find the solubility 
product is 6.60 x 10-l2, the concentration of Lasot ions in the 
potassium sulphate solution is 7.753 x lo-' mole/l and X = 
2.15 x lo-'. Thus we can derive a dissociation constant which is 
almost independent of the assumption we make about the equation 
for the activity coefficient and in good agreement with that deduced 
by an entirely different argument from conductivity data. 

Tabk 14.6 

Dissociation Conrtan/.r of Ekctrolytes in Water at 25" 

Cation Malonu& Ox&e 
x l(r x l(r Thiosulphate Sulphate 

H+ 
Na+ 
K+ 
Mg++ 
ca++ 
Sr++ 
Ba++ 
Mn++ a++ 
Ni++ 
Zn++ 

0.035 
0.2 I 
0.12 
0.0 I45 
0*0104 
0-0092 
0.0047 
0.01 12 
O.Oo90 
0.0087 
O.Oo40 

0.012 
0.19 
0.1 1 
0.0070 
0.0053 - 
- 

0@052 
0.0034 
O.Oo40 
0.0049 

0.02 

14.0 
32-0 

196.0 
5.1 
I -9 
0.99 
2. I 

- - 

- 

0.52 - 
3.7 
10.0 
29-0 
47.0 
1.3 
0.20 
0.05 
0.13 

(From DENNEY, T. 0. and MONK, C. B., Trans. Furaday Soc., 47 (1951) 992) 

It  is the derivation of dissociation constants of large magnitudes, 
i.e., for largely dissociated electrolytes, from conductivity values 
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which are not far from those predicted for a completely dissociated 
electrolyte, about which we have our doubts, especially if they are 
unsupported by data based on solubility measurements. Because of 
the unsatisfactory nature of the present theory of conductivity for 
unsymmetrical electrolytes, the solubility method seems more 
soundly based. It has been used extensively and in Table 14.6 we 
give some dissociation constants derived mainly by this method, 
taken from a compilation by DENNEY and MONK(=). 

SPECTROPHOTOMETRIC EVIDENCE FOR ION ASSOCIATION 

Just as the ionization constants of some weak acids can be derived 
from measurements of the absorption spectra in the ultraviolet, so 
can the dissociation constant of an incompletely dissociated salt 
provided the two species involved absorb at different wavelengths. 
Mention has already been made of the use of the absorption spectra 
of copper sulphate solutions and a further example is that of the 
PbCl+ ion which has maximum absorption at 2380A compared 
with 2080 A for the Pb++ ion. 

An example of one method of using such absorption data (the 
method of 'continuous variations') is as follows's': mixtures of lead 
perchlorate and potassium chloride each 0.0005 molar are made in 
various proportions with the total molarityconstant, i.e., the solutions 
are xc with respect to lead perchlorate and (1 - x)c to potassium 
chloride. The optical density, D, is measured at a wavelength 
near to 2380A. Let a be the fraction of the lead which forms a 
complex, PbCl, with a charge (2 - n). Then the concentrations of 
the various species are: 

tpb++ = (1 - a)xc 

CPbCI. = 

eel- = ( I  - x)c - nmc 

and the optical density is: 

D = &pb+t(l - a)xc + &pM1.axc 

if we omit the length of the cell from this equation, i.e., we assume 
a cell of unit length. Then 

D - xC&pbt+ = WC(&pb~l, - Epb+t) 

The quantity on the left is the 'excess' optical density, the excess of 
the observed density over that calculated on the assumption that 
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the density is due entirely to lead ions and that there is no interaction 
with chloride ions. +b++ is obtained from a solution containing no 
chloride ions ( x  = 1). Usually, if the experiment is made at a 
wavelength characteristic of the complex, xt&pb++ will be much 
smaller than D and (D - xt&pb++) will have a maximum value (or 

X -  

Figure 14.5. The 'method of conlinumcS variatwns' a lied lo kad p c r c h l o r a k - p o l n  
chlmidc mixtures in 90 per cent ethanol &tal molari& O.OOO5 

a minimum value if +b++ > &pbCI.) when ax is a maximum. From 
the law of mass action: 

Xu = (1 - a)x[(l - x )  - nax]"cn 

neglecting the activity coefficients, whose variation with x should 
be small in dilute solution, and ax has a maximum value when 

1 
n + l  

x = -  

Thus if the excess optical density (D - Xt&pb++) is plotted against x, 
there should be a maximum in the curve at a value of x from which 
n can be calculated. Figun 14.5 shows such a graph for lead per- 
chlorate-potassiumchloride mixtures in 90 per cent ethanol which 
shows clearly that the maximum is at x = 0.5 and therefore the 
complex has the formula PbCl+. 
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This method gives us the composition of the complex but it does 
not tell us how stable it is. To show how the dissociation constant 
of a complex may be measured, we refer now to a paper. by 
HERSHENSON, SMITH and HuME'~~) on the PbNOg ion. The nitrate 
ion itself shows maximum absorption about 3000 A and, whilst the 
wavelength of maximum absorption for the PbNOt ion has not yet 
been fixed exactly, it is known that this ion absorbs at 3000 A. The 
composition of the complex was determined by the method of con- 
tinuous variations. Additional measurements were then made on 
solutions, each of which contained 0-05 N sodium nitrate and lead 
perchlorate in amounts from 0.1 and 0.6 molar, each solution being 
brought to a total ionic strength of two by addition of sodium 
perchlorate. It was hoped that by keeping the total ionic strength 
constant, changes in the activity coefficients of the various species in 
these mixtures would be negligible. These solutions contain lead 
ions, PbNOg ions and nitrate ions each of which absorbs at 3000 A 
although the contribution of the lead ions is only that of the foot 
of the peak at 2080 A and enters as a minor correction. The optical 
density, using a cell of unit length, is therefore: 

= &NOSNO; + EPbNOflPbNO: 

If c is the stoichiometric concentration of lead perchlorate, then 
the concentrations of the various species ate: 

CNO; + CPbNO: = 0.05 
cpbii + CpbNO: = c % cpbii 

so that: 

By the law of mass action: 
D - ~ * O ~ & N O ;  = (EPbNO: - &NO;)cPbNO 

0.0% 
cPbNO: = -- 

(c + K) 
0.05c K C = .__-. __ + - - .- 

so that: 

- 0.05h; EPbNOt - &NO; EPbNO: - &NO; 

The quantity on the left-hand side plotted against the stoichio- 
metric lead perchlorate concentration should give a straight line of 
slope (&pbNO; - ENO;)-~ and intercept K(epbN0, - from 
which K and &pbNot can be calculated, EN,-,; being found by measur- 
ing the solution which contains no lead perchlorate. In  Figure 14.6 
a line is drawn through the points calculated from the results of 
Henhenson, Smith and Hume, using the absorption at 3000A. 
The slope and intercept of this line give K = 0.62. 

419 



14 ION ASSOCIATION 

ION ASSOCIATION FROM P A R T I T I O N  E X P E R I M E N T S  

The distribution, or partition, of an electrolyte between two 
partially miscible liquids is an experiment which can give much 
information about the state of the electrolyte; it is, however, an 
experiment which has seldom been performed with the accuracy of 
the other techniques we have been considering. Of the few accurate 
measurements which have been made, those on the distribution of 
the sodium and potassium salts of guaiacol (o-methoxyphenol) 
between water and guaiacol deserve consideration(s6). At first sight, 
it may seem curious that such a system should be selected, but 
interest in it arose from the work of Osterhout on the transport of 

c- 
Figure 14.6. Dckwnination ofthe dusociatwn wmtunt ofthe PbNO: ion 

electrolytes in living cells where a guaiacol-water system was used 
as a model of the protoplasm-cell sap equilibrium. These salts seem 
to be fully dissociated electrolytes when dissolved in water (at least 
up to the highest concentration employed, 0.14 N) whilst they are 
weak electrolytes, perhaps with ion-pair formation, in the guaiacol 
solvent, a conclusion which was reached from conductance measure- 
ments. The partition experiment itself is simple; the sodium or 
potassium salt is distributed between the two phases by rotating a 
50 ml. glass tube containing the solutions for 15 h. in a thermostat 
at 25" and the concentrations are determined by titration with 
hydrochloric acid using a glass electrode differential titration 
apparatus. In speaking of the water phase or the guaiacol phase it 
should be understood that we mean the water-saturated-with- 
guaiacol phase or the guaiacol-saturated-with-water phase respec- 
tively. Three moles of guaiacol can dissolve one mole of water and, 
whilst no direct measurements seem to have been made of the 
solubility in the other phase, the dielectric constant of the saturated 
aqueous solution suggests that a mole of guaiacol can be taken up 
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by about two hundred moles of water. From these experiments two 
quantities can now be derived-the dissociation constant of the salt 
in the guaiacol phase and the partition .coefficient. In the guaiacol 
phase we have 

a2y2c K=- 
1 - a  

and for the distribution between the phases: 

aYC so = - 
Y’C’ 

where c and c’ are the concentrations in the guaiacol and the water 
phases andy andy’ are activity coefficients, which can be calculated 
from the Debye-Hiickel equation assuming, on crystallographic 
evidence, that u = 7 A. 

c 
The quantity measured is S = - It can easily be shown that: 

c’ * 
a=--- st ’”’ and S( 1 - a) = - c’y’z S Y  K 

A rough value ofSo is got by plotting S against c‘y‘2 and extrapolating 
to c’y’2 = 0 ;  then, by a series of approximations a value of So is 
found which makes a plot of S(l - a) against c’y’2 linear and 
passing through the origin. The slope of this line is S$K. In this 
way Shedlovsky and Uhlig found K = 5-5 x for the potassium 
salt and 3.5 x 10-6 for the sodium salt. 

SOME G E N E R A L  REMARKS O N  I O N - P A I R  FORMATION I N  
A QU E 0 US SOL U T I 0  N S 

We have mentioned two proofs of Bjerrum’s hypothesis, one 
depending on measurements of a high valency type salt in solvents 
of high dielectric constant and the other relying on experiments in 
extremely dilute solutions of low dielectric constant. These examples 
are very convincing, but it by no means follows that such demon- 
strations validate the case for ion-pair formation with salts of a 
simpler nature in solvents of high dielectric constant. There are 
two reasons why we think it would be well to be cautious. When 
lanthanum ferricyanide is dissolved in water it is believed that the 
ions cannot approach one another closer than 7.2 A, but that those 
separated by distances between 7.2 and 32.1 A are to be regarded 
as forming ion-pairs. I t  should not be forgotten that in this region 
there are a large number of water molecules. Assuming that the 
solvent molecules occupy the volume they do in the pure solvent 
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(30 cu. A/molecuie) there are nearly five thousand water mole- 
cules in the shell. There are also large numbers of solvent molecules 
round an ion in the solutions with which Kraus and Fuoss worked. 
For example, in a solvent of 4.01 per cent water and 95.99 per cent 
dioxan, the Bjerrum critical distance is much larger than it is in 
water. It is about 80 A for a 1 : 1 electrolyte. We have seen that 
for one electrolyte 6-4A is a reasonable value to assume as the 
‘exclusion’ distance within which other ions cannot penetrate: it is 
the shell between 6.4 and 80A which is concerned with ion-pair 
formation. In this shell there are about 17,OOO solvent molecules. 
Of all the ions which penetrate into this shell and form, temporarily 
at least, ion-pairs, a few will get very close to the central ion. But 
in general the partners in the ion-pair will be held together by 
electrostatic forces operating through a large number of solvent 
molecules-large enough to j u s e  us in considering that the solvent 
in this shell will have the properties, and particularly the dielectric 
constant, of the solvent in bulk. The critical distance for a 2 : 2 
electrolyte in water is 14.28 A and a sphere of this radius can hold 
about 400 water molecules of which only a few will be h l y  
attached to the cation. It is very different for a 1 : 1 electrolyte in 
water where the Bjerrum critical distance is only 3.57 A and the 
totaI volume of the shell in which ion-pair formation is expected is 
only 190 cu. A. This volume has to contain the two ions forming 
the ion-pair so that there is no room left for more than about four 
water molecules. Are we justified in using the bulk dielectric 
constant in a region where there are so few solvent molecules and 
even these must be subject to dielectric saturation? 

The second consideration to be advanced concerns the nature of 
the anions of electrolytes where ion-pair formation is suspected. In 
very few examples is the anion a simple one. Thallous chloride 
could be quoted. A dissociation constant of about 0.3 has been 
calculated from conductivity measurements and about 0.2 from 
solubility measurements, and on Bjerrum’s theory it would be 
necessary for the ions to approach within about 1 A, whereas the 
sum of the crystallographic radii is 3-26 A. There does not seem to 
be conclusive proof from Raman or absorption spectra that thallous 
chloride forms covalently bound molecules, although this does seem 
to be the explanation of this anomaly of the very close approach of 
the ions. In the case of lead chloride very convincing evidence for 
the covalent nature of the bondiqg of the PbCl+ intermediate ion 
is provided by ultra-violet absorption spectra(s7), which give a 
dissociation constant of the order of 0.03. Lead nitrate‘gJ) also gives 
evidence of PbNOf formation, and this is one of the few examples 
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known where covalent bond formation is suspected with the nitrate 
ion. To return to thallous chloride, the point we want to emphasize 
is that this ‘simple’ electrolyte is a dangerous example to quote in 
favour of Bjerrum’s theory; as Bell and George have pointed out, 
it is difficult to reconcile the behaviour of this salt, if it is to be 
explained by ion-pair formation, with the crystallographic radii : 
covalent bond formation is an attractive alternative but not yet a 
proved fact. 

All other cases where ion-pair formation is suspected with 1 : 1 
electrolytes in water concern polyatomic anions-nitrates, chlorates, 
perchlorates, bromates, H,POc- anions. Whilst it may be possible 
that the planar configuration of the nitrate ion allows a cation to 
approach in one direction within distances less than 3.57 A, it is 
difficult to see how this can happen with the bulky tetrahedral 
perchlorate ion. Moreover, these suspected examples of ion-pair 
formation are all found with cations which are either unsolvated or, 
at the most, contain only a few solvated molecules. The heavily 
hydrated lithium ion does not associate with anions, whilst the 
perchlorates of the hydrated bivalent metal cations seem to be non- 
associated electrolytes (the heavily hydrated calcium ion behaves 
differently in CaOH+ formation where the hydroxyl radical seems 
to replace a water molecule). In general, the cations which enter 
into ion-pair formation are those whose electrical forces are not 
satisfied by hydration and are therefore free to produce polarization 
in oxyacid anions. Some aqueous 1 : 1 electrolytes are peculiarly 
liable to this polarization effect. The conditions for it are a cation 
with little or no hydration, an anion with an inherently polarizable 
structure and the possibility of approach within distances much less 
than is found with hydrated cations. So many examples of so-called 
ion-pair formation satisfy these conditions that one must ask if the 
picture of ion-pairs is not too simple? To treat them as ion-pairs 
may be a first approximation, but we suggest that it would be closer 
to the truth to say they are examples of interaction between the 
cation and an induced dipole in the anion. 

THE HYPOTHESIS OF ‘LOCALIZED’ H Y D R O L Y S I S  

An inspection of the activity coefficient data in Appendix 8.10 
shows that at a given concentration the values for most electrolytes 
of the alkali metal family are in the order: 

Li > Na > K > R b >  Cs 
This is true for the chlorides, bromides, iodides, nitrates, chlorates, 
perchlorates, c&., and is consistent with the increasing hydration of 
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the cation from caesium to lithium. But the reverse is true for the 
hydroxides of the alkali metals, where we find the order: 

Cs > K > Na > Li 
and, as we have said earlier in this chapter, this is not explicable 
by ion-pair formation: the low activity coefficients found when 
ion-pairs are formed, are now found with lithium hydroxide and 
its conductivity is so low that a dissociation constant of 1.2 has been 
ascribed to it@’*) although the cation is hydrated and too large to 
permit ion association. To account for thisRoswsoN and HARNED(~) 
introduced the idea of ‘localized hydrolysis’. In the hydration shell 
around a cation the water molecules must be highly polarized with 
the positive charges directed away from the cation: - k + 

Na - - - - OH - - - - 
I t  is possible that the bound ‘hydrogen ion’ can exert sufficient force 
on a comparatively small ion like the hydroxyl to lead to a short-life 

- + - binding: + 
Na - - - - OH - - - - H - - - - OH 

with the formation of a kind of ion-pair but differing in that the 
water molecule acts as intermediary. The smaller the cation the 
more polarized will be the solvent molecules so that the effect would 
decrease from lithium to caesium. As such interaction would lead 
to reduced activity coefficients, it would explain why lithium 
hydroxide has a low and caesium hydroxide a high activity coeffi- 
cient. It would also explain the observation of BELL and P R U E ( ~ ~ )  
that the catalytic effect of sodium hydroxide on the decomposition 
of diacetone alcohol is low compared with that of potassium or 
rubidium hydroxide. The catalytic effect is even less with lithium 
hydroxide(w). 

This effect should operate not only for hydroxyl ions but for any 
anion which is a proton acceptor. We do indeed find that this 
reversal of order with Li < Na < K < Rb < Cs holds for the 
formates and acetates and perhaps for the fluorides. It holds also(M) 
for the osmotic coefficients of magnesium and barium acetates up 
to 1 M, the magnesium ion being more heavily hydrated and there- 
fore more disposed to this localized hydrolysis. Above 1 M the 
osmotic coefficient of the barium salt is less than that of the 
magnesium salt; this is due perhaps to the greater tendency of 
barium ions to enter into Bjerrum’s type of ion-pair formation. 
This is a good example of the complex behaviour which is met 
in solutions when we study any concentration region except the 
dilute. The reversal of older is also found with mixtures; the 
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activity coefficient of the hydrogen and acetate ions of acetic acid 
is less in a solution of sodium chloride than it is in one of potassium 
chloride although no such reversal of order is found for the activity 
coefficient of hydrochloric acid in these salt solutions. The reversal is 
also found for the ionic activity coefficient of water itself, YH+YOH-, in 
these salt solutions. In brief,it seem to happen whenever the cation is 
small and hydrated and there is an anion which is a proton acceptor. 

It has been suggested recently(4@) that the hypothesis can be 
extended to the alkali halides, the effect being comparatively large 
with the lithium halides and negligible with the caesium halides; 
thus the order of activity coefficients, C1- > Br- > I-, observed 
with the rubidium and caesium halides is taken as the norm in the 
absence of ‘localized hydrolysis’ and the reversal of the order in 
the lithium, sodium and potassium halides is ascribed to such 
hydrolysis; the hydrated cations should be more effective in this 
respect but for a given cation the degree of hydrolysis should be 
greater with the smaller anions. 

It is not our intention to discuss in any detail the subject of complex 
ions(4*) but mention should be made of some of the complications 
introduced by the less stable complex ions. These are found among 
the halides of the transition metals, particularly the halides of 
cadmium and zinc, where ion-pair formation is followed by further 
association into neutral molecules and negatively charged anions 
until the coordination shell is completed. B A T E S ~ ~ ~ )  has discussed the 
interpretation of electromotive force measurements on solutions of 
cadmium iodide to which either cadmium sulphate or potassium 
iodide is added and he has obtained values for the stability constants 
of the CdI+, CdI, and CdI; species. Figurc 24.7 illustrates his 
conclusions. Up to about 0.005 M, most of the cadmium is present 
as Cd++ ions although substantial proportions of the CdI+ ion are 
found even at 0.001 M. With increasing concentration the pro- 
portion of CdI+ ions increases to a maximum of 45 per cent at 
0.01 M and then decreases, the cadmium iodide molecule now 
becoming important and accounting for 46 per cent of the cadmium 
at 0.5 M. The complex ion, CdI;, is formed to a lesser extent 
although at 0.5 M it is present to the extent of 24 per cent, It is 
possible that further association occurs to C d I T  ions in more 
concentrated solutions. This behaviour is typical of the halides of 
zinc and cadmium although the ease of formation of complex ions 
is in the order: 

ZnC1, > ZnBrt > ZnI, 
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for the zinc salts and in the reverse order for the cadmium salts: 
CdI, > CdBr, > CdCl, 

This is also the order of the activity coefficient curves. Indeed, the 
tendency to complex ion formation with zinc iodide, in contrast to 
cadmium iodide, is so small that up to about 0.3 M it behaves as a 
typical non-associated electrolyte, but complex ions do occur at 
high concentrations as shown by its negative transport number 
above 3-5 M (see Table 7.9). That zinc bromide forms complex 
ions more readily and that this is even easier with zinc chloride is 

Vm- 
Figwe 14.7. Diagram showins the relaliue fiowfions of a++, CdI+ and CdI; ww 

and CdI, molecules in cadmium wdidc solutions up 0.5 M 

shown not only by the order of the activity coefficient curves, but 
also by the occurrence of negative transport numbers at about 2.8 M 
with zinc bromide and at 2 M with zinc chloride. 

Evidence for the formula of the complex ions of zinc halides in 
concentrated solution has come from vapour pressure measure- 
ments'm). Mixtures of a magnesium halide and the corresponding 
zinc halide of constant total molality were made with different 
Mg : Zn ratios and the vapour pressures measured with the results 
shown in Figure 14.8. The magnesium halides are non-associated 
electrolytes and give large vapour pressure lowerings. Moreover, 
zinc perchlorate has activity coefficients close to those of magnesium 
perchlorate, so that the hydrated zinc and magnesium ions must be 
about the same size. It would be expected, therefore, that if no 
complex ions were formed with a zinc halide, its vapour pressure 
lowering would be about the same as that of the magnesium halide 
and the graphs in Figure 14.8 would be almost horizontal straight 
lines. Instead, a sharp decrease of the vapour pressure lowering 
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occurs until the zinc and magnesium ions are present in equal 
amounts and further replacement of magnesium by zinc causes very 
little change. These results are consistent with ZnXz- ion forma- 
tion. For example, at a total molality of 4, the vapour pressure 

I I 

mol: fpacfion zinc salt - 
Figure 14.8. V a w  pressure lowcrings of mtcrurcs of zinc and magnesium halides at 

constant total molali& 
I = ZnCl,-MgCI, at Y = 7. 

I1 = Zn1,-MgI, at Y = 5. 
111 = ZnBr,-MgBr, at Y = 5. 
IV = ZnCI,-MgCl, at Y = 5. 
V = ZnCl,-MgCI, at Y = 4. 

(From STOKES, R. H., Tranr. Fmadoy Soc., 44 (1948) 137) 

lowering due to 4 M MgCl, is that due to 4 M-Mg++ and 8 M- 
C1-. With magnesium and zinc present in equal amounts, the effect 
is that due to 2 M-Mg++ and 2 M-ZnCl,--, an effect which 
should be much smaller; with zinc chloride alone the vapour 
pressure lowering is ascribed to 2 M-Zn++ and 2 M-ZnClZ-, so 
that there should be little difference after the Zn : Mg ratio exce4s 
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1.0. As Figure 14.8 shows, this is exactly what is observed with all 
three zinc halides. 

Further evidence for the ZnClZ- ion has been found from an 
x-ray studycu) of the complex salt, (NH,),ZnCI,, in the solid state 
where the ZnCli- ions form one unit of the lattice. 

Cupric chloride readily forms the CuCl+ ion as spectrophoto- 
metric evidence shows(45) with additional evidence that CuCl, 
molecules and CuCI; and even CuCIz- ions also exist(46). 

Scandinavian workers have been particularly active in studies 
aimed at the elucidation of the compositions and stabilities of 
complex ions in solution. The work of BJERRUM(4') on the ammonia 
and ethylenediamine complexes of a large number of metal ions 
and the studies by SILL&N(~~) and his associates of the complexes of 
zinc and mercury ions with anions are of great value. Sillen's 
technique is essentially one of potentiometric titration using a cell 
with liquid junction. The solution being titrated is kept at a rela- 
tively high and constant total ionic strength by the presence of 
large amounts of electrolytes such as perchloric acid or sodium 
perchlorate; the ions whose interactions are being studied, e.g., the 
Zn++ and C1- ions, are at relatively much lower concentrations. In 
th is  way the uncertain effects of the variation of ionic activity 
c d c i e n t s  with concentration are eliminated, and the changes in 
the concentration of the Zn++ ion as the chloride content of the 
solution is varied can be followed by measuring the potential of a 
zinc amalgam electrode relative to a reference calomel electrode. 
Silltn and Liljeqvist thus arrived at the following estimates of the 
molar scale constants of various stages of the complex formation 
between zinc and halide ions in 3 N sodium perchlorate solution 
at 25": 

Zn++ + C1- + ZnCl+, K, = 0.65 
Zn++ + 2Cl- + ZnCl,, K, = 0.25 
Zn++ + 3C1- P ZnCl;, K, = 1.4 

Zn++ + Br- + ZnBr+, K, = 0-25 
(further stages also occur) 

Zn++ + I- : for all stages, K < 0.05. 
This work reinforces the conclusion that the complex formation 

between zinc and halide ions is least in the iodide and greatest in 
the chloride, as indicated by the other considerations discussed 
above. The experiments were not, however, made at high enough 
concentrations of the zinc and halide ions to reveal the stage 
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Zn++ + 4X- + ZnXi-, for which there is a good deal of evidence 
from the vapour pressure data for mixed solutions. 

Similar work on the mercuric complexes has led to an evaluation 
of the much larger equilibrium constants for mercuric-halide ion 
interactions, as follows: 

x = c1 Br I 
Hg++ + X- + HgX+, log K, = 6-74 9-05 12.87 
Hg++ + 2X- + HgX,, log K, = 13-22 17.33 23.82 
Hg++ + 3X- + Hg X;, log K, = 14.07 19.74 27.60 
Hg++ + 4X- + HgXi-, log K, = 15.07 21.10 29-83 

With mercury, as with cadmium, the iodide complexes are the most 
stable and the chlorides the least stable, though all are of very high 
stability compared with those of zinc and cadmium. 
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15 

THE THERMODYNAMICS OF MIXED 
ELECTROLYTES 

A STUDY of the chemical potentials and transport properties o 
single electrolyte solutions is very important in providing a criterion 
for judging theoretical predictions. The interactions prevailing in 
an electrolyte solution are, as we have seen in earlier chapters, of 
several kinds, and theory provides us with only a partial explanation 
of them. It is not surprising therefore that mixtures of electrolytes 
present even more difficult problems to solve. Mixed electrolytes 
are, however, very important; they are found in numerous pro- 
cesses in chemical industry, they occur in enormous quantities in 
the water of the Oceans and have an important role in the physio- 
logical processes of body fluids and cell equilibria. It is also likely 
that ion exchange resins can be treated as mixed electrolytes. A 
start has been made with the study of conductance and diffusion 
processes in mixtures of electrolytes, but it is the thermodynamics 
of these mixtures which has been studied in the greater detail. 

We commence with the system hydrochloric acid-sodium 
chloride: the top curve of Figure 15.1 represents the activity 
coefficient of hydrochloric acid in aqueous solution at 25' in the 
absence of any other solute. We have already seen, in Chapter 9, 
that the shape of the curve, the minimum at y = 0.755 when 
m = 0.4 and the rapid increase of the activity coefficient at high 
concentrations, can be accounted for by postulating that the ions 
have a mean diameter of 4.47 A and that the cation is associated 
with an average of 8 water molecules. The lowest curve of Figure 
15.1 represents the activity coefficient of sodium chloride as a single 
electrolyte in aqueous solution at 25"; there is a minimum at 
y = 0.654, m = 1.2; a mean ionic diameter of 3.97 A and a hydra- 
tion number of 3.5 suffice to represent the activity coefficient up to 
high concentrations. We could, however, measure the activity 
coefficient of hydrochloric acid in the presence of sodium chloride: 
we could make a solution containing two parts of the acid to one 
part of salt and study the variation of the activity coefficient of the 
acid as the total concentration is changed: if we were to make such 
measurements, we would get a curve like the one in Figure 15.1 
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which is marked = 0.667. In general the shape of the curve 
is similar to that for hydrochloric acid by itself, but the curve is 
somewhat lower: thus 3 M-HCl has an activity coefficient of 
1.316 which is reduced to 1.225 for a solution of 2 M -HCl + 
1 M -NaCl. It is more difficult to determine the activity coefficient 
of sodium chloride in such mixtures, but it has been done, and the 

V'm - 
Figure 15.1. The activily coejicients oftpdrohloric acid and sodium chlorih 

in mixed electrolyte solution 

curve marked xNaa = 0.667 shows that the activity coefficient of 
the salt is raised by the substitution of hydrochloric acid for some 
of the sodium chloride in the solution. Thus the activity coefficient 
of sodium chloride as a single electrolyte at 3 M is 0.714 but this 
becomes 0.816 in a solution of 2 M -NaCl + 1 M -HCl. This 
behaviour is typical of these mixtures: as the proportion of sodium 
chloride is increased the activity coefficient of hydrochloric acid 
decreases so that the curve for XHCI = 0.333 is even lower than that 
for xHCl = 0.667. But starting with solutions containing only 
sodium chloride and then increasing the proportion of hydrochloric 
acid in the mixture, the activity coefficient of sodium chloride 
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increases so that the curve for X N ~ ~  = 0.333 lies above that for 
X N . ~  = 0.667. It is possible by a method of extrapolation to deter- 
mine the activity coefficient of hydrochloric acid present in vanish- 
ingly small amounts in a solution in which the electrolyte is virtually 
all sodium chloride. Likewise the activity coefficient of sodium 
chloride can be determined for the limiting case of zero salt con- 
centration in a solution of hydrochloric acid. If this is done, the 
curious result emerges that the activity coefficient of hydrochloric 
acid in a solution containing virtually nothing but sodium chloride 
is almost identical with that of sodium chloride in a solution con- 
taining nothing but hydrochloric acid. These limiting cases, of great 
theoretical interest, have to be represented by a single curve in 
Figure 15.1, marked %HCl = 0, %NaCl = 0, because it would require 
a large scale graph to show the difference between them. 

We will represent the activity coefficient of an electrolyte B in a 
solution containing only this electrolyte by yB(o) and the activity 
coefficient of B in the limiting case where the electrolyte has been 
replaced entirely by a second electrolyte C, by y(0)B' (These 
correspond to ylto, and yto)l in the literature on the subject; we 
have made the change because we have used y1 to denote the 
activity coefficient of the ion 1 .) Thus the central curve ofFigwe 15.1 
represents both )t(o)HCl and ~ ( ~ , ~ ~ c l  whilst the top and bottom 
curves represent yHclto, and y ~ ~ ~ l ( ~ )  respectively. The following 
table shows how close Y ~ ~ ) H c ~  and Y(o)N&l are. 

m YHCII~I  ' Y ~ ~ I H C I  Y I ~ I X ~ C I  Y N ~ C I I O I  Ymeao = ~ " Y H c I ~ o )  Y N ~ C I I ~ ) ~  
0.5 0.757 0.726 0.727 0.681 0.718 
1.0 0.809 0.752 0.751 0.657 0.729 
2.0 1.009 0.875 0.873 0.668 0.82 I 
3.0 1.316 1.063 1.066 0.714 0.969 

It  also shows that they are very different from the activity coefficient 
of either the acid or the salt as a single electrolyte. Moreover the 
last column, which represents a mean of Y H ~ ( ~ )  and yNaa(o),  
log hean = i[l0g YHCIco) + log yNaCI(o)I, shows that YdHCI) and 
Yo(NaCI) are closer to YHCIto) than to YNaCI(o)* 

This description of the hydrochloric acid-sodium chloride system 
is typical of mixed electrolyte solutions except that the near identity 
of y(,,)~a and y ( 0 ) ~ a ~  is not found to be quite as close in other cases. 
Thus in the system hydrochloric acid-potassium chloride at a total 

.concentration of 3 M, yto)H~l = 0.858, y t o , ~ a  = 0-845, and in the 
hydrochloric acid-caesium chloride system at the same concentra- 
tion y(o)HcI = 0.669 and y(o,cs~~ = 0.634. 

Before we commence a study of the methods available for 
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measuring these activity coefficients, we may consider some theo- 
retical implications of the Debye-Huckel theory. In extremely 
dilute aqueous solution where the effect of the ionic diameter is 
negligible, the limiting law (9.10) is applicable and consequently 
for a mixture of electrolytes of the same valency type a difference 
between Y ( ~ ) ~  and ytobc at the same total molality can originate 
only in a difference between the ionic strengths as measured on the 
molarity and the molality scales, and this difference must be negli- 
gible in such dilute solutions. In solutions not so dilute, equation 
(9.7) should be applicable, but we must be careful what meaning 
we give to a. Taking as an example a mixture of hydrochloric acid 
and sodium chloride in the molal ratio x : (1 - x) ,  it is tempting to 
speculate that the activity coefficient Y H C ~  can be compounded of 
two terms, one for the hydrogen ions with an a H 4  dependent 
mainly on the sizes of the hydrogen and chloride ions, because 
encounters between oppositely charged ions are more frequent. The 
other parameter, for the chloride ion, would be more complicated 
because we would need something like [xaH41 + (1 - x)aNB-cJ 
to account for the interactions of the chloride ion with each of the 
cations. The latter quantity might also be used for the contribution 
of the chloride ion to yNscl but in addition we would need the 
a N M  term to account for the sodium ion contribution. In any 
such speculation it should be remembered that, as a simple con- 
sequence of the chemical potential being a partial differential 
coefficient of the total free energy with respect to a concentration, 
it is necessary that, for a mixture of two 1 : 1 electrolytes(l): (see 
P. 441) 

. .(15.1) 

It is therefore difficult to satisfy both this equation and equation 
(9.7) unless a is almost the same for each electrolyte in the mixture; 
the only permissible difference in the a values for each of the 
components would enter because the concentrations in (9.7) are in 
volume units and those in (15.1) are in molalities, but this would 
not allow for any great difference in a. An extended equation of 
the form of (9.1 1) gives us greater freedom to vary a, but there will 
still be some restrictions on the a and b values. 

GUGCENHEIM’S TREATMENT OF MIXED ELECTROLYTE 
SOLUTIONS 

Starting with equation (9.13), the a parameter being the same for 
all electrolytes and the term linear in the concentration accounting 
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for the specific interionic effects, GUGGENHEW(*) has built up a 
theory of mixed electrolyte solutions consistent with equation (15.1). 
Following the BR~NSTED(~) Principle of the Specific Interaction of 
Ions: ‘in a dilute salt solution of constant total concentration, ions 
will be uniformly influenced by ions of their own sign and specific 
effects are to be sought in interactions between oppositely charged 
ions,’ Guggenheim introduces specific interaction coefficients for 
the activity coefficient of an electrolyte, B, in the presence of 
another electrolyte, C: 

Here M+, X- are the ions of B, and N+, Y- the ions of C; for 
simplicity we consider 1 : 1 electrolytes in aqueous solution at 25’. 
m is the total molality and xm and (1 - x)m are the molalities of 
B and C respectively. We deviate slightly from Guggenheim’s 
treatment in using activity coefficients and concentrations on the 
molality scale. It will be noted that in this equation there is no b 
term for the interaction of an ion with another of its own sign; this 
accords with Brijnsted‘s Principle. For the other electrolyte we 
have : 

and it is easy to show that these two equations for the activity 
coefficients yB and yc are consistent with equation (15.1). More- 
over, the first term on the right-hand side of these equations is not 
subject to variation with a change in x so we let y’ and +’ refer to 
contributions resulting from the second term. 

When x = 0 we get: 

In y;o,B = (bYIY- -1- bN+X-)ln, In y b 0 ,  = 2b~,y-iii 

and when x = 1 : 

In Y;P(~) = 2bM+X-m, In yiO,c = (bN+X- -t by+y-)m 

so that: 

with a similar equation for C: 
In YB = In Y(O)B + (In yB(0) - In Y(0)B)X 

In Yc = In Ytow + (In YCCO) - In Yto,c)(l - 4 
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The logarithm of the activity coefficient of either component in a 
mixture maintained at constant total molality is therefore a linear 
function of the composition. Furthermore, 

In Y(O)B = In y(0)C 

These equations can be recast in the form: 

In yB = In ytObB + (2bM+x- - b~+x- - h + y - ) x m  

In yc = In y(o)c + (2h+y- - ~ N + x -  - h+y-)(I - x)m 

showing that whilst a plot of log yB or log yc against x should give 
straight lines, their slopes will in general be different. Only if the 
two electrolytes have a cation or an anion in common, M+ = N+ 
or X- = Y-, are the slopes equal in magnitude and opposite in sign. 
It can also be shown, by the Gibbs-Duhem equation, that: 

6 = m(bM+x-x2 + (bN+X- + b y + y - ) ~ (  1 - x )  + h+y-(  I - x)z)  

so that, in general, 4 is not a linear function of the composition: 
only if the two electrolytes have a common ion, c.g., X- = Y-, 
does this reduce to: 

6 = m(bM+x-x + bN*X-( 1 - x ) }  

or 4 = 4 C  + (4B - 4C)x 

and the osmotic coefficient is now a linear function of the 
composition. 

E X P E R I M E N T A L  METHODS FOR T H E  MEASUREMENT O F  T H E  
ACTIVITY COEFFICIENTS OF ELECTROLYTES IN MIXED 

SOLUTIONS 

One very accurate method uses cells of the type: 

H*IHCl(rnB), NaCl(mc) IAgCl, 43 
whose potential is: 

E = EO - k log y&,ynB(mB + mc) 
Since Eo is known from measurements on cells containing hydro- 
chloric acid only, the potential of this cell gives the activity coeffi- 
cient of hydrochloric acid in the presence of sodium chloride. The 
method can be used for any electrolyte provided that electrodes are 
available reversible to each of the ions of the electrolyte. One of 
the earliest studies of this nature was made by G ~ . ~ ~ . , B E R o ( ~ )  for 
solutions of hydrochloric acid and lithium, sodium, potassium or 

437 



15 THE THERMODYNAMICS OF MIXED ELECTROLYTES 

caesium chloride, the concentrations being varied in such a way 
that the total molality remained constant at 0.1 M. This research 
is a model of experimental skill and accuracy. 

Most of the work on these cells has been concentrated on either 
(1) keeping mB constant and varying mc or (2) allowing both m, 
and mc to vary subject to the condition that (mB + mc) = constant. 
Very extensive measurements have been made by the Yale school 
on both these types. Reference has already been made (Chapter 12) 
to some of these when we were describing the determination of the 
ionization constant of water. Solutions of hydrochloric acid + 
alkali metal chloride and of alkali metal chloride + alkali metal 
hydroxide (and the corresponding bromide cells) have been studied 
in this way. Measurements have also been made for sulphuric acid 
in lithium, sodium and potassium sulphate solution(6). 

SYSTEMS A T  CONSTANT T O T A L  MOLALITY 

If we were to draw a vertical line for any one total molality across 
the four upper curves of Figure 15I, we would get four values for 
the activity coefficient of hydrochloric acid in the presence of sodium 
chloride subject to the condition that the molalities of both solutes 
could vary, but the total molality remained constant. Measure- 
ments at constant total molality give more detailed information 
about Y H ~  as it changes from its value from YHCI(~) ,  in a solution 
containing acid only, to its limiting value when the solution 
contains only salt. The work of Giintelberg has been referred to 
earlier : Harned and his co-workers have made numerous measure- 
ments under this condition of constant total molality. From this 
work has emerged what has been called Harned’s rule: the 
logarithm of the activity coefficient of one electrolyte in a mixture 
of constant total molality is directly proportional to the molality of 
the other component. Or: 

‘ log YB = log YB(0) - aBmC ....( 15.2) 

and when mc = m = total molality, 

so that: 

and for 

YB = log Y(O)B + a ~ m ~  . . . .(15.4) 

the other component: 
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aB and ac being functions of the total molality, m, but not of the 
individual molalities, mB, me These equations are contained in the 
theoretical deductions of Guggenheim, but they are found to be 
valid over a wider concentration range than one would expect and, 
as we shall see, at these higher concentrations the osmotic coefficient 
does not behave as simply as Guggenheim’s equations for more 
dilute solutions predict. 

To illustrate these equations we refer to some recent work(@ on 
the subject in which the activity coefficient of hydrochloric acid in 
the presence of potassium chloride at a total molality of m = 2 was 
measured by the cell: 

In the following table we compare the observed values of yHcl with 
those calculated by the equation: 

H,IHCl(rnB), KCl(mc) IAgCl, 43, 

1% Y E C ~  = 0.00358 - 0.0580 m ~ a  
mHCI 0.1 0-5 1 *o 2.0 
yobs. 0.7838 0.8‘243 0.8822 1.008 
ycaic. 0-7823 0-8252 0.8822 1.008 

The agreement is withii the experimental error of the measure- 
ments. The rule has also been confirmed for potassium chloride as 
added salt at total molalities of m = 0.1 to 3, for sodium chloride 
at m = 0.1, 1 and 3 and for lithium chloride at these total molalities. 
HAWMS(~) has shown that the rule is valid for the hydrocholric 
acid-potassium chloride system at m = 4 and 5 and for the hydro- 
chloric acid-lithium chloride and hydrochloric acid-sodium 
chloride systems up to 6 M (although the acid-lithium chloride 
system exhibits the puzzling behaviour that the a coefficient for 
hydrochloric acid is negative, which means that the activity 
coefficient of the acid is raised by lithium chloride). The rule holds 
for the HCl-NaClO,(*), HCl-HClO,(e) systems and for the HCl 
-Na$,O,@), HCl-BaClS(1O), HCl-AlCl3(11), and HC1-CeCIJ1*) 
systems provided that it is the total ionic strength which is kept 
constant. 

Among the few known exceptions(18) to this rule are the electro- 
lyte pairs NaOH-NaC1 and KOH-KCl at high concentrations, 
although the greatest error introduced by using equation (15.2) is 
only 3.9 per cent in the activity coefficient. HARNED and  COOK(^^) 
were able to measure the activity coefficients of both the hydroxide 
and the chloride independently by means of the cells: 

H*IMOH(mB!, MCl(mc) IAgCl, Ag 
M3glMOH(m,), MCl(mc) IAgCl, Ag 
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with 
and 
In these cases it was found necessary to use the equations: 

M = K, (mB + mc) = 1.0 
M = Nay (mB + mc) = 0.5 and 1.0 

log yB = log yB(0) - aBmc - BBmE . . . . (15.6) 
log yc = log ycto, - acmB - Bcms . . . . (15.7) 

Another example of the failure of equation (15.2) is the salt pair 
CaCI,-ZnCl,, where extensive complex ion formation occurs(1s). 
Except for the hydroxide-chloride mixtures, the activity of only one 
of the electrolytes has been measured; as will be shown later, even 
if Harned’s rule holds for one electrolyte it does not necessarily 
hold for the other electrolyte in the mixture. 

V A P O U R  PRESSURE MEASUREMENTS O N  E L E C T R O L Y T E  
MIXTURES 

If B and C are non-volatile solutes, the vapour pressure of a solution 
of a particular total molality and particular values of mB and mc 
can be measured by the isopiestic vapour pressure method. OWEN 
and COOKE(~~) were the first to make such measurements, on the 
potassium chloride-lithium chloride salt pair. 

Equations (15.2) and (15.6) are special cases of the general 
expansion of log y B  in a series in mC. However, no case has yet 
been observed where more than a term in the square of mc is 
necessary to express the variation of log yB and therefore we can 
start with equation (15.6) as giving sufficient generality for practical 
purposes. Putting mB = xm and mc = (1  - x)m, where m is the 
total molality, then if m remains constant, the Gibbs-Duhem 
equation gives for an aqueous solution of two 1 : 1 electrolytes: 
- 55.51 d log U, 

= 2 m ~  d log mByB + 2 m c  d log m c y c  
= 2xm d log YB + 2(1 - x)m d log yc  
= 2xm[aBm + 2BB( 1 - x)mpJdx 

= m2{4x%(& - BB) + 2 [ ( a B  + ac j - 2m(& - p B ) ] x  - 
- 2( 1 - x)m[acm + 2B,-ymp]dx 

Integrating from x = 0 when log u, = loguM(,,, the value in a 
solution containing only electrolyte C at a molality m :  



RELATIONS BETWEEN THE a AND p COEFFICIENTS 

where a,(,, is the water activily of a solution of molality xm of B 
and (1 - x)m ofC. The left-hand side of this equation contains only 
experimentally ascertainable quantities; it should be a quadratic 
function of the composition x. If Is, = Bc, then: 

55.51 UW(*) d - 4 C  
xm2 @W(C) xm -- log - = x(aB + ac) - 2ac = 0.8686 - 

. . . . (15.9) 

4 being the osmotic coefficient of the mixed solution and +c that 
of a solution containing only electrolyte C at a concentration m. 

A plot of - (3 log -) against x should be a straight line 
55.51 u ~ ( , )  

%(C) 

of slope (aB + aC) and intercept - 2ac. 

If x = 1, log uW(,) = log u,(B), 4 = +B and: 

. . . .(15.10) 55.51 UW(B)  dB - 4 C  log - = a, - ac = 0.8686 - -- 
m2 W C )  m 

a relation between a, and ac which is true if Harned's rule holds 
for both electrolytes. 

Before we consider the application of equations (15.8) and (15.9), 
it would be well to consider some restrictions on the properties of 
these a and @ coefficients. 

R E L A T I O N S  BETWEEN T H E  a A N D  p COEFFICIENTS 

Equation (15.1) is a general result of the property of a chemical 
potential of being a partial differential coefficient of the total free 
energy with respect to concentration and imposes certain restric- 
tions on the coefficients of equations ( 15.6) and ( 15.7). For clearly, 
in the case of 1 : 1 electrolytes: 
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None of the quantities Y ~ ( ~ , ,  ycfO,, aB, ac, PB, /Ic being functions 
of x: 

-2(1 -x)mpB-(l - x ) m  2 2dSB - 
dm 

Since this must be true for all values of x :  

daB 4% xm - + 2xmpB + x(2 - x)m2 - d m  drn 

In all the cases so far examined, even if pB. and Bc terms are 
required to represent the experimental results, it is found that they 
are extremely small and, moreover, any variation of BB and Bc 
with m is beyond experimental detection. For the purpose of 
dealing with experimental data of the accuracy now available, it is 
therefore justifiable to write: 

- + 2 p B = - - -  daB dac 28, 
dm dm 

or 

and in the even simpler case where pB = &c = 0:  

(aB + ac) = constant - 2m(pB + pC) . . . .(15.11) 

(aE + ac) = constant independent of m 

a result deduced by GLUECKAUF, MCKAY and MATHIESON(17). 

If Harned's rule applies to electrolyte B, pB = 0, then: 

This can be integrated between the limits m = mc and m = m with 
respect to m at constant mc to give: 

. . . , (15.13) 
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VAPOUR PRESSURE MEASUREMENTS 

When mB + rn, mc + 0, then from (15.13) : 

where ycc0) and yB(o) are values at the concentration m. When 
m c - t m , m B + O ,  thenfrom (15.12): 

These last three results are useful in calculating ac and BC for an 
electrolyte C when it is known that Harned's rule applies to the 
other electrolyte. Similar equations have been deduced by 
McKAY(~*). As an illustration we use the data of HARNED and 
GANCY'~) for mixtures of B = HCl and C = KCI at m = 2. At 
mC = 0.5, 1.0 and 1.5, the three terms on the right of equation 
( 15.13) have the following values: 

m, 1st tmn 2ndtmn 3rdfmn a, + &mB 'y,(l) ~ ~ ( 2 )  
0.5 0.1788 0.0020 0.0842 -0.0617 0.7098 0.7092 
1.0 0.1 187 0.0027 0.0568 -0.0592 0.6608 0.6569 
1.5 0.0592 0.0020 0.0288 -0.0568 0.6154 0.6132 

from which we conclude that ac = - 0.0543 and BC = - 0.0050. 
The last two columns give yc (1) calculated from these ac and Bc 
values and yc (2) calculated on the assumption that Harned's rule 
holds for C with ac = - 0.0619 from equation (15.10). The 
difference is small but sufficient to show that a Bc term is necessary. 

A N O T H E R  METHOD O F  USING V A P O U R  PRESSURE 
MEASUREMENTS 

Starting with equation (15.1) MCKAY and PERRING('S) have obtained 
a number of useful transforms, one of which, useful for isopiestic 
results, is: 

In this equation, applicable to 1 : 1 electrolytes, the left-hand side 
gives the change in the activity of electrolyte C as the solvent 
activity increases, i.e., as the total molality changes subject to 
constancy of x. The right-hand side contains a term for the change 
in the total molality which it is necessary to make if the solvent 
activity is to remain constant while the ratio of the molalities of the 
two electrolytes is changed; it is related therefore to the conditions 
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which make a series of solutions isopiestic with one another. 
This equation can be integrated: 

0.002 WA In ycm = -s[$ (gx)aA+ A] d In u, . . . .(15.14) 

the integration to be performed at  constant x. There will, of course, 
be an integration constant which is eliminated by noting the limiting 
condition when x = 0, i.e., when the solution contains only one 
electrolyte, C. Now let M and rc: be the molality and activity 
coefficient of electrolyte C in a solutlon from which electrolyte B is 
absent but at the same uA as the mixed solution of total molality m. 
Then by equation (15.14) : 

By the Gibbs-Duhem equation : 

Therefore: 

. . . . (15.15) 

It would be well to reiterate the meaning of the symbols in this 
equation. yc is the activity coefficient of electrolyte C in a solution 
containing both electrolytes at  total molality m and having a 
particular solvent activity uA; in the absence of electrolyte B, this 
particular solvent activity is associated with a solution of electrolyte 
C of molality M and activity coefficient rC; the latter is not the 
same as ycto, because ycto, is the activity coefficient of electrolyte C 
at a concentration m, electrolyte B being absent. The integration 
is to be performed at a constant value of x, that associated with the 
yc and m on the left-hand side which it is desired to evaluate; 

thus m, (&).,"" M are functions of x and uA but they are 

to be assigned their values for a particular x during the integration 
from uA = 1 up to the value of uA corresponding to the solution in 
question. This equation is cast in a form particularly suitable for 
isopiestic vapour pressure measurements, because the quantity (sx)ay be evaluated as a function of x and by isopiestic 
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measurements using a desiccator with a large number of dishes con- 
taining solutions of electrolytes B and C. 

An alternative form of equation (1 5.15) : 

d (M4) R - 1  

where R = M/m, will be found useful. 
Some isopi&tic measurements(2@) are available on the system 

B = NaCl, C = KC1 from which we quote the following results 
for m = 4, calculated by the McKay-Perring method: 

x I 0.0 I 0.1 I 0.3 I 0.5 I 0-7 I 0-9 I 1.0 

- logy, 0.1965 0.1882 0.1711 0.1533 0.1349 0*1158 0*1061 

- logy, 1-1-1-1-l-l-1- 0.2390 0.2354 0.2282 0.2210 0.2138 0.2066 0.2030 

Equation (15.5) with ac = - 0.0090 represents the results within 
the limits of experimental error, but the data for sodium chloride 
need a small term in equation (15.6); aB = 0-0246, BB = 
-0.0005. The importance of the method derived by McKay and 
Perring lies in the evaluation of ac at a series of x values for a parti- 
cular value of m without at any time assuming that equation (15.5) 
is true. The results of the calculation made by the McKay-Perring 
method can therefore be used as a direct test of the validity of 
equation (15.5) for any particular salt pair without any prior 
assumption of its validity. 

DISCUSSION OF T H E  ACTIVITY COEFFICIENTS OF MIXED 
ELECTROLYTES 

We have seen that there is reason to believe that equations like 
(15.6) and (15.7) are necessary to represent the activity coefficients 
of a number ofelectrolytes in mixedsolutions. The simpler equations 
(15.2) and (15.5), however, are valid in some cases and are a fair 
approximation in others. I-L~RNED(~~) has developed the conse- 
quences of these equations in considerable detail and his discussion 
is of such importance as to warrant some recapitulation. 

1. The most general case, subject to the limitation that 
BB = BC = 0, occurs when aB # - acand Y ( ~ ) ~  # ytoIc. The first 
inequality necessitates, by equation (15.9), that the osmotic coeffi- 
cient is a quadratic function of x. The system B = HCl, C = CsCl, 
approximates to this although it is probable that a small Bc term is 
needed. E.m.f. measurements of cells without transport made by 
HAWED and SCHTJPP(~~) give aB = 0.098 and ac = - 0.041 at 3 M. 
The activity coefficient of hydrochloric acid by itself at 3 M is 
yBt0) = 1.316 that of caesium chloride is ycc0) = 0.478. Clearly 

445 



15 THE THERMODYNAMICS OF MIXED ELECTROLYTES 

they are very different. The a coefficients now lead to Y ( ~ ) ~  = 0.669 
for the limiting case of hydrochloric acid in a solution containing 
only 3 M caesium chloride and y(o)c = 0.634 for the corresponding 
caesium chloride activity coefficient in 3 M hydrochloric acid. 
and y(o)c therefore do differ considerably although not as much as 
do yB(,) and ycto). The inequality of aB and ac leads by equation 
(15.9) to a,(,) = 0.8908 at x = 0.5 compared with ow(,) = 0.8868 if 
log a, were linear in x. This difference may seem small, but the 
osmotic coefficient of 3 M hydrochloric acid is 1.348, that of 3 M 
caesium chloride is 0.879 and if the osmotic coefficient were linear 
in x, it would be 1.114 at x = 0.5, whereas the observed value is 
1.070. 

To illustrate further that the osmotic coefficient is far from being 
a linear function of the composition, a comparison can be made 
between the observed osmotic coefficients of the NaCl-CsCI 

at 3 M and those calculated if the variation were pro- 
portional to the composition. 

Fraction of CsCl 
in mixture 0 0.1335 0.2698 0-3689 0.4989 0.6354 0.7978 1.0 

9 ( O W  1.045 1-W8 0.976 0-953 0-929 0.910 0.895 0.87 
9 ( d C 4  - 1.023 1.ooO 0.984 0.963 0.940 0.913 - 

a, = aNaa = 04429, ac = - 0.0048 

2. a, # - ac but Y ( ~ ) ~  = y(o,c. Again the osmotic coefficient is 
not a linear function of x but: 

From (2.28) and (15.10) it follows that: 

m 
log - YB(0) = 0.8686($, - &) = 

YCO) 

and this can hold only i f  

K being a constant independent of m, an equation proposed by 
~ R L ~ F  and THO MAS(^*). These conditions are almost true for the 
system: B = HCl, C = NaC1.(25) We have seen at the beginning of 
this chapter that y(o,ar = 1.063 and ytojc = 1.066 at 3 M but 
a, = 0.031, ac = - 0.058; to show that the Akerlof-Thomas rule 
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is very nearly valid we quote the following figures for the ratio of 
the two activity coefficients over a range of concentration: 

m 1 2 3 4 
~ H O I I O I  0.809 I *009 1.316 1 *762 
YA.ClIO1 0.657 0.668 0.714 0.783 

3. a, = - ac but y(0)B # ytoIc. The osmotic coefficient is now 
linear in x and from equation (15.9): 

4B - +c = - 2.303 mac = 2.303 maB 

so that for any pair of electrolytes for which a, = - ac, the values 
of a, and ac are very simply related to the osmotic coefficients of 
the electrolytes. This condition rarely holds: the system B = KCI, 
C = CSCI'~~) approximates to this behaviour with a, = 0.01 1 and 
ac = - 0.005 at 3 M. That the osmotic coefficient is very nearly 
a linear function of the composition is shown by the following 
comparison of the observed osmotic coefficients with those calculated 
on the assumption of a linear variation: 
Fraction of CsCl 

in mixture 0 0.1411 0-3025 0.4007 0.6443 0.7726 1.0 
4 ( O W  0.937 0.927 0-916 0.910 0.896 0.890 0.879 
4 (calc.) - 0.929 0.919 0.914 0.900 0.892 - 
The activity coefficient of 3 M KCI is 0.569 and that of 3 M CsCl 
is 0.478; with a, = 0.01 1 and ac = - 0.005, we calculate 
y(0)B = 0.527 and y(o)c = 0-494 so that yo(,) and yo(c) are by no 
means the same. 

4. a, = - ac and yo(,) = yo(c). These conditions are approxi- 
mated by the salt pair B = LiCl and C = NaC1.(27) At m = 3, 
4B = 1.286 and +c = 1.045 so that if a, = - ac, it is necessary 
that a, = 0.035 and ac = - 0.035. These values have been found 
experimentally, although there are small ~9 terms in equations 
(15.7) and (15.8) as a result of which this example can be quoted 
only as an approximation to the case where a, = - ac. That the 
osmotic coefficient is a linear function of the molality can be seen 
from the following comparison of the observed osmotic coefficients 
with those calculated on the assumption of a linear variation: 
Fraction of LiCl 

in mixture 0 0.3392 0.5167 0.6699 I -0 
d (Oh.) 1.045 1.125 1.170 1.207 1 *286 
4 W C . )  - 1.127 1.170 I -206 - 
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Moreover, the activity coefficients of lithium chloride and sodium 
chloride, each in the absence of the other electrolyte, are 1.156 and 
0.714 respectively and if ancI = - aNaCl = 0.035, it follows that 
yto)ua = 0.908 and Y ( ~ ) N ~ c ~  = 0.909. If these conditions hold over 
a range of values of m, it follows that the Akerlof-Thomas rule is 
applicable and indeed it is found by experiment to be a good 
approximation over a considerable concentration range as the 
following figures show : 

m 1 2 3 4 5 6 
YLlCl 0.774 0.921 1.156 1.510 2.02 2.72 
YI?/IP.cI 0.657 0.668 0.714 0.783 0.874 0986 

m Y m C I  

We can summarize this as follows: BE = BC = 0 but: 

1. a, # - ac, yto,, # ytoIC, the osmotic coefficient is a quadratic 
in 1c. Example: the HCl-CsCI system. 

2. aB # - ac, yto, = yto,,-., the osmotic coefficient is a quadratic 
in x and the fkerlof-Thomas rule applies. Example: the 
HCl-NaCl system. 

3. a, = - ac, Y ( ~ ) ,  # ytoIc, the osmotic coefficient is linear in x 
and the a, and ac coefficients are determined in terms of 
(4, - dc). Example: the system KCl-CsCl. 

the osmotic coefficient is linear in x, 
the Akerliif-Thomas rule holds and a, and ac are determined 
in terms of (4, - #,-.). Example: the system LiCl-NaCl. 

There are few electrolyte pairs, however, to which Harned‘s 
rule is strictly applicable; these include the systems: B = HC1, 
C = LiCl (up to 3 M(S8)); B = HCl, C = N a C P ) ;  B = NaCl, 
C = K C P ’ ;  B = NaCl, C = CsCl(2s); B = KC1, C = KBr(29); 
B = KCl, C = CsC1(*8). 

Several types of system are possible if Harned’s rule does not 
hold : 

1. pB = 0, BC # 0. The system B = HCl, C = KCl has already 
been quoted as an example and, from the calculations Of ARGER- 
SINGER and MOHILNER(~), this seems to be true of mixtures of 
hydrochloric acid with barium chloride, strontium chloride, 
aluminium chloride and cerium chloride. 

1%- 0-0711 0.0698 04698 0-0713 0.0728 0.0734 

4. a, = - ac, yto), = 
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2. BB w Bc # 0. A system of this type, B = LiCl, C = NaC1(27), 
has been investigated by vapour pressure measurements. For 
any one total molality the function on the left of equation (15.8) 
gave a good straight line graph when plotted against x, indicating 
that pB rn Bc, but the slopes of this graph were not the same at 
all values of the total molality; indeed, to a first approximation 
the slopes were proportional to m: 

I t  follows from equation (15.1 1) that (Is, + Bc) cannot be neg- 
lected but must be of the order of - 0.002 and since bB M Bc, 
each must be about - 0.001. Small BB and BC values are also 
found for the KCl-LiCl and LiCl-LiNO, systems. 

3. pB # pc # 0. An example(26’ is the complicated CsCl-LiCl 
system, also studied by vapour pressure measurements. At no 
value of the total molality between m = 0.5 and m = 6 did the 
plot of the left-hand side of equation (15.8) against x give a 
straight line, so that Is, # pc, and at  least one of them has a 
non-zero value. To explore this system thoroughly would need 
much tedious and very precise work; a preliminary survey has 
been made as follows. At one particular total molality, m = 5, 
vapour pressure measurements were made at  many values of x 
so that the curvature of the graph corresponding to equation 
(15.8) could be ascertained with some accuracy and the values 
of -, aLia and (&- - BLIcI) necessary to represent this graph 
were evaluated for m = 5. It was then assumed that j3acl and 
BLIcl were independent of m and equation (15.8) was used with 
these B quantities together with the less extensive experimental 
data at other total molalities, to evaluate the two a coefficients. 
The sum of these coefficients (a- + aucl), was found to be a 
linear function of the total molality. Thus there were obtained 
the two equations: 

valid at m = 5 and assumed valid at other values of my and: 

(aNaI + aucl) = - 0.01 3 + 0.004 m 

/9ucI - = - 0.0058 

(%Cl + @LICI) = constant - 2 m (BLICI + Bcacl) 
= 0.082 + 0.009 m, 

whence Bwl = 0.001 and Bucl = - 0.005 

A reinvestigation of these systems by the McKay-Perring method 
is needed. For the system, p-toluenesulphonic acid and its 
sodium salt(31), even equations (15.6) and (15.7) give only an 
approximation to the observed behaviour. 
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CALCULATION OF a COEFFICIENTS F R O M  OTHER DATA 

The a coefficients of equations (15.2) to (15.5) determine a number 
of important properties of mixed electrolyte solutions and it is 
clear that much experimental work could be saved if we had some 
sound method of calculating these coefficients from the properties 
of single electrolyte solutions. This is possible for dilute solutions if 
equations of the type of (9.13) are valid. For example, if the 
activity coefficient of one electrolyte can be written: 

and a similar equation with 6 ” ~ -  is valid for an electrolyte C with 
the same anion X- then, from Guggenheim’s equation for a mixed 
solution: 

In yB = In y,O)B 4- (bM+x- - 6N+x-)xm 

and therefore the a, of equation (15.2) is: 

= 0.4343 ( 6 ~ + x -  - ~ N + x - )  

that is to say, the aB coefficient is predictable from the properties 
of single electrolyte solutions. Using the activity coefficients of 
hydrochloric acid, sodium, potassium and caesium chloride at 0.1 M 
to calculate 6 and putting B = MX = HCI, C = NX = LiCl, 
NaCl, KCl or CsCl, we can calculate the following a, coefficients 
for hvdmchloric acid in alkali halide solution and comDare them 
with ;he values deduced from 

E k ~ b l y &  -logy 
Hcl 0.099 1 
Licl 0.1024 
NaCl 0.1090 
KCI 0.1135 
CSCl 0.1215 

Guntelberg’s work : 

0.4343 
bN+x- a, (calc.) a, (obs.) 
(0.116) - - 
0.100 0-016 0.009 
0.067 0.049 0943 
0.044 0.072 0.077 
0.004 0.1 12 0.143 

For this calculation to be exact it is of course necessary that 
Y ( ~ ) ~  = yto)C, so that there are very few systems at higher concen- 
trations to which this method of prediction can be applied. Again, 
if a, = - ac we can use the relation ($B - Qc) = 2.303maB; 
this would lead for the HCl-CsCl system to aB = - ac = 0.068 
at 3 M whereas the experimental value is a, = 0.098. Clearly, 
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such calculations are not likely to give more than an order of 
magnitude. To emphasize this, we give a few comparisons at 1 M: 

- 4 B - 4 0  Ob-d Ekctrolyk an=  - Q c  - 2.303 
B C 

HCI NaCl 0.045 0032 
HBr NaBr 0050 0.038 
HCI KCI 0.06 1 0.056 
HBr KBr 0.072 0.080 

This important problem of calculating properties of mixtures 
from those of the components is still far from solution. 

A SIMPLE A D D I T I V I T Y  R U L E  FOR T H E  V A P O U R  PRESSURE 
LOWERING OF A MIXED E L E C T R O L Y T E  SOLUTION 

For some purposes, when the highest accuracy is not required, these 
somewhat complicated considerations of mixtures can be overlooked 
and a simple additivity rule used. The vapour pressures of solutions 
containing electrolytes such as (2KC1 + MgCl,) have been 
measured(a2) over a wide range of concentration at 25'. A solution 
0.5 M with respect to the double salt, K,MgCl,, has a vapour 
pressure lowering of Ap/pO = 0.06040: the potassium chloride con- 
centration is 1 M at which concentration and in the absence of 
other solutes the vapour pressure lowering, Ap/pO, is 0.03182. 
Similarly for 0.5 M magnesium chloride, Ap/po = 0.02525. If we add 
these two contributions to get a calculated vapour pressure lowering, 
we find &/pO = 0.05707, a value which differs by 5.5 per cent from 
the observed. Better agreement can be obtained by a slight elabor- 
ation which is illustrated as follows: this solution of (2KClf MgCl,) 
has a total ionic strength of 2.5 and we use the molal vapour 
pressure lowerings of the components at this total ionic strength, 
Ap/(mpo) = 0.03195 for potassium chloride and 0.05530 for mag- 
nesium chloride; the contribution to Ap/pO of the mixture is 0.03195 
for potassium chloride and 0.02765 for magnesium chloride with a 
total of 0.05960 which differs by only 1-3 per cent from the observed 
value. Agreement of this order is found with a number of these 
mixtures up to a total molality of unity and even in the more 
searching example of a solution of lithium chloride and calcium 
chloride, agreement within 5 per cent can be obtained even with 
solutions of 4 M 4 a C 1 ,  + 8 M -LiCl. Thus at a concentration of 
3.833 M -Li,CaCl, the observed relative vapour pressure lowering 
is 0-7698 and the calculated 0.7379, a difference of only 4.2 per cent. 

To take a third example, good agreement can be obtained by 
applying this empirical rule to mixtures of lithium chloride and 
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lithium nitrate(lS). A mixture of 4.662 M-LiNO, and 5.338 M 
-LiCI is known to have Ab/bO = 0.5141 ; calculating from the 
known data for the component salts we find Afi/bo = 0.5215, a 
difference of only 1.4 per cent. This empirical rule is almost 
equivalent to assuming that the osmotic coefficient is a linear 
function of the fraction of lithium nitrate in the mixture, and hence 
to assuming that: 

1 
2-303m @-LiCi = - QLiKO, = - (4LiCI - 4LLN0,) = 0.036 

which is very different to the values found by more detailed study 
of the system, aLicl = 0.050 and aLiNO, = - 0.023. The former 
value of a L i 0  gives yLlcl = 6.39 and the latter gives y ~ i c l  = 5.50 for 
the activity coefficient of lithium chloride in the mixture. We 
emphasize this point because, whilst the empirical rule is a very 
useful one for calculating properties of the solvent, it can be a 
dangerous rule if applied to properties of the component solutes. 

T H E  S O L V A T I O N  OF M I X E D  ELECTROLYTES 

We next inquire whether the 'hydration' equation developed in 
Chapter 9 assists us in explaining some of the peculiarities of mixed 
electrolyte solutions. Suppose we had S moles of water containing 
one mole of electrolyte B and 5 moles of electrolyte C. For simplicity 
we consider only 1 : 1 electrolytes. Let hB and hc be the hydration 
numbers of the electrolytes. It can be shown that equation (9.16) 
becomes: 

or, in terms of the molalities, mB and mc: 

where m = mB + mC. Converting now into mold activity coeffi- 
cients : 

fi3 f b  hB -k chC ln a ,  
2 ln- + 5In- = 

YB Yc 
+ (1 + 5) In [I  + 0*018(2m - hBmE - hcrnc)J 
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If we can decompose this into two equations: 

Elrctrolyte 

B I c  

and assume that fh is independent of the composition of the solution 
at constant total molality, then: 

hJ3 log yB0) = log fh - log u,(B) - 1% [l + 0.018(2m - h e ) ]  
and : 

an 

obs. I calc. I obs. I calc. 

hJ3 log y(o)E = log fh - 7 log uW(c) - log [I + 0*018(2m - hem)] 

Therefore, if equation (15.2) is to apply, we have: 

Ka 
NaCl 
HCI 
HCI 

1 + 0*018(2 - hc)m 
log 1 + 0*018(2 - hB)m aBm = 04078he(+B - 

CSCl 0.016 0.015 0.0 I9 0.015 
CSCl 0.02 I 0.029 0-047 0027 
NaCl 0.032 0.04 I 0.058 0.038 
KCl 0.056 0.056 0-072 0.050 

or, to a close approximation: 

a, = 04078ir,(~B - &) + O.0078(hB - hc) 
and ac = 0*0078hc(+c - +B) + 0*0078(h, - hB) 

Calculations of some a values have been made using these equations 
and Tulle 15.1 gives the results for a total molality of unity. 

Tabb 15.1 
Comparison of Obserued and Cakuktted a Coe&ci&s at a Total Molali!~ of Unip 

Although the agreement with the experimental values is not good, 
the crude theory we have developed does at least predict the sign 
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and the magnitude of the effect and puts the coefficients in the right 
order. The average deviation is only 0.01 in aB or ac. More can- 
not be expected until we have a much clearer picture of the multi- 
form complications of these solutions. 

We have not considered the possible variation of f$r or f& with 
composition at constant total molality. This alone is a complicated 
problem, requiring a survey of the modifications of the Debye- 
Hiickel theory for the interaction of ions of different sizes. We know 
very nearly nothing at all about the effect of a size-difference 
between the ions. Again, as was pointed out in Chapter 9, the 
‘hydration’ equation ignores ‘non-electrolyte’ effects so that the 
hydration number, h, is made to account not only for the hydration 
effect, but also for the effects of the free volume ratio and of the 
heat of mixing of the hydrated ions with the solvent. Our picture 
of even a single electrolyte in solution is far from complete and we 
need not be surprised to find that the delicate interactions between 
the electrolytes in a mixture are even less well understood. It is, 
indeed, encouraging to find that we can ignore these finer details 
of the picture and get even such qualitative agreement as that 
shown in Table 15.1. In the above argument the consequences of 
the ‘hydration’ equation have been carried to an extreme with the 
hope that this crude picture may form at least a basis for improve- 
ment and that a, and ac will become calculable. The consequences 
of a successful theory would be important. At present the thermo- 
dynamic properties of a comparatively simple system like sea-water 
are known only as a result of tedious experiments; simple as thii 
system is, it has many degrees of freedom and questions such as, for 
example, the effect of a change in the sodium chloride-magnesium 
chloride ratio on the water activity cannot be answered today and 
would necessitate considerable experimental work. The properties 
of sea-water should be calculable from the properties of a few 
solutions each containing a single salt but, with our present theory, 
we can make only the most approximate estimate of the interactions 
of these s a l t P ) .  The various physiological fluids can be quoted as 
another example where a theory of mixed electrolyte solutions 
would lead to progress whilst the problem of the activity coefficient 
of a weak acid in the presence of one of its salts, i.c., in a buffer 
solution, does not seem to be completely soluble until we know 
much more about the interactions of two electrolytes in a solution. 
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CHAPTER 1 
Important developments in the study of electrolytes have come 
from the relaxation techniques of EIGEN and his collaborators(1). In 
these methods the solution is subjected to a sudden perturbation 
in one of the external parameters affecting a chemical equilibrium 
in the solution, and the subsequent return to equilibrium is followed 
by suitably rapid means such as spectrophotometry, polarimetry, 
or conductivity. The perturbation may be brought about by several 
methods: a temperature-jump may be produced by the sudden 
discharge of a capacitor through the solution; a pressure-jump by 
the sudden rupture of a metal membrane to release a hydrostatic 
pressure; or a high-intensity pulse of electric field may be applied. 
By the last method, for example, the rates of dissociation and 
recombination of the proton and hydroxyl ion in water and ice 
have been determined, though the recombination rate in water has 
the extremely high value of 1.3 x 1Ou lmole-1 sec-l. For a full 
account of these important techniques see reference (1)) where the 
original papers are cited. 

Recent work on the structure of water and aqueous solutions is 
fully discussed in a book by KAVANAU(~'. 

CHAPTER 2 
The various frames of reference which may be used in describing 
diffusion, and the relations between them, are discussed by 
KIRKWOOD ct d ( 3 ) .  

CHAPTER 3 
Much more comprehensive tables of energies and entropies of 
hydration of ions are given by NOYES'*). STOKES(&) considers that 
the conventional Pauling crystal radii of ions (Appendix 3.1) are 
too small for isolated ions in u r n ,  and proposes larger values 
deduced from' the Van der Waals radii of the noble-gas atoms. 
Using these for the gaseous ions, but the Pauling radii for the 
aqueous ions, the free energies of solvation of all the cations of the 
noble-gas electronic structure are accounted for satisfactorily. 
GOURARY and ADIUAN'~) find Padig 's  radii inconsistent with the 
electron-densities in the sodium chloride crystal determined by 
WITTE and WOLFEL"), and propose an alternative division of the 
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cation-anion internuclear distance, leading to a different set of 
ionic radii. 

CHAPTER 4 
Distribution functions are considered from a more fundamental 
point of view by FRIEDMAN(*). 

CHAPTER 5 
STOKES(~JO) has shown that significant errors may arise from thermal 
diffusion when conductance-cells of the design shown in Figures 
5.3(u) and (6)  are used at temperatures far above or below room 
temperature, and advises the provision of an auxiliary mixing- 
chamber to overcome this effect. A cell suitable for measurements 
on solutions which attack glass significantly during a conductance 
measurement is described by MARSH and STOKES(~~). PRUE(~~) has 
studied the 'shaking effect', which causes differences in conductance 
between stagnant and rapidly-stirred or freshly-shaken dilute 
solutions, and suggests that it arises from ion-exchange at the glass 
surface. It can be minimized by waxing the glass surfaces or by 
keeping the electrodes and current-carrying region well away from 
the cell walls. 

CHAPTER 6 
For hydrochloric acid A0 = 426.50 cm2 1nt.W equiv-l (A&+ 
= 350.15) at 25" and 580.9 at 50°(10*1s). Values of 165.93, 199.18, 
284.35 and 368.82 cm2 Int. Q-1 equiv-1 have been found(*) for the 
hydroxyl ion at 15", 25", 50" and 75", respectively. 

The data illustrated in Figure 6.2 can be supplemented by('') 
= 0.5046 at 0". The transport number of chloride ions in 

0.1 N potassium chloride solution has been ~ O U I I ~ ( ~ ~ )  to be 0.4834, 
0.4818,0.4808 and 0.4783 at 70", 86", 100" and 1 15", respectively. 

CHAPTER 7 
Further elaborations of the theory of conductance in dilute solutions 
of symmetrical valence-type electrolytes are being made by Fuoss 

The compatibility of the Fuoss-Onsager and of Pitts equation 
has been considered by FERN~DEZ-PRINI and PRUE(~~~) .  For a 
1 : 1 electrolyte, Pitts equation can be converted into the form 

and oNSACER~15a). 

A =  AO-S.\/c+Eclnc+ Jlc- J#J2 
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The second term on the right is common to both equations, S being 
the (&A0 + B,) term in the nomenclature of Chapter 7. The 
third term is also common to both equations and can be writtetl 

K e 2  2tce2A0 - - - p z / c ) ~ n c  16ek T ( 3ekT 

@ being the B, coefficient of Chapter 7. For an aqueous solution at 
25" ( E  = 78*30), 

Ec In c = (0.5326 Ao - 20.55) c log G 

The last two terms appear in each equation insofar as there is 
agreement that there are terms in c and c3f2 and that J1 and J2 are 
functions of A0 and a, but J1 and J2 are defined somewhat differently. 
The term in c3'2 is sometimes omitted from the Fuoss-Onsager 
treatment. 

The contributions of these four terms can be seen by considering a 
1 : 1 electrolyte in aqueous solution at 25" with a = 4 A, A0 = 150 
cm2 Int. Q-1 equiv.-l and c = 0.01 mole litre-l. 

SdC E c l n c  J I G  J p  A 

9.52 -1.19 2.55 0-13 141.71 
9.52 - 1.19 2.94 0.54 141.69 ' I  Fuoss-Onsager 

Pitts 

In other instances the predictions of the two equations differ 
somewhat; for example, hydrochloric acid in aqueous solution and 
potassium iodide in dimethylformamide. It is clear that results of 
very high accuracy are needed. The present position seems to 
favour Pitts equation for aqueous and dimethylformamide solutions, 
whereas the Fuoss-Onsager treatment leads to more realistic values 
of the u parameter when methanol is the solvent. 

CHAPTER 8 
Several determinations of standard cell potentials have been made 
coverins a range of about 50". The following values of Eo refer to 
25" : 

H,IHBr in waterlAgBr, Ag 0.07 106 V(16) 
H,IHBr in waterlHg,Br,, Hg 0.1 3923 W 7 )  

-0.1 5244 V"*' 
H,IHCI in 50 per cent methanollAgC1, Ag 0.19058 V"*) 

0.2 1266 V'*O) 

H,JHI in waterlAg1, Ag 

D,)DCl in deuterium oxidelAgC1, Ag 
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The standard potentials of the cells: 
H,(HCI in waterlAgC1, Ag 
D,IDC1 in deuterium oxidelAgC1, Ag 
H,IHBr in waterlAgBr, Ag 

have been measured up to 275", 225" and 200°, respectively(21). 
I-IARNED'~~) has suggested a method of calculating the activity 

coefficients of salts in water-methanol solvents. It seems that the 
ratio 'YHcJyat in water and in water-methanol, all activity 
coefficients being taken at the same concentration, depends only on 
the nature of the salt and not on the solvent composition. Thus if 
the activity coefficient of hydrochloric acid is known in a number of 
water-methanol mixtures, then the activity coefficient of a salt in 
these mixtures can be calculated from its activity coefficient in 
water. 

The activity coefficients of a number of compounds in aqueous 
solution have been measured: ammonium perchlorate(=) ; indium 
chloride and sulphate'") ; methanesulphonic acid and ethane- 
sulphonic acid and their lithium, sodium, potassium, ammonium, 
tetramethylammonium, tetraethylammonium and tetrabutyl- 
ammonium salts(25) ; rubidium and caesium fluoride(a6) ; tetra- 
alkylammonium salt~(~5) ; thallous sulphate(28). Isopiestic vapour 
pressure measurements have been made on a number of salts at 
140*3"(29). Direct vapour pressure measurements have been made 
of sodium chloride solutions at high temperatures which give the 
following osmotic coefficients'm) : 

'C I m-0.5 I m = l  I m - 2  I m = 3  

60 
80 

loo 
125 
150 
I75 
'Loo 
225 
250 

0.92 1 0.943 0.999 1 *057 
0.920 0.942 0.996 1.053 
0917 0-938 0.989 1.042 
0.9 1 2 0.929 0.972 1.016 
0.904 0.91 7 0.953 0.989 
0.893 0.902 0.929 0.957 
0.877 0.882 0.90 I 0.920 
0.854 0.854 0.865 0.877 
0.824 0.8 18 0.823 0.83 I 
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intermediate region, the dielectric constant is assumed to vary 
linearly with the distance. 

The ionization constants of a number of acids, many of them of 
considerable biological interest, have been measured. Some of 
these are recorded here, the figures in parentheses being the value 
of pK, at 25': ascorbic acid (4.25)(Se), isocitric acid (3.287,4.714, 
6-396)(%), methionine (2.1 25,9.28)(%). Values for some other acids 
are given at  the end of th is  section [p. 5611. 

The heat of ionization of the reaction: 

H,O --+ H+ + OH- 
is given (p. 363) as 13.52 kcal mole-' from e.m.f, measurements. 
Recent direct calorimetric determinations(s) give 13-34 kcal 
mole-'; the difference is worthy of further study. 

Direct calorimetric measurements are being made(a*S7*w) of 
enthalpy changes on the dissociation of weak acids; until recently, 
most of our information about such enthalpy changes has come 
from the temperature coefficient of the dissociation constant 
(p. 357) and calorimetry provides a welcome alternative method. 
For example, calorimetry gives 5.65 kcal mole-' for the enthalpy 
change on the dissociation of whereas 5.62 kcal mole-' 
has been found'6') from the temperature dependence of the dissocia- 
tion constant. 

CHAPTER 14 

The relation between the ion-pair concept and solutions of the non- 
linear form of the Poisson-Boltzmann equation is discussed by 
GWGGENHEIM(~) and by SKINNER and Fuoss(S~). 

CHAPTER 15 
In addition to studies of the excess free energy of mixing of elec- 
trolyte solutions, considerable interest is to be found in the enthalpy 
change on mixing(") and also in the corresponding volume 
change#). The method of obtaining activity coefficients by 
ultracentdbgation (p. 21 1) has been applied to aqueous mixtures 
of hydrochloric acid and barium chloride(dS). 

There is another method of evaluating the activity coefficients 
of both solutes in a mixed solution which is analogous to the 
McKay-Perring method (p. 443) but is particularly useful if at 
least one of the solutes is a non-electrolyte. Starting with the 
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cross-differentiation relation, equation (1 5. I ) ,  let us suppose that 
for two non-electrolytes: 

Then 
A 

In yB = In y& + - + 1 mpBm$+l 

Here mB and mc are the molalities of B and C in the mixture and 
y% is the activity coefficient of B in its own solution at molality 

Similarly, 
mB(mC O)’ 

We now use the Gibbs-Duhem relation: 

- 55.51 d In a, = mB d In mByB + mc d In m,yc 
= ntB d In mBys + mc d In mcy$ 

The first two terms are equal to d(m&) -k d(m&) where 4; 
and 48 are the osmotic coefficients of solutions of B only and of C 
only, respectively. Let a new function be defined: 

A = - 55.51 In a,,, - mp$% - m,-& 

Then, 

msm$+ldmB + A 1 ms” m$ dmc 

s P + l  qA s + A m$ rn$+’dmB + - ms” m$ dmc 

or 

A can be determined by kopiestic measurements. If it can be 
expressed as a function of mB, mC with no cross-products (p = 0 or 
q = 0), then: 



If there are cross-products the situation can st i l l  be handled. For 
example, if: . 

then. 
Al(mBmc) = A + B ~ B  + CmBmc, 

yc = In 78 + mB(A + $BmB + #CrnBrnc) 
The following aqueous mixtures have been studied by this method: 
sucrose-mannitol(a), mannitol-sodium chloride(M), mannitol- 
potassium chloride(*6), urea-sodium chloride(*’), glycine-potassium 
chloride(”8). 

The trace-activity coefficient of one electrolyte in the presence 
of another, i.e., the activity coefficient ytobc of C when present in 
vanishing concentration in a solution of B, can be determined by the 
following method, which has been used for the hydrochloric acid- 
calcium perchlorate system(49). The e.m.f. of the cell: 

is measured at constant mB and increasing mc; for example, 
mB = 0.7702, mc = 0.0216, 0.0763, 0.1948. This is accomplished 
by adding a solution of calcium perchlorate containing hydro- 
chloric acid at molality mB. to the solution in the cell which initially 
contained only hydrochlonc acid at molality m,. Since 

E = J?P - 2k log yBm, 

then in the limit when mc + 0, 

Y can be evaluated graphically from a few e.m.f. measurements. 
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The experiment is repeated at  different values of m,. Then 

this integrand 

3k log yto,,, = - 2 Y q m , .  dz/mB $I) 
being convenient because it remains 

I I 1 
finite as 

Figure A.I .  Activip coeficients of hydrochloric acid (I)) and calcium pnchlorde (C) in 
iluir own solutions, and trace-activity caficients i n  the presence of one another. 

m,+O. 
equation : 

This limiting value follows from the Debye-Huckel 

log yc  = - 2A(mB + 3mc)lJ2 

lim (Yz/m,) = 3kA 
m n 4  

With this limiting value, log yto,c can be calculated by tabular 
integration to finite values of m,. 

Figure A.  I compares these trace-activity coefficients of calcium 
perchlorate with those of the salt in its own solution and similar 
values for hydrochloric acid obtained in an analogous way. This 
can be compared with Figure 15.1 although the situation is now more 
complicated because the (limiting) Debye-Huckel contribution is 
twice! as great for calcium perchlorate as it is for hydrochloric acid. 
Nevertheless, the same general pattern can be seen; the high 
activity coefficient of hydrochloric acid is lowered on addition of 
calcium perchlorate and the comparatively low activity coefficient 
of thii salt is increased on addition of hydrochloric acid. 
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Measurements of pKa ow a Tmperahre Range 

Apow Solution 

Acetic acid (CD&OOH in 

Acetic acid (CH,COOD in 

Acetic acid (CD,COOD in 

2-Aminoethyl sulphate 
2-Amio-2-methyl- 1,3-pro- 

4Aminopyridine 

t-Butylammonium ion 
0-Chlorophenol 
Creatine 
Creatinine 
o-CreSol 
m-Cresol 

H a  

D*O) 

D*O) 
2-Amin0ethyl phosphate 

panediol 

Arginine K1 
Arginine KI 

p-creso1 
Diethanolammonium ion 
NIN-Di(2-hydroxyethy1)- 

glycine 
2,bDiitrophenol 

Dsiropropylcyanoacetic acid 
Hydrocyanic acid 
Imidazole 
Malic acid K, 
Malic acid K, 
Morpholinium ion 
4Nitr0-3-methylphmol 
o-Nitrophenol 
tn-Nitrophenol 
p-Nitrophenol 
Phenol 
Phenylacetic acid 
Phosphoric acid KI (in D,O) 
Phosphoric acid KI 
Pipcrazinium ion K, 
Pipuaz;niUm ion K, 
Pyrroliddum ion 
Quiuoliiium ion 
Tris(hydroxymethy1) amino- 

2,S-DinitrOphUlOl 
2,B-DiniUophenOl 

methane 

Ka at 
25" 
- 
4772 

5.3 1 3 

5.325 
10.638 
9.182 

8-80 1 
9-1 14 
1 -822 
8994 
10.685 
8.527 
2.6301 
4.829 
10.330 
10.098 
10.276 
8.883 

8.333 
4.084 
5.23 1 
3.725 
2.555 
9.2 1 
6.994 
3.459 
5.097 
8.492 
7.409 

8.355 
7.156 

10.020 
4305 

12.375 
5.333 
9.73 1 

11.305 
4.882 

8.06: 

7.230 

7.780 

- 

A, 

1079.37 

1316.56 

1278.92 
2998- 1 7 
2530.12 

2952.00 
2575-8 
1087-6 
2643.6 
302 1.63 
2443.32 
1 175.02 
198.23 

2 180.87 
2127.24 
212740 
1830.15 

1329.60 
982.9 

1271.6 
1031.4 
222.64 

3807.5 
1906.88 
1358.85 
1658.53 
1663.29 
2075.02 
2223.12 

2 150.69 
21 19.82 
628.08 

2202.1 I 

952.1 I 
1656.5: 
231885 
3038-4 

3037.61 

1723. la 

- 

A, 

2.5200 

3-3181 

3.0490 
1.3841 

-0.2782 

2.2652 
-0.0828 

4.7526 
0-8783 

-0.9376 
4.800 
49883 - 7.0705 
0.0933 
0.1280 - 0.0404 - 4.0302 
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k Boltzmann's constant 1 $38054 x 10 -I6 erg degree - mole- 

R Gas constant 8.3143 absolute joule degree-' mol 
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Vo Ideal gas molar 22413.6 cma mol-1 (OOC and 1 standard 

Ref. COHEN, E. R. and DUMOND, J. W. M., Rev. mod. Phys. 37 (1965) 
538. 

1.602 10 x 10 -19 coulomb = 4.80298 
x 10-'0 c.g.s. e.s.u. of charge 

cule - 

volume atmosphere) 

1 absolute ohm = 0.999505 international ohm 
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1 calorie = 4.1840 absolute joule 
Ice-point = 273.150K 
1 standard atmosphere= 760 Torr = 1.01325 bar 

= 101325Nm-2 

The values quoted above differ slightly from those given in our 
1965 reprinting, but the changes are not great enough to justify 
recalculation of quantities appearing in the text and equations. 
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APPENDIX 1.1 

Physical Proflerties of Water -- 
spccijic 

mlh 

1*00013 
1.oooOl 
1.00027 
I 40087 
1.00138 
1-00177 
1.00293 
1.00434 
1.00598 
1-00706 
1 so0782 
1 a00985 
1.01207 
1.01448 
1-01705 
1.01979 
1.02270 
1.02576 
I a02899 
1.03237 
1 a03590 
I *03959 
I -04343 

volurm '*fiUr I Dielect& Pressure 
mmHg wndant 

4.580 I 
6.538 
9.203 
12.782 
15.47 1 
17.529 
23.753 
31.824 
42-180 
49.702 
55.338 
71.90 I 
92.56 
118.1 I 
149-47 
187.65 
233-8 I 
289.22 
355.31 
433.64 
525.92 
634-04 
760.00 1 

87-740 
85.763 
83.832 
81.945 
80.835 
80- 103 
78-303 
76.546 
74.823 
73.817 
73.151 
71.51 I 
69.9 I0 
68.344 
66.8 I 3 
65.319 
63.855 
62.425 
61.027 
59.657 
58.3 17 
57.005 
55.720 

1.787 
1.516 
1.306 
1.138 
1.053 
I *002 
0.8903 
0.7975 
0-7194 
0.6783 

0.5963 
0.5467 
0-5044 
0.4666 
0.4342 
0.4049 
0.3788 
0.3554 
0.3345 
0.3 I56 
0.2985 
0.2829 

0.6531 
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(1956) 3561 * Vapour Pressure: KEYES, F. G., 3. c h .  Ph s., 15 (1947) 602 

a Dielectric constant: MALMBERG, C. C. ~ ~ ~ M A R Y O T T ,  A. A., J .  Res. nut. Bur. 

4 Viscosity: SWINDELLS, J. F., COE, J. R. and GODPREY, T. B., ibid., 48 (1952) 1 ; 
COE, J. R. and CODPREY, T. B., J .  uppI. Phys., 15 (1944) 625; WEBER, 
W., .t; angem. Ph~s., 7 (1955) 96. 

shnd., 56 (1956) 1. 
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APPENDIX 1.2 

Diekctric 
conslant 

DENSITIES, dielectric constant and viscosities of some electrolytic 
solvents. (Temperature 25°C unless otherwise noted.) 

vircosity 
(cmripoisc) SOlUmf 

Water 
Acetone 
Acetonitrile 
Ammonia ( -34") 
BCnZUU 
o-Dichlorobenzene 
1 : 1 Dichloroethane 
1 : 2 Dichloroethane 
Dimeth ylacetamide 
Dimeth ylformamide 
Diwth ylpropionamide 
Dimethylsulphoxide 
Dioxan 
Ethanol 
Ethylenediamine 
Forrnamide 
Glycerol 
Hydrogen cyanide (18") 
Hydrogen peroxide (20') 
Methanol 
N-Methylacetamide (40') 
N-Methylbutyrarnide (30") 

N-Methylpropionamide (30') 
Nitrobenzene 
n - P ro p a n o I 
Pyridine 
Sulphuric acid 
Sulpholane (30") 

N-MethylfOrrnamide 

Dmsiry 
(dd) 

0.99707 
0.7850 
0.7768 
06826 
0.87368 
1.3003 
1.1667 
I *2453 
0.9366 
0.9443 
0.9205 
1.0958 
1.0269 
0.785 1 
0-8922 
1.1292 
1 *2583 
0-6900 
1 489 
0.7868 
0.9420 
0.9068 
0.9976 
0.9269 ' 
1.1986 
0.7995 
0-9779 
I -8255 
1.2623 

78.30 
20.70 
36.7 
22 
2.273 
9.93 

10*00 
10.36 
37.78 
36.7 1 
32.9 
46.7 

24.30 
12.9 
109.5 
42.5 
118.3 
74 
32.63 
165.5 
124.7 
182-4 
164.3 
34.82 
20. I 
12.0 

101 

2.209 

43.3, 

0-8903 
0.3040 
0.344 
0.2558 
0.6028 
1-96 
0.466 
0.787 
0.919 
0.796 
0.935 
1 46 
1.196 
1 -078 
1 *54 
3.302 
945 
0.206 
1 a24 
0.5445 
3.020 
7.472 
1-65 
4.568 
1.81 I 
2.004 
0.8824 
24.54 
10.29 

The above values am selected from a wide variety of sources. Extensive refer- 
ences may be found in T ~ ~ ~ M N s ,  J., 'Physiochemical Constants of Pure Organic 
Compounds,' Elsevier (1950), in WEISSBERGER, A., and PROSMUER, E., 'Organic 
Solvents,' Interscience Publishen Inc., New York (1955) and in numerous papers 
by KRAUS, C. A., and collaborators (see rep. to Appendix 14.2) and WALDEN, P., 
and collaborators. 

In most cases the viscosities quoted have been obtained by viscometers Cali- 
brated using the older value of the viscosity of water; on the new basis, the values 
would be 0.3% lower. 

The density of ethylenediamine was determined for us by Dr. P. W. Brcwter in 
the laboratories of Prof. F. C. Schmidt, University of Indiana. 
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 osmotic and activity coefficients 478 

 transport numbers 159 

Calomel electrode 199
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 theory  74–86 

Degree of ionization 338 

‘Demal’ standards 96 97 

Depolarization 91 93 
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 frame of reference in 48 322 
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 relations between 39 
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E
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 mixing  242 244 250 

 solution 14 
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F
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Fick‘s laws (diffusion) 47 

Flux   45 
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Frame of reference 48 107 
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GIBBS-DUHEM equation 33 223 

Glass electrode 198
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  coefficient 244 
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Goüy interference pattern 270–2 

 theory  273–4 
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HARNED’S rule 438 442 

Hartley-Crank equation 
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  solutions 372 
 representation by equations 152–3 
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 transport numbers 158
 vapour pressure 51 
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 ion, mobility 120–2 309 371

554
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 ‘localized’ 423
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I

ICE, heat of vaporization 5 

‘Iceberg’ formation 14 

Ideal solutions 242 

Impedance 88 
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Ion association 50 392 
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 size parameter 79 157 
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86 393 

Ionic radii  461 

Ionization constants, of weak 
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 in mixed solvents 538–42

 solvent effects on 351

 temperature effects on 357

Ionization, degree of 338 
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LANGEVIN function 8 19 
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 diffusion 300 
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‘Localised Hydrolysis’ 423 
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 equations for activity coefficients 436 440 

Mixed solvents, ion mobilities in 308

 weak electrolytes in 351

seq. 538–42 
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NERNST relation (diffusion) 288 289 317 
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‘OBSTRUCTION’ effect 310–13 
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  methanol 162



Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Potassium acetate, transport (Cont.)

 bromide, conductance 152 

  representation by equations 153 

 chloride, activity data 

  (standards) 213–16 476 

 chloride conductance in 

  methanol 162 

 chloride conductance standards 462 

 chloride integral diffusion 

  coefficient 260 

 chloride transport numbers 158 554 

 iodide, conductance in hydrogen 

  cyanide 166 

 iodide, conductance in methanol 162 

 nitrate dissociation 408 

Potential, of cell 39 

 standard 41 

‘Proton-jump’ transport 121 169 376 
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Saturated salts, vapour pressure of 510 

Scale method (diffusion) 280 

 theory  280–2 

Selenic acid 390

Self-diffusion 314 

 of water 12 328 

Silver nitrate, dissociation 408 

Silver-silver halide electrodes 199



Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Sodium acetate, transport 

  numbers 158 
 bromide, conductance in 

  methanol 162
 chloride, activity coefficient 232 236 
   at freezing point 186
   at 25° 188 476 481
   at various temperatures 212 481 
  conductance 150 151 
  conductance in methanol 162 
  diffusion 329 
  -hydrochloric acid mixtures, 

   activity coefficients 432–5 

  osmotic coefficient 215

  osmotic and activity 

   coefficients 476 480 481 
  standard activity data 213–16 

  transport numbers 158 
  viscosity 306 
Solubility  208 

 activities from 209
 and free energy 64

Solvation, effect on activity 239–51 

 in diffusion 326 329 331 
 in non-aqueous solvents 62–3 

 in mixed electrolytes 452 

 in sulphuric acid 377



Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Solvent extraction process 209 

Solvents, properties of 458

Sound absorption spectra 415 

Specific conductance minimum 

  (strong acids) 373 

 interaction coefficients 

  (Guggenheim) 436 

Spectrophotometry 417 

 for dissociation constants 344 

Standard potentials 63–4 470–4 555

556 

 extrapplation 191–3 

Standard states 24–9 65–8 

Steady state (diffusion) 253

Stokes’ law 43 124–6 308–13 

‘Structure-breaking’ ions 304 

 entropy 16–17 

Sucrose, activity cofficient 224 478 

 concentration dependence of 

  activity cofficient 244 

 limiting diffusion cofficient 282–3 306 

 osmotic pressure 206 

 osmotic coefficient 206 218 478 

 viscosity 306

Sulphuric acid, 

 activity coefficients 477 



Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Sulphuric acid, (Cont.)

 aqueous 381 

 heat of dilution 390 

 molar volume 388 

 molecular and ionic species in 381–2 

 osmotic coefficient 382 477

 n-m-r spectrum 381 

 second dissociation 383–90 

 surface tension 389

 transport numbers 376 384 

 water activity of 216–18 

 as solvent 373–4 

  conductance of electrolytes in 376 

  dielectric constant 374–5

  polymeric forms 381 

  Raman spectrum 380

  self-dissociation 374 

  solutions in 377 

  specific conductance 374 

  viscosities in 377 

Surface transport 256

T

TELLURIC acid 390



Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Tetra-alkyl ammonium ions, 

  mobility 124 

  dimensions 124 

 salts, conductances in amide 

  solvents 167

Tetraisoamyl ammonium nitrate, 

  dissociation 400 401 403

404

Thallous chloride, dissociation 408

Thermodynamic factor, in 

  diffusion 328 

Thermostat design 87 

 liquids  87 

Tracer- and self-diffusion 

  Coefficients, univalent ions 317 

 diffusion 314 

 of ions in KCl solutions 318 

Tracers, radioactive, in diffusion 261

Transformer bridge (conductance) 92 

Transport numbers 44

 analytical boundary 109

 concentration-dependence 156–7 158 

 from centrifugal cells 114–16 

 Helmholtz 111 

 Hittorf  102–3 

 in mixed solvents 157 



Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Transport numbers (Cont.)

 measurement 102 

 moving boundary 104 

 negative 160 

 solvent correction in 108 

 temperature dependence 127 

Transport processes, concentrated 

  solutions 303 

Trichloracetic acid 390

Triple ions 402 

U

ULTRACENTRIFUGE, activity 

  coefficients from 211 

Unsymmetrical electrolytes, 

  ion-association in 415 416 

 valence-type weakness of theory 

  for  155 

Uranyl nitrate, activity coefficient 210 

 perchlorate, activity coefficient 218 

V

VAPOUR pressure, computation of

  activity from 179–80 



Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

VAPOUR pressure, computation of (Cont.)

 measurement (static) 174

  (dynamic) 176 

  (isopiestic) 177–9 

 of mixed electrolytes 440 451 

 of saturated salts 510
 of water 457
Viscosity  12 302 303 

 and ion-mobility 129 

 coefficients 516
 concentrated solutions 306 

 hydrodynamic treatments 305–7 

 interionic contributions to 304 

 microscopic 307 310 

 relative 304 

 specific 304

 standards 303 

‘Volume-fraction’ statistics 244 250–1 

W
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 properties 2 457 
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Weston standard cell 195 
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